Academic literature on the topic 'Arabidopsis, ALOG'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Arabidopsis, ALOG.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Arabidopsis, ALOG"

1

Li, Na, Yang Wang, Jing Lu, and Chuan Liu. "Genome-Wide Identification and Characterization of the ALOG Domain Genes in Rice." International Journal of Genomics 2019 (February 24, 2019): 1–13. http://dx.doi.org/10.1155/2019/2146391.

Full text
Abstract:
The ALOG domain genes, named after the Arabidopsis LSH1 and Oryza G1 (ALOG) proteins, have frequently been reported as key developmental regulators in rice and Arabidopsis. However, the investigation of the ALOG gene family is limited. Here, we conducted a genome-wide investigation of the ALOG gene family in rice and six other species. In total, eighty-four ALOG domain genes were identified from the seven species, of which fourteen ALOG domain genes (OsG1/G1Ls) were identified in the rice genome. The fourteen OsG1/G1Ls were unevenly distributed on eight chromosomes, and we found that eight segmental duplications contributed to the expansion of OsG1/G1Ls in the rice genome. The eighty-four ALOG family genes from seven species were classified into six clusters, and the ALOG domain-defined motifs 1, 2, and 3 were highly conserved across species according to the phylogenetic and structural analysis. However, the newly identified motifs 4 and 5 were only present in monocots, indicating a specified function in monocots. Moreover, OsG1/G1Ls exhibited tissue-specific expression patterns. Coexpression analysis suggested that OsG1 integrates OsMADS50 and the downstream MADS-box genes, such as OsMADS1, to regulate the development of rice inflorescence; OsG1L7 potentially associates with OsMADS22 and OsMADS55 to regulate stem elongation. In addition, comparative expression analysis revealed the conserved biological functions of ALOG family genes among rice, maize, and Arabidopsis. These results have shed light on the functional study of ALOG family genes in rice and other plants.
APA, Harvard, Vancouver, ISO, and other styles
2

He, Liang, Yawen Lei, Xin Li, Qincheng Peng, Wei Liu, Keyuan Jiao, Shihao Su, Zhubing Hu, Zhenguo Shen, and Da Luo. "SYMMETRIC PETALS 1 Encodes an ALOG Domain Protein that Controls Floral Organ Internal Asymmetry in Pea (Pisum sativum L.)." International Journal of Molecular Sciences 21, no. 11 (June 5, 2020): 4060. http://dx.doi.org/10.3390/ijms21114060.

Full text
Abstract:
In contrast to typical radially symmetrical flowers, zygomorphic flowers, such as those produced by pea (Pisum sativum L.), have bilateral symmetry, manifesting dorsoventral (DV) and organ internal (IN) asymmetry. However, the molecular mechanism controlling IN asymmetry remains largely unclear. Here, we used a comparative mapping approach to clone SYMMETRIC PETALS 1 (SYP1), which encodes a key regulator of floral organ internal asymmetry. Phylogenetic analysis showed that SYP1 is an ortholog of Arabidopsis thaliana LIGHT-DEPENDENT SHORT HYPOCOTYL 3 (LSH3), an ALOG (Arabidopsis LSH1 and Oryza G1) family transcription factor. Genetic analysis and physical interaction assays showed that COCHLEATA (COCH, Arabidopsis BLADE-ON-PETIOLE ortholog), a known regulator of compound leaf and nodule identity in pea, is involved in organ internal asymmetry and interacts with SYP1. COCH and SYP1 had similar expression patterns and COCH and SYP1 target to the nucleus. Furthermore, our results suggested that COCH represses the 26S proteasome-mediated degradation of SYP1 and regulates its abundance. Our study suggested that the COCH-SYP1 module plays a pivotal role in floral organ internal asymmetry development in legumes.
APA, Harvard, Vancouver, ISO, and other styles
3

Nan, Wenzhi, Shandang Shi, Diddugodage Chamila Jeewani, Li Quan, Xue Shi, and Zhonghua Wang. "Genome-Wide Identification and Characterization of wALOG Family Genes Involved in Branch Meristem Development of Branching Head Wheat." Genes 9, no. 10 (October 19, 2018): 510. http://dx.doi.org/10.3390/genes9100510.

Full text
Abstract:
The branched spike phenotype is an important supernumerary spikelet trait of Triticum turgidum L. associated with the production of significantly more grains per spike, thereby offering a higher potential yield. However, the genetic basis of branch meristem (BM) development remains to be fully elucidated in wheat. TAW1, an ALOG (Arabidopsis LSH1 and Oryza G1) family gene, has been shown to function as a unique regulator in promoting BM development in rice. In this study, we found that the development pattern of the BMs of the branched spike in wheat was similar to the indeterminate BMs of rice. Moreover, phylogenetic analysis classified the ALOG genes into 12 groups. This family of genes was found to have evolved independently in eudicots and monocots and was evolutionarily conserved between wheat and rice as well as during wheat polyploidization. Furthermore, experiments revealed that TtALOG2-1A, a TAW1-homologous gene, plays a significant role in regulating the transition of indeterminate BM fate. Finally, large-scale RNA-sequencing studies and quantitative real-time polymerase chain reaction (qRT-PCR) experiments revealed that members of the TtALOGs may act upstream of the TtMADS22, TtMADS47, and TtMADS55 genes to promote indeterminate BM activities. Our findings further knowledge on BM development in wheat.
APA, Harvard, Vancouver, ISO, and other styles
4

Hofmann, Julia, Mohamed Youssef-Banora, Janice de Almeida-Engler, and Florian M. W. Grundler. "The Role of Callose Deposition Along Plasmodesmata in Nematode Feeding Sites." Molecular Plant-Microbe Interactions® 23, no. 5 (May 2010): 549–57. http://dx.doi.org/10.1094/mpmi-23-5-0549.

