Journal articles on the topic 'Aqueous rechargeable mixed ion batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aqueous rechargeable mixed ion batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Minami, Hironari, Hiroaki Izumi, Takumi Hasegawa, Fan Bai, Daisuke Mori, Sou Taminato, Yasuo Takeda, Osamu Yamamoto, and Nobuyuki Imanishi. "Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere." Journal of Energy and Power Technology 03, no. 03 (June 30, 2021): 1. http://dx.doi.org/10.21926/jept.2103041.
Full textYan, Huihui, Cheng Yang, Liping Zhao, Jing Liu, Peng Zhang, and Lian Gao. "Proton-assisted mixed-valence vanadium oxides cathode with long-term stability for rechargeable aqueous zinc ion batteries." Electrochimica Acta 429 (October 2022): 141003. http://dx.doi.org/10.1016/j.electacta.2022.141003.
Full textGao, Yaning, Haoyi Yang, Xinran Wang, Ying Bai, Na Zhu, Shuainan Guo, Liumin Suo, Hong Li, Huajie Xu, and Chuan Wu. "The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum‐Ion Batteries." ChemSusChem 13, no. 4 (January 27, 2020): 732–40. http://dx.doi.org/10.1002/cssc.201903067.
Full textKim, Seokhun, Vaiyapuri Soundharrajan, Sungjin Kim, Balaji Sambandam, Vinod Mathew, Jang-Yeon Hwang, and Jaekook Kim. "Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries." Nanomaterials 11, no. 8 (July 24, 2021): 1905. http://dx.doi.org/10.3390/nano11081905.
Full textYoshida, Luna, Yuki Orikasa, and Masashi Ishikawa. "Mechanism of Improved Lithium-Sulfur Battery Performance by Oxidation Treatment to Microporous Carbon as Sulfur Matrix." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2299. http://dx.doi.org/10.1149/ma2022-02642299mtgabs.
Full textKim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim, and Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries." Chemical Reviews 114, no. 23 (September 11, 2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.
Full textBin, Duan, Fei Wang, Andebet Gedamu Tamirat, Liumin Suo, Yonggang Wang, Chunsheng Wang, and Yongyao Xia. "Progress in Aqueous Rechargeable Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (March 12, 2018): 1703008. http://dx.doi.org/10.1002/aenm.201703008.
Full textLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.
Full textTang, Boya, Lutong Shan, Shuquan Liang, and Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries." Energy & Environmental Science 12, no. 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.
Full textVerma, Vivek, Sonal Kumar, William Manalastas, and Madhavi Srinivasan. "Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries." ACS Energy Letters 6, no. 5 (April 13, 2021): 1773–85. http://dx.doi.org/10.1021/acsenergylett.1c00393.
Full textWainwright, David, and Jeffery Dahn. "Safer Rechargeable Lithium Ion Batteries Use Aqueous ElectroIyte." Materials Technology 11, no. 1 (January 1996): 9–12. http://dx.doi.org/10.1080/10667857.1996.11752650.
Full textQin, H., Z. P. Song, H. Zhan, and Y. H. Zhou. "Aqueous rechargeable alkali-ion batteries with polyimide anode." Journal of Power Sources 249 (March 2014): 367–72. http://dx.doi.org/10.1016/j.jpowsour.2013.10.091.
Full textLiu, M., H. Ao, Y. Jin, Z. Hou, X. Zhang, Y. Zhu, and Y. Qian. "Aqueous rechargeable sodium ion batteries: developments and prospects." Materials Today Energy 17 (September 2020): 100432. http://dx.doi.org/10.1016/j.mtener.2020.100432.
Full textAo, Huaisheng, Yingyue Zhao, Jie Zhou, Wenlong Cai, Xiaotan Zhang, Yongchun Zhu, and Yitai Qian. "Rechargeable aqueous hybrid ion batteries: developments and prospects." Journal of Materials Chemistry A 7, no. 32 (2019): 18708–34. http://dx.doi.org/10.1039/c9ta06433h.
Full textSharma, Lalit, and Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries." Journal of Materials Chemistry A 10, no. 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.
Full textDemir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche, and Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery." J. Mater. Chem. A 2, no. 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.
Full textMiyazaki, Kohei, Toshiki Shimada, Satomi Ito, Yuko Yokoyama, Tomokazu Fukutsuka, and Takeshi Abe. "Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries." Chemical Communications 52, no. 28 (2016): 4979–82. http://dx.doi.org/10.1039/c6cc00873a.
Full textLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Correction: Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 2 (2020): 643–44. http://dx.doi.org/10.1039/c9cs90105a.
Full textPark, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak, and Sang-Young Lee. "A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries." Chemical Science 11, no. 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.