Full text
Abstract:
Infective second-stage juveniles of the obligate plant-parasitic root-knot and cyst nematodes invade plant roots to induce specialized feeding structures. Here, we present data on the distribution of plasmodesmata in cell walls of syncytia and giant cells induced by cyst and root-knot nematodes. An Arabidopsis and a tobacco line were used, containing viral movement proteins fused to green fluorescent protein as a localization marker for plasmodesmata. Plasmodesmata were detected in walls between giant cells but also in walls toward neighboring cells. In syncytia, plasmodesmata were mainly detected at later stages. In young syncytia, few plasmodesmata were observed and a specific temporal callose deposition along plasmodesmata indicated impaired symplasmic exchange. In order to study the relevance of callose deposition for successful cyst nematode development in Arabidopsis, two mutant lines inhibited in callose synthesis and degradation, respectively, were used in nematode infection assays. Histological analyses showed that syncytia were smaller when callose degradation was reduced, indicating a significant importance of this process to cyst nematode development.
APA, Harvard, Vancouver, ISO, and other styles
5

Katiyar, Arpana, and Yashwanti Mudgil. "Arabidopsis NDL-AGB1 modules Play Role in Abiotic Stress and Hormonal Responses Along with Their Specific Functions." International Journal of Molecular Sciences 20, no. 19 (September 24, 2019): 4736. http://dx.doi.org/10.3390/ijms20194736.

Full text
Abstract:
Arabidopsis N-MYC Downregulated Like Proteins (NDLs) are interacting partners of G-Protein core components. Animal homologs of the gene family N-myc downstream regulated gene (NDRG) has been found to be induced during hypoxia, DNA damage, in presence of reducing agent, increased intracellular calcium level and in response to metal ions like nickel and cobalt, which indicates the involvement of the gene family during stress responses. Arabidopsis NDL gene family contains three homologs NDL1, NDL2 and NDL3 which share up to 75% identity at protein level. Previous studies on NDL proteins involved detailed characterization of the role of NDL1; roles of other two members were also established in root and shoot development using miRNA knockdown approach. Role of entire family in development has been established but specific functions of NDL2 and NDL3 if any are still unknown. Our in-silico analysis of NDLs promoters reveled that all three members share some common and some specific transcription factors (TFs) binding sites, hinting towards their common as well as specific functions. Based on promoter elements characteristics, present study was designed to carry out comparative analysis of the Arabidopsis NDL family during different stages of plant development, under various abiotic stresses and plant hormonal responses, in order to find out their specific and combined roles in plant growth and development. Developmental analysis using GUS fusion revealed specific localization/expression during different stages of development for all three family members. Stress analysis after treatment with various hormonal and abiotic stresses showed stress and tissue-specific differential expression patterns for all three NDL members. All three NDL members were collectively showed role in dehydration stress along with specific responses to various treatments. Their specific expression patterns were affected by presence of interacting partner the Arabidopsis heterotrimeric G-protein β subunit 1 (AGB1). The present study will improve our understanding of the possible molecular mechanisms of action of the independent NDL–AGB1 modules during stress and hormonal responses. These findings also suggest potential use of this knowledge for crop improvement.
APA, Harvard, Vancouver, ISO, and other styles
6

Fesel, Philipp H., and Alga Zuccaro. "Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis." Current Opinion in Microbiology 32 (August 2016): 103–12. http://dx.doi.org/10.1016/j.mib.2016.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foster-Hartnett, Dawn, Joann Mudge, Dana Larsen, Dariush Danesh, Huihuang Yan, Roxanne Denny, Silvia Peñuela, and Nevin D. Young. "Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G." Genome 45, no. 4 (August 1, 2002): 634–45. http://dx.doi.org/10.1139/g02-027.

Full text
Abstract:
Eight DNA markers spanning an interval of approximately 10 centimorgans (cM) on soybean (Glycine max) molecular linkage group G (MLG-G) were used to identify bacterial artificial chromosome (BAC) clones. Twenty-eight BAC clones in eight distinct contiguous groups (contigs) were isolated from this genome region, along with 59 BAC clones on 17 contigs homoeologous to those on MLG-G. BAC clones in four of the MLG-G contigs were also digested to produce subclones and detailed physical maps. All of the BAC-ends were sequenced, as were the subclones, to estimate proportions in different sequence categories, compare similarities among homoeologs, and explore microsynteny with Arabidopsis. Homoeologous BAC contigs were enriched in repetitive sequences compared with those on MLG-G or the soybean genome as a whole. Fingerprint and cross-hybridization comparisons between MLG-G and homoeologous contigs revealed cases of highly similar physical organization between soybean duplicates, as did DNA sequence comparisons. Twenty-seven out of 78 total sequences on soybean MLG-G showed significant similarity to Arabidopsis. The homologs mapped to six compact genome segments in Arabidopsis, with the longest containing seven homologs spanning two million base pairs. These results extend previous observations of large-scale duplication and selective gene loss in Arabidopsis, suggesting that networks of conserved synteny between Arabidopsis and other angiosperm families can stretch over long physical distances.Key words: Arabidopsis thaliana, bacterial artificial chromosomes, Glycine max, microsynteny.
APA, Harvard, Vancouver, ISO, and other styles
8

Ikeuchi, Momoko, Takahiro Yamaguchi, Toshiya Kazama, Tasuku Ito, Gorou Horiguchi, and Hirokazu Tsukaya. "ROTUNDIFOLIA4 Regulates Cell Proliferation Along the Body Axis in Arabidopsis Shoot." Plant and Cell Physiology 52, no. 1 (September 8, 2010): 59–69. http://dx.doi.org/10.1093/pcp/pcq138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paul, Abhirup, Anurag P. Srivastava, Shreya Subrahmanya, Guoxin Shen, and Neelam Mishra. "In-silico genome wide analysis of Mitogen activated protein kinase kinase kinase gene family in C. sinensis." PLOS ONE 16, no. 11 (November 4, 2021): e0258657. http://dx.doi.org/10.1371/journal.pone.0258657.

Full text
Abstract:
Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.
APA, Harvard, Vancouver, ISO, and other styles
10

Hardtke, Christian S., and Thomas Berleth. "Genetic and contig map of a 2200-kb region encompassing 5.5 cM on chromosome 1 of Arabidopsis thaliana." Genome 39, no. 6 (December 1, 1996): 1086–92. http://dx.doi.org/10.1139/g96-136.

Full text
Abstract:
In the course of the isolation of the MONOPTEROS (MP) gene, required for primary root formation in Arabidopsis thaliana, a yeast artificial chromosome (YAC) contig encompassing approximately 2200 kilobases corresponding to 5.5 cM on the top arm of chromosome 1 was established. Forty-six YAC clones were characterized and 12 new restriction fragment length polymorphism (RFLP) markers are presented. Three new codominant amplified polymorphic sequence (CAPS) markers were generated that enabled high resolution genetic mapping and correlation of physical and genetic distances along the contig. The map contributes to the completion of a physical map of the Arabidopsis genome and should facilitate positional cloning of other genes in the region as well as studies on genome organization. We also present another set of 11 physically linked probes, as well as mapping data for additional RFLP markers within a broader interval of 10.4 cM. Key words : Arabidopsis, CAPS markers, MONOPTEROS gene, physical map, RFLP markers, YAC contig.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Arabidopsis, ALOG"

1

FRANCHINI, EMANUELA. "ROLE OF ALOG FAMILY GENES IN INFLORESCENCE PATTERNING IN ORYZA SATIVA AND ARABIDOPSIS THALIANA." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/714283.

Full text
Abstract:
Inflorescence architecture is a key agronomical trait that determines fruit and seed yield. Understanding the genetic basis of inflorescence architecture will not only contribute to elucidate crop evolution/domestication mechanisms but also improve crop grain yield. Flowering plants develop different types of inflorescences, such as racemes in Arabidopsis and panicles in rice. The architecture is established during the early stages of reproductive development and it is determined by the activity of different meristem types and by the timing of the transition between indeterminate meristems to determinate ones. Inflorescence development is finely regulated by a genetic network that includes meristem identity genes and genes that regulate their expression; many genes are already known but others have still to be characterized to provide insight into how this complex process is controlled. Transcriptomic analysis performed in rice and in Arabidopsis through laser microdissection of different meristematic tissues highlighted differentially expressed genes belonging to the ALOG family suggesting their role in inflorescence patterning. We focus on G1L1, G1L2, and G1L5 of rice and on LSH1, LSH3, and LSH4 of Arabidopsis. G1L5 is already known to be a major regulator of inflorescence architecture, whereas LSH3 and LSH4 seem to have a role in meristem maintenance and organogenesis. Their expression profiles were analyzed by qRT-PCR and RNA in situ hybridization experiments using meristematic tissues from both species. We are also generating single and double/triple K.O mutants in different combinations by CRISPR-Cas9 genome editing technology to have a better understanding of their role in inflorescence patterning. The data so far obtained demonstrate the role of G1L1 and G1L2 in inflorescence branching and spikelet number determination and we also propose a role for G1L2 in root development. Furthermore, LSH1 seems to be involved in meristem maintenance and organ differentiation, and LSH3 in stem elongation. We propose the hypothesis that LSH1, LSH3, and LSH4 play a redundant function in inflorescence development.
APA, Harvard, Vancouver, ISO, and other styles
2

Baruah, Manaswita [Verfasser], Dierk [Gutachter] Scheel, Sven-Erik [Gutachter] Behrens, and Alok Krishna [Gutachter] Sinha. "Role of tandem zinc finger proteins of Arabidopsis thaliana in plant stress responses / Manaswita Baruah ; Gutachter: Dierk Scheel, Sven-Erik Behrens, Alok Krishna Sinha." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2020. http://d-nb.info/121072779X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Arabidopsis, ALOG"

1

Chamovitz, Daniel A., and Albrecht G. Von Arnim. eIF3 Complexes and the eIF3e Subunit in Arabidopsis Development and Translation Initiation. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7696545.bard.