Full textGao, Yaning, Haoyi Yang, Ying Bai, and Chuan Wu. "Mn-based oxides for aqueous rechargeable metal ion batteries." Journal of Materials Chemistry A 9, no. 19 (2021): 11472–500. http://dx.doi.org/10.1039/d1ta01951a.
Full textYue, Jinming, and Liumin Suo. "Progress in Rechargeable Aqueous Alkali-Ion Batteries in China." Energy & Fuels 35, no. 11 (May 24, 2021): 9228–39. http://dx.doi.org/10.1021/acs.energyfuels.1c00817.
Full textYang, Mingrui, Jun Luo, Xiaoniu Guo, Jiacheng Chen, Yuliang Cao, and Weihua Chen. "Aqueous Rechargeable Sodium-Ion Batteries: From Liquid to Hydrogel." Batteries 8, no. 10 (October 12, 2022): 180. http://dx.doi.org/10.3390/batteries8100180.
Full textPan, Zhenghui, Ximeng Liu, Jie Yang, Xin Li, Zhaolin Liu, Xian Jun Loh, and John Wang. "Aqueous Rechargeable Multivalent Metal‐Ion Batteries: Advances and Challenges." Advanced Energy Materials 11, no. 24 (May 12, 2021): 2100608. http://dx.doi.org/10.1002/aenm.202100608.
Full textJeong, Seonghun, Byung Hoon Kim, Yeong Don Park, Chang Yeon Lee, Junyoung Mun, and Artur Tron. "Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries." Journal of Alloys and Compounds 784 (May 2019): 720–26. http://dx.doi.org/10.1016/j.jallcom.2019.01.046.
Full textFenta, Fekadu Wubatu, Bizualem Wakuma Olbasa, Meng-Che Tsai, Misganaw Adigo Weret, Tilahun Awoke Zegeye, Chen-Jui Huang, Wei-Hsiang Huang, et al. "Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life." Journal of Materials Chemistry A 8, no. 34 (2020): 17595–607. http://dx.doi.org/10.1039/d0ta04175k.
Full textGong, Jiangfeng, Hao Li, Kaixiao Zhang, Zhupeng Zhang, Jie Cao, Zhibin Shao, Chunmei Tang, Shaojie Fu, Qianjin Wang, and Xiang Wu. "Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries." Nanomaterials 12, no. 9 (April 23, 2022): 1438. http://dx.doi.org/10.3390/nano12091438.
Full textChaithra Munivenkatappa, Vijeth Rajshekar Shetty, and Suresh Gurukar Shivappa. "Chalcone as Anode Material for Aqueous Rechargeable Lithium-Ion Batteries." Russian Journal of Electrochemistry 57, no. 4 (April 2021): 419–33. http://dx.doi.org/10.1134/s1023193520120162.
Full textKumankuma-Sarpong, James, Shuai Tang, Wei Guo, and Yongzhu Fu. "Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries." ACS Applied Materials & Interfaces 13, no. 3 (January 17, 2021): 4084–92. http://dx.doi.org/10.1021/acsami.0c21339.
Full textWu, Buke, Wen Luo, Ming Li, Lin Zeng, and Liqiang Mai. "Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes." Nano Research 14, no. 9 (April 7, 2021): 3174–87. http://dx.doi.org/10.1007/s12274-021-3392-1.
Full textPuttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli, and Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries." Advanced Materials Letters 10, no. 3 (December 31, 2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.
Full textRu, Yue, Shasha Zheng, Huaiguo Xue, and Huan Pang. "Layered V-MOF nanorods for rechargeable aqueous zinc-ion batteries." Materials Today Chemistry 21 (August 2021): 100513. http://dx.doi.org/10.1016/j.mtchem.2021.100513.
Full textChoi, Dongkyu, Seonguk Lim, and Dongwook Han. "Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries." Journal of Energy Chemistry 53 (February 2021): 396–406. http://dx.doi.org/10.1016/j.jechem.2020.07.024.
Full textLiu, Shude, Ling Kang, Jong Min Kim, Young Tea Chun, Jian Zhang, and Seong Chan Jun. "Recent Advances in Vanadium‐Based Aqueous Rechargeable Zinc‐Ion Batteries." Advanced Energy Materials 10, no. 25 (May 15, 2020): 2000477. http://dx.doi.org/10.1002/aenm.202000477.
Full textLi, Siqi, Yanan Wei, Qiong Wu, Yuan Han, Guixiang Qain, Jiaming Liu, and Chao Yang. "Spherical PDA@MnO2 cathode for rechargeable aqueous zinc ion batteries." Materials Letters 348 (October 2023): 134671. http://dx.doi.org/10.1016/j.matlet.2023.134671.
Full textDemir-Cakan, Rezan, M. Rosa Palacin, and Laurence Croguennec. "Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry." Journal of Materials Chemistry A 7, no. 36 (2019): 20519–39. http://dx.doi.org/10.1039/c9ta04735b.