Full text
Abstract:
The original working hypothesis of our proposal was that The “e” subunit of eIF3 has multiple functions from both within the nucleus and in the cytoplasm. Within this model, we further hypothesized that the “e” subunit of eIF3 functions in translation as a repressor. We proposed to test these hypotheses along the following specific aims: 1) Determine the subcellular localization of the interaction between eIF3e and other eIF3 subunits, or the COP9 signalosome. 2) Elucidate the biological significance of the varied subcellular localizations of eIF3e through generating Arabidopsis eIF3e alleles with altered subcellular localization. 3.) Purify different eIF3e complexes by tandem affinity purification (TAP). 4) Study the role of eIF3e in translational repression using both in vitro and in planta assays. eIF3 is an evolutionarily ancient and essential component of the translational apparatus in both the plant and animal kingdoms. eIF3 is the largest, and in some ways the most mysterious, of the translation factors. It is a multi-subunit protein complex that has a structural/scaffolding role in translation initiation. However, despite years of study, only recently have differential roles for eIF3 in the developmental regulation of translation been experimentally grounded. Furthermore, the roles of individual eIF3 subunits are not clear, and indeed some, such as the “e” subunit may have roles independent of translation initiation. The original three goals of the proposal were technically hampered by a finding that became evident during the course of the research – Any attempt to make transgenic plants that expressed eIF3e wt or eIF3e variants resulted in seedling lethality or seed inviability. That is, it was impossible to regenerate any transgenic plants that expressed eIF3e. We did manage to generate plants that expressed an inducible form of eIF3e. This also eventually led to lethality, but was very useful in elucidating the 4th goal of the research (Yahalom et al., 2008), where we showed, for the first time in any organism, that eIF3e has a repressory role in translation. In attempt to solve the expression problems, we also tried expression from the native promoter, and as such analyzed this promoter in transgenic plants (Epel, 2008). As such, several additional avenues were pursued. 1) We investigated protein-protein interactions of eIF3e (Paz-Aviram et al., 2008). 2) The results from goal #4 led to a novel hypothesis that the interaction of eIF3e and the CSN meets at the control of protein degradation of nascent proteins. In other words, that the block in translation seen in csn and eIF3e-overexpressing plants (Yahalom et al., 2008) leads to proteasome stress. Indeed we showed that both over expression of eIF3e and the csn mutants lead to the unfolded protein response. 3) We further investigated the role of an additional eIF3 subunit, eIF3h, in transalational regulation in the apical meristem (Zhou et al., 2009). Epel, A. (2008). Characterization of eIF3e in the model plant Arabidopsis thaliana. In Plant Sciences (Tel Aviv, Tel Aviv University). Paz-Aviram, T., Yahalom, A., and Chamovitz, D.A. (2008). Arabidopsis eIF3e interacts with subunits of the ribosome, Cop9 signalosome and proteasome. Plant Signaling and Behaviour 3, 409-411. Yahalom, A., Kim, T.H., Roy, B., Singer, R., von Arnim, A.G., and Chamovitz, D.A. (2008). Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J 53, 300-311. Zhou, F., Dunlap, J.R., and von Arnim, A.G. The translation initiation factor subunit eIF3h is .1 involved in Arabidopsis shoot apical meristem maintenance and auxin response. (submitted to Development).
APA, Harvard, Vancouver, ISO, and other styles
2

Lifschitz, Eliezer, and Elliot Meyerowitz. The Relations between Cell Division and Cell Type Specification in Floral and Vegetative Meristems of Tomato and Arabidopsis. United States Department of Agriculture, February 1996. http://dx.doi.org/10.32747/1996.7613032.bard.

Full text
Abstract:
Meristems were the central issue of our project. Genes that are required for cell division, cell elongation, cell proliferation and cell fate were studied in the tomato system. The analysis of the dUTPase and threonine deaminase genes, along with the dissection of their regulatory regions is completed, while that of the RNR2 and PPO genes is at an advanced stage. All these genes were isolated in our laboratory. In addition, 8 different MADS box genes were studied in transgenic plants and their genetic relevances discovered. We have also shown that a given MADS box gene can modify the polarity of cell division without affecting the fate of the organ. In vivo interaction between two MADS box genes was demonstrated and the functional dependency of the tomato agamous gene on the TM5 gene product established. We have exploited the Knotted1 meristematic gene in conjunction with tomato leaf meristematic genes to show that simple and compound leaves and, for that matter, sepals and compound leaves, are formed by two different developmental programs. In this context we have also isolated and characterized the tomato Knotted1 gene (TKnl) and studied its expression pattern. A new program in which eight different meristematic genes in tomato will be studied emerged as a result of these studies. In essence, we have shown that it is possible to study and manipulate plant developmental systems using reverse genetic techniques and have provided a wealth of new molecular tools to interested colleagues working with tomato. Similarly, genes responsible for cell division, cell proliferation and cell fate were studied in Arabidopsis floral meristems. Among these genes are the TSO1, TSO2, HANABA TARANU and UNUSUAL FLORAL ORGANS genes, each affecting in its own way the number of pattern of cell divisions, and cell fate, in developing Arabodopsis flowers. In addition, new methods have been established for the assessment of the function of regulatory gene action in the different clonal layers of developing floral meristems.
APA, Harvard, Vancouver, ISO, and other styles
3

Locy, Robert D., Hillel Fromm, Joe H. Cherry, and Narendra K. Singh. Regulation of Arabidopsis Glutamate Decarboxylase in Response to Heat Stress: Modulation of Enzyme Activity and Gene Expression. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7575288.bard.

Full text
Abstract:
Most plants accumulate the nonprotein amino acid, g-aminobutyric acid (GABA), in response to heat stress. GABA is made from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), an enzyme that has been shown by the Israeli PI to be a calmodulin (CaM) binding protein whose activity is regulated in vitro by calcium and CaM. In Arabidopsis there are at least 5 GAD genes, two isoforms of GAD, GAD1 and GAD2, are known to be expressed, both of which appear to be calmodulin-binding proteins. The role of GABA accumulation in stress tolerance remains unclear, and thus the objectives of the proposed work are intended to clarify the possible roles of GABA in stress tolerance by studying the factors which regulate the activity of GAD in vivo. Our intent was to demonstrate the factors that mediate the expression of GAD activity by analyzing the promoters of the GAD1 and GAD2 genes, to determine the role of stress induced calcium signaling in the regulation of GAD activity, to investigate the role of phosphorylation of the CaM-binding domain in the regulation of GAD activity, and to investigate whether ABA signaling could be involved in GAD regulation via the following set of original Project Objectives: 1. Construction of chimeric GAD1 and GAD2 promoter/reporter gene fusions and their utilization for determining cell-specific expression of GAD genes in Arabidopsis. 2. Utilizing transgenic plants harboring chimeric GAD1 promoter-luciferase constructs for isolating mutants in genes controlling GAD1 gene activation in response to heat shock. 3. Assess the role of Ca2+/CaM in the regulation of GAD activity in vivo in Arabidopsis. 4. Study the possible phosphorylation of GAD as a means of regulation of GAD activity. 5. Utilize ABA mutants of Arabidopsis to assess the involvement of this phytohormone in GAD activation by stress stimuli. The major conclusions of Objective 1 was that GAD1 was strongly expressed in the elongating region of the root, while GAD2 was mainly expressed along the phloem in both roots and shoots. In addition, GAD activity was found not to be transcriptionally regulated in response to heat stress. Subsequently, The Israeli side obtained a GAD1 knockout mutation, and in light of the objective 1 results it was determined that characterization of this knockout mutation would contribute more to the project than the proposed Objective 2. The major conclusion of Objective 3 is that heat-stress-induced changes in GAD activity can be explained by heat-stress-induced changes in cytosolic calcium levels. No evidence that GAD activity was transcriptionally or translationally regulated or that protein phosphorylation was involved in GAD regulation (objective 4) was obtained. Previously published data by others showing that in wheat roots ABA regulated GABA accumulation proved not to be the case in Arabidopsis (Objective 5). Consequently, we put the remaining effort in the project into the selection of mutants related to temperature adaptation and GABA utilization and attempting to characterize events resulting from GABA accumulation. A set of 3 heat sensitive mutants that appear to have GABA related mutations have been isolated and partially characterized, and a study linking GABA accumulation to growth stimulation and altered nitrate assimilation were conducted. By providing a better understanding of how GAD activity was and was not regulated in vivo, we have ruled out the use of certain genes for genetically engineering thermotolerance, and suggested other areas of endeavor related to the thrust of the project that may be more likely approaches to genetically engineering thermotolerance.
APA, Harvard, Vancouver, ISO, and other styles
4

Eshed, Yuval, and John Bowman. Harnessing Fine Scale Tuning of Endogenous Plant Regulatory Processes for Manipulation of Organ Growth. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696519.bard.

Full text
Abstract:
Background and objectives: Manipulation of plant organ growth is one of the primary reasons for the success of mankind allowing increasing amounts of food for human and livestock consumption. In contrast with the successful selection for desirable growth characteristics using plant breeding, transgenic manipulations with single genes has met limited success. While breeding is based on accumulation of many small alterations of growth, usually arise from slight changes in expression patterns, transgenic manipulations are primarily based on drastic, non-specific up-regulation or knock down of genes that can exert different effects during different stages of development. To successfully harness transgenic manipulation to attain desirable plant growth traits we require the tools to subtly regulate the temporal and spatial activity of plant growth genes. Polar morphology along the adaxial/abaxial axis characterizes lateral organs of all plants. Juxtaposition of two cell types along this axis is a prerequisite of laminar growth induction. In the study summarized here, we addressed the following questions: Can we identify and harness components of the organ polarity establishment pathway for prolonged growth? Can we identify specific regulatory sequences allowing spatial and temporal manipulation in various stages of organ development? Can we identify genes associated with YABBY-induced growth alterations? Major conclusions and implications: We showed that regulated expression, both spatially and temporally of either organ polarity factors such as the YABBY genes, or the organ maturation program such as the CIN-TCPs can stimulate substantial growth of leaves and floral organs. Promoters for such fine manipulation could be identified by comparison of non-coding sequences of KAN1, where a highly conserved domain was found within the second intron, or by examination of multiple 5” regions of genes showing transient expression along leaf ontogeny. These promoters illustrate the context dependent action of any gene we examined thus far, and facilitate fine tuning of the complex growth process. Implications, both scientific and agricultural. The present study was carried out on the model organism Arabidopsis, and the broad application of its findings were tested in the tomato crop. We learned that all central regulators of organ polarity are functionally conserved, probably in all flowering plants. Thus, with minor modifications, the rules and mechanisms outlined in this work are likely to be general.
APA, Harvard, Vancouver, ISO, and other styles
5

Chamovitz, Daniel, and Albrecht Von Arnim. Translational regulation and light signal transduction in plants: the link between eIF3 and the COP9 signalosome. United States Department of Agriculture, November 2006. http://dx.doi.org/10.32747/2006.7696515.bard.