Full textGonzález, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela, and J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries." RSC Advances 6, no. 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.
Full textSakamoto, Ryo, Maho Yamashita, Kosuke Nakamoto, Yongquan Zhou, Nobuko Yoshimoto, Kenta Fujii, Toshio Yamaguchi, Ayuko Kitajou, and Shigeto Okada. "Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26452–58. http://dx.doi.org/10.1039/d0cp04376a.
Full textXu, L., Y. Zhang, J. Zheng, H. Jiang, T. Hu, and C. Meng. "Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries." Materials Today Energy 18 (December 2020): 100509. http://dx.doi.org/10.1016/j.mtener.2020.100509.
Full textChomkhuntod, Praeploy, Kanit Hantanasirisakul, Salatan Duangdangchote, Nutthaphon Phattharasupakun, and Montree Sawangphruk. "The charge density of intercalants inside layered birnessite manganese oxide nanosheets determining Zn-ion storage capability towards rechargeable Zn-ion batteries." Journal of Materials Chemistry A 10, no. 10 (2022): 5561–68. http://dx.doi.org/10.1039/d1ta09968j.
Full textLuo, Zhiqiang, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqin Duan, Fujun Li, and Zhihao Yuan. "High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects." Journal of Materials Chemistry A 9, no. 10 (2021): 6131–38. http://dx.doi.org/10.1039/d0ta12127d.
Full textYou, Gongchuan, and Liang He. "High Performance Electrolyte for Iron-Ion batteries." Academic Journal of Science and Technology 5, no. 2 (April 2, 2023): 244–47. http://dx.doi.org/10.54097/ajst.v5i2.6995.
Full textDuan, Wenyuan, Mubashir Husain, Yanlin Li, Najeeb ur Rehman Lashari, Yuhuan Yang, Cheng Ma, Yuzhen Zhao, and Xiaorui Li. "Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries." RSC Advances 13, no. 36 (2023): 25327–33. http://dx.doi.org/10.1039/d3ra04143c.
Full textLiu, Yiyang, Guanjie He, Hao Jiang, Ivan P. Parkin, Paul R. Shearing, and Dan J. L. Brett. "Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities." Advanced Functional Materials 31, no. 13 (January 20, 2021): 2010445. http://dx.doi.org/10.1002/adfm.202010445.
Full textTang, Mengyao, Qiaonan Zhu, Pengfei Hu, Li Jiang, Rongyang Liu, Jiawei Wang, Liwei Cheng, Xiuhui Zhang, Wenxing Chen, and Hua Wang. "Ultrafast Rechargeable Aqueous Zinc‐Ion Batteries Based on Stable Radical Chemistry." Advanced Functional Materials 31, no. 33 (June 13, 2021): 2102011. http://dx.doi.org/10.1002/adfm.202102011.
Full textKumar, Santosh, Hocheol Yoon, Hyeonghun Park, Geumyong Park, Seokho Suh, and Hyeong-Jin Kim. "A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries." Journal of Industrial and Engineering Chemistry 108 (April 2022): 321–27. http://dx.doi.org/10.1016/j.jiec.2022.01.011.
Full textWang, L., and J. Zheng. "Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries." Materials Today Advances 7 (September 2020): 100078. http://dx.doi.org/10.1016/j.mtadv.2020.100078.
Full textLiu, Tingting, Xing Cheng, Haoxiang Yu, Haojie Zhu, Na Peng, Runtian Zheng, Jundong Zhang, Miao Shui, Yanhua Cui, and Jie Shu. "An overview and future perspectives of aqueous rechargeable polyvalent ion batteries." Energy Storage Materials 18 (March 2019): 68–91. http://dx.doi.org/10.1016/j.ensm.2018.09.027.
Full textSada, Krishnakanth, Baskar Senthilkumar, and Prabeer Barpanda. "Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries." Journal of Materials Chemistry A 7, no. 41 (2019): 23981–88. http://dx.doi.org/10.1039/c9ta05836b.
Full textWu, Yutong, Yamin Zhang, Yao Ma, Joshua D. Howe, Haochen Yang, Peng Chen, Sireesha Aluri, and Nian Liu. "Ion-Sieving Carbon Nanoshells for Deeply Rechargeable Zn-Based Aqueous Batteries." Advanced Energy Materials 8, no. 36 (October 30, 2018): 1802470. http://dx.doi.org/10.1002/aenm.201802470.
Full textCao, Ziyi, Peiyuan Zhuang, Xiang Zhang, Mingxin Ye, Jianfeng Shen, and Pulickel M. Ajayan. "Strategies for Dendrite‐Free Anode in Aqueous Rechargeable Zinc Ion Batteries." Advanced Energy Materials 10, no. 30 (June 30, 2020): 2001599. http://dx.doi.org/10.1002/aenm.202001599.
Full text