Full text
Abstract:
The COP9 signalosome (CSN) is an eight-subunit protein complex that is highly conserved among eukaryotes. Genetic analysis of the signalosome in the plant model species Arabidopsis thaliana has shown that the signalosome is a repressor of light dependent seedling development as mutant Arabidopsis seedlings that lack this complex develop in complete darkness as if exposed to light. These mutant plants die following the seedling stage, even when exposed to light, indicating that the COP9 signalosome also has a central role in the regulation of normal photomorphogenic development. The biochemical mode of action of the signalosome and its position in eukaryotic cell signaling pathways is a matter of controversy and ongoing investigation, and recent results place the CSN at the juncture of kinase signaling pathways and ubiquitin-mediated protein degradation. We have shown that one of the many CSN functions may relate to the regulation of translation through the interaction of the CSN with its related complex, eukaryotic initiation factor (eIF3). While we have established a physical connection between eIF3 subunits and CSN subunits, the physiological and developmental significance of this interaction is still unknown. In an effort to understand the biochemical activity of the signalosome, and its role in regulating translation, we originally proposed to dissect the contribution of "h" subunit of eIF3 (eIF3h) along the following specific aims: (i) Isolation and phenotypic characterization of an Arabidopsis loss-of-function allele for eIF3h from insertional mutagenesis libraries; (ii) Creation of designed gain and loss of function alleles for eIF3h on the basis of its nucleocytoplasmic distribution and its yeast-two-hybrid interactions with other eIF3 and signalosome partner proteins; (iii) Determining the contribution of eIF3h and its interaction with the signalosome by expressing specific mutants of eIF3h in the eIF3h- loss-of function background. During the course of the research, these goals were modified to include examining the genetic interaction between csn and eif3h mutations. More importantly, we extended our effort toward the genetic analysis of mutations in the eIF3e subunit, which also interacts with the CSN. Through the course of this research program we have made several critical scientific discoveries, all concerned with the apparent diametrically opposed roles of eIF3h and eIF3e. We showed that: 1) While eIF3e is essential for growth and development, eIF3h is not essential for growth or basal translation; 2) While eIF3e has a negative role in translational regulation, eIF3h is positively required for efficient translation of transcripts with complex 5' UTR sequences; 3) Over-accumulation of eIF3e and loss-of-function of eIF3h both lead to cop phenotypes in dark-grown seedlings. These results were published in one publication (Kim et al., Plant Cell 2004) and in a second manuscript currently in revision for Embo J. Are results have led to a paradigm shift in translation research – eIF3 is now viewed in all systems as a dynamic entity that contains regulatory subuits that affect translational efficiency. In the long-term agronomic outlook, the proposed research has implications that may be far reaching. Many important plant processes, including developmental and physiological responses to light, abiotic stress, photosynthate, and hormones operate in part by modulating protein translation [23, 24, 40, 75]. Translational regulation is slowly coming of age as a mechanism for regulating foreign gene expression in plants, beginning with translational enhancers [84, 85] and more recently, coordinating the expression of multiple transgenes using internal ribosome entry sites. Our contribution to understanding the molecular mode of action of a protein complex as fundamental as eIF3 is likely to lead to advances that will be applicable in the foreseeable future.
APA, Harvard, Vancouver, ISO, and other styles
6

Sadot, Einat, Christopher Staiger, and Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7592652.bard.

Full text
Abstract:
In the original proposal we planned to focus on two proteins related to the actin cytoskeleton: TCH2, a touch-induced calmodulin-like protein which was found by us to interact with the IQ domain of myosin VIII, ATM1; and ERD10, a dehydrin which was found to associate with actin filaments. As reported previously, no other dehydrins were found to interact with actin filaments. In addition so far we were unsuccessful in confirming the interaction of TCH2 with myosin VIII using other methods. In addition, no other myosin light chain candidates were found in a yeast two hybrid survey. Nevertheless we have made a significant progress in our studies of the role of myosins in plant cells. Plant myosins have been implicated in various cellular activities, such as cytoplasmic streaming (1, 2), plasmodesmata function (3-5), organelle movement (6-10), cytokinesis (4, 11, 12), endocytosis (4, 5, 13-15) and targeted RNA transport (16). Plant myosins belong to two main groups of unconventional myosins: myosin XI and myosin VIII, both closely related to myosin V (17-19). The Arabidopsis myosin family contains 17 members: 13 myosin XI and four myosin VIII (19, 20). The data obtained from our research of myosins was published in two papers acknowledging BARD funding. To address whether specific myosins are involved with the motility of specific organelles, we cloned the cDNAs from neck to tail of all 17 Arabidopsis myosins. These were fused to GFP and used as dominant negative mutants that interact with their cargo but are unable to walk along actin filaments. Therefore arrested organelle movement in the presence of such a construct shows that a particular myosin is involved with the movement of that particular organelle. While no mutually exclusive connections between specific myosins and organelles were found, based on overexpression of dominant negative tail constructs, a group of six myosins (XIC, XIE, XIK, XI-I, MYA1 and MYA2) were found to be more important for the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum (8). Further deep and thorough analysis of myosin XIK revealed a potential regulation by head and tail interaction (Avisar et al., 2011). A similar regulatory mechanism has been reported for animal myosin V and VIIa (21, 22). In was shown that myosin V in the inhibited state is in a folded conformation such that the tail domain interacts with the head domain, inhibiting its ATPase and actinbinding activities. Cargo binding, high Ca2+, and/or phosphorylation may reduce the interaction between the head and tail domains, thus restoring its activity (23). Our collaborative work focuses on the characterization of the head tail interaction of myosin XIK. For this purpose the Israeli group built yeast expression vectors encoding the myosin XIK head. In addition, GST fusions of the wild-type tail as well as a tail mutated in the amino acids that mediate head to tail interaction. These were sent to the US group who is working on the isolation of recombinant proteins and performing the in vitro assays. While stress signals involve changes in Ca2+ levels in plants cells, the cytoplasmic streaming is sensitive to Ca2+. Therefore plant myosin activity is possibly regulated by stress. This finding is directly related to the goal of the original proposal.
APA, Harvard, Vancouver, ISO, and other styles
7

Ohad, Nir, and Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7695869.bard.

Full text
Abstract:
Arabidopsis mutants that we have isolated, encode for fertilization-independent endosperm (fie), fertilization-independent seed2 (fis2) and medea (mea) genes, act in the female gametophyte and allow endosperm to develop without fertilization when mutated. We cloned the FIE and MEA genes and showed that they encode WD and SET domain polycomb (Pc G) proteins, respectively. Homologous proteins of FIE and MEA in other organisms are known to regulate gene transcription by modulating chromatin structure. Based on our results, we proposed a model whereby both FIE and MEA interact to suppress transcription of regulatory genes. These genes are transcribed only at proper developmental stages, as in the central cell of the female gametophyte after fertilization, thus activating endosperm development. To test our model, the following questions were addressed: What is the Composition and Function of the Polycomb Complex? Molecular, biochemical, genetic and genomic approaches were offered to identify members of the complex, analyze their interactions, and understand their function. What is the Temporal and Spatial Pattern of Polycomb Proteins Accumulation? The use of transgenic plants expressing tagged FIE and MEA polypeptides as well as specific antibodies were proposed to localize the endogenous polycomb complex. How is Polycomb Protein Activity Controlled? To understand the molecular mechanism controlling the accumulation of FIE protein, transgenic plants as well as molecular approaches were proposed to determine whether FIE is regulated at the translational or posttranslational levels. The objectives of our research program have been accomplished and the results obtained exceeded our expectation. Our results reveal that fie and mea mutations cause parent-of-origin effects on seed development by distinct mechanisms (Publication 1). Moreover our data show that FIE has additional functions besides controlling the development of the female gametophyte. Using transgenic lines in which FIE was not expressed or the protein level was reduced during different developmental stages enabled us for the first time to explore FIE function during sporophyte development (Publication 2 and 3). Our results are consistent with the hypothesis that FIE, a single copy gene in the Arabidopsis genome, represses multiple developmental pathways (i.e., endosperm, embryogenesis, shot formation and flowering). Furthermore, we identified FIE target genes, including key transcription factors known to promote flowering (AG and LFY) as well as shoot and leaf formation (KNAT1) (Publication 2 and 3), thus demonstrating that in plants, as in mammals and insects, PcG proteins control expression of homeobox genes. Using the Yeast two hybrid system and pull-down assays we demonstrated that FIE protein interact with MEA via the N-terminal region (Publication 1). Moreover, CURLY LEAF protein, an additional member of the SET domain family interacts with FIE as well. The overlapping expression patterns of FIE, with ether MEA or CLF and their common mutant phenotypes, demonstrate the versatility of FIE function. FIE association with different SET domain polycomb proteins, results in differential regulation of gene expression throughout the plant life cycle (Publication 3). In vitro interaction assays we have recently performed demonstrated that FIE interacts with the cell cycle regulatory component Retinobalsoma protein (pRb) (Publication 4). These results illuminate the potential mechanism by which FIE may restrain embryo sac central cell division, at least partly, through interaction with, and suppression of pRb-regulated genes. The results of this program generated new information about the initiation of reproductive development and expanded our understanding of how PcG proteins regulate developmental programs along the plant life cycle. The tools and information obtained in this program will lead to novel strategies which will allow to mange crop plants and to increase crop production.
APA, Harvard, Vancouver, ISO, and other styles
8

Tzfira, Tzvi, Michael Elbaum, and Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, December 2005. http://dx.doi.org/10.32747/2005.7695881.bard.

Full text
Abstract:
Agrobacteriumtumefaciensmediates genetic transformation of plants. The possibility of exchanging the natural genes for other DNA has led to Agrobacterium’s emergence as the primary vector for genetic modification of plants. The similarity among eukaryotic mechanisms of nuclear import also suggests use of its active elements as media for non-viral genetic therapy in animals. These considerations motivate the present study of the process that carries DNA of bacterial origin into the host nucleus. The infective pathway of Agrobacterium involves excision of a single-stranded DNA molecule (T-strand) from the bacterial tumor-inducing plasmid. This transferred DNA (T-DNA) travels to the host cell cytoplasm along with two virulence proteins, VirD2 and VirE2, through a specific bacteriumplant channel(s). Little is known about the precise structure and composition of the resulting complex within the host cell and even less is known about the mechanism of its nuclear import and integration into the host cell genome. In the present proposal we combined the expertise of the US and Israeli labs and revealed many of the biophysical and biological properties of the genetic transformation process, thus enhancing our understanding of the processes leading to nuclear import and integration of the Agrobacterium T-DNA. Specifically, we sought to: I. Elucidate the interaction of the T-strand with its chaperones. II. Analyzing the three-dimensional structure of the T-complex and its chaperones in vitro. III. Analyze kinetics of T-complex formation and T-complex nuclear import. During the past three years we accomplished our goals and made the following major discoveries: (1) Resolved the VirE2-ssDNA three-dimensional structure. (2) Characterized VirE2-ssDNA assembly and aggregation, along with regulation by VirE1. (3) Studied VirE2-ssDNA nuclear import by electron tomography. (4) Showed that T-DNA integrates via double-stranded (ds) intermediates. (5) Identified that Arabidopsis Ku80 interacts with dsT-DNA intermediates and is essential for T-DNA integration. (6) Found a role of targeted proteolysis in T-DNA uncoating. Our research provide significant physical, molecular, and structural insights into the Tcomplex structure and composition, the effect of host receptors on its nuclear import, the mechanism of T-DNA nuclear import, proteolysis and integration in host cells. Understanding the mechanical and molecular basis for T-DNA nuclear import and integration is an essential key for the development of new strategies for genetic transformation of recalcitrant plant species. Thus, the knowledge gained in this study can potentially be applied to enhance the transformation process by interfering with key steps of the transformation process (i.e. nuclear import, proteolysis and integration). Finally, in addition to the study of Agrobacterium-host interaction, our research also revealed some fundamental insights into basic cellular mechanisms of nuclear import, targeted proteolysis, protein-DNA interactions and DNA repair.
APA, Harvard, Vancouver, ISO, and other styles
9

Sengupta-Gopalan, Champa, Shmuel Galili, and Rachel Amir. Improving Methionine Content in Transgenic Forage Legumes. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7580671.bard.

Full text
Abstract:
Leguminous forage crops are high in proteins but deficient in S- amino acids. It has been shown that both wool quality and milk production can be limited by the post-ruminal supply of sulfur-containing amino acids. Efforts to use conventional plant breeding and cell selection techniques to increase the S-amino acid content of alfalfa have met with little success. With the objective to increase the S-amino acid content of forage legumes, the goal of this project was to co- express the methionine rich zein genes from corn along with a gene for a key enzyme in methionine biosynthesis, aspartate kinase(AK). The zeins are seed storage proteins from corn and are groupec into four distinct classes based on their amino acid sequence homologies. The b-zein (15kd) and the 6zein (10kD and 18kD) have proportionately high levels of methionine (10%, 22% and 28%, respectively). Initial studies from our lab had shown that while the 15kD zein accumulated to high levels in vegetative tissues of transgenic tobacco the l0kD zein did not. However, co-expression of the 10kD zein with the 15kD zein genes in tobacco showed stabilization of the 10kD zein and the co-localization of the 10kD and 15kD zein proteins in unique ER derived protein bodies. AK is the key enzyme for producing carbon skeletons for all amino acids of the aspartate family including methionine. It is, however, regulated by end-product feedback inhibition. The specific objectives of this proposal were: i. to co-express the 15kD zein with the 10/18kD zein genes in alfalfa in order to enhance the level of accumulation of the 10/18kD zein; ii. to increase methionine pools by expressing a feedback insensitive AK gene in transformants co-expressing the 15kD and 10/18kD zein genes. The Israeli partners were successful in expressing the AK gene in alfalfa which resulted in an increase in free and bound threonine but not in methionine (Galili et al., 2000). Since our target was to increase methionine pools, we changed our second objective to replace the AK gene with the gene for cystathionine gamma synthase (CGS) in the co-expression studies. The first methionine specific reaction is catalyzed by CGS. An additional objective was to develop a transformation system for Berseem clover, and to introduce the appropriate gene constructs into it with the goal of improving their methionine content. Genes for the 15kD zein along with the genes for either the 10kD or 18kD zein have been introduced into the same alfalfa plant both by sexual crosses and by re-transformation. Analysis of these zein co-expressors have shown that both the IOkD and 18kD zein levels go up 5 to 10 fold when co-expressed with the 15kD zein (Bagga et al., MS in preparation). Incubation of the leaves of transgenic alfalfa co-expressing the 15kD and 10kD zein genes, in the rumen of cows have shown that the zein proteins are stable in the rumen. To increase the level of zein accumulation in transgenic alfalfa different promoters have been used to drive the zein genes in alfalfa and we have concluded that the CaMV 35S promoter is superior to the other strong leaf -specific promoters. By feeding callus tissue of alfalfa plants co-expressing the 15kD and 10kD zein genes with methionine and its precursors, we have shown that the zein levels could be significantly enhanced by increasing the methionine pools. We have now introduced the CGS gene (from Arabidopsis; kindly provided to us by Dr. Leustek), into the 15kD zein transformants and experiments are in progress to check if the expression of the CGS gene indeed increases the level of zein accumulation in alfalfa. We were not successful in developing a transformation protocol for Berseem clover.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography