To see the other types of publications on this topic, follow the link: Aqueous rechargeable batteries.

Journal articles on the topic 'Aqueous rechargeable batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Aqueous rechargeable batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bennet, P. D., Kathryn R. Bullock, and M. Elaine Fiorino. "Aqueous Rechargeable Batteries." Electrochemical Society Interface 4, no. 4 (December 1, 1995): 26–30. http://dx.doi.org/10.1149/2.f05954if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli, and Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries." Advanced Materials Letters 10, no. 3 (December 31, 2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, Jing, Jing Wang, Hao Liu, Zhumabay Bakenov, Denise Gosselink, and P. Chen. "Rechargeable hybrid aqueous batteries." Journal of Power Sources 216 (October 2012): 222–26. http://dx.doi.org/10.1016/j.jpowsour.2012.05.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smajic, Jasmin, Bashir E. Hasanov, Amira Alazmi, Abdul‐Hamid Emwas, Nimer Wehbe, Alessandro Genovese, Abdulrahman El Labban, and Pedro M. F. J. Costa. "Aqueous Aluminum‐Carbon Rechargeable Batteries." Advanced Materials Interfaces 9, no. 4 (December 31, 2021): 2101733. http://dx.doi.org/10.1002/admi.202101733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

IMANISHI, Nobuyuki, Yasuo TAKEDA, and Osamu YAMAMOTO. "Aqueous Lithium-Air Rechargeable Batteries." Electrochemistry 80, no. 10 (2012): 706–15. http://dx.doi.org/10.5796/electrochemistry.80.706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beck, Fritz, and Paul Rüetschi. "Rechargeable batteries with aqueous electrolytes." Electrochimica Acta 45, no. 15-16 (May 2000): 2467–82. http://dx.doi.org/10.1016/s0013-4686(00)00344-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Tao, Nobuyuki Imanishi, Yasuo Takeda, and Osamu Yamamoto. "Aqueous Lithium/Air Rechargeable Batteries." Chemistry Letters 40, no. 7 (July 5, 2011): 668–73. http://dx.doi.org/10.1246/cl.2011.668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Jilei, Chaohe Xu, Zhen Chen, Shibing Ni, and Ze Xiang Shen. "Progress in aqueous rechargeable batteries." Green Energy & Environment 3, no. 1 (January 2018): 20–41. http://dx.doi.org/10.1016/j.gee.2017.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Boya, Lutong Shan, Shuquan Liang, and Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries." Energy & Environmental Science 12, no. 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.

Full text
Abstract:
We retrospect recent advances in rechargeable aqueous zinc-ion batteries system and the facing challenges of aqueous zinc-ion batteries. Importantly, some concerns and feasible solutions for achieving practical aqueous zinc-ion batteries are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, W., J. R. Dahn, and D. S. Wainwright. "Rechargeable Lithium Batteries with Aqueous Electrolytes." Science 264, no. 5162 (May 20, 1994): 1115–18. http://dx.doi.org/10.1126/science.264.5162.1115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Miyazaki, Kohei, Toshiki Shimada, Satomi Ito, Yuko Yokoyama, Tomokazu Fukutsuka, and Takeshi Abe. "Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries." Chemical Communications 52, no. 28 (2016): 4979–82. http://dx.doi.org/10.1039/c6cc00873a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ao, Huaisheng, Yingyue Zhao, Jie Zhou, Wenlong Cai, Xiaotan Zhang, Yongchun Zhu, and Yitai Qian. "Rechargeable aqueous hybrid ion batteries: developments and prospects." Journal of Materials Chemistry A 7, no. 32 (2019): 18708–34. http://dx.doi.org/10.1039/c9ta06433h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leung, P., D. Aili, Q. Xu, A. Rodchanarowan, and A. A. Shah. "Rechargeable organic–air redox flow batteries." Sustainable Energy & Fuels 2, no. 10 (2018): 2252–59. http://dx.doi.org/10.1039/c8se00205c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sharma, Lalit, and Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries." Journal of Materials Chemistry A 10, no. 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sakamoto, Ryo, Maho Yamashita, Kosuke Nakamoto, Yongquan Zhou, Nobuko Yoshimoto, Kenta Fujii, Toshio Yamaguchi, Ayuko Kitajou, and Shigeto Okada. "Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26452–58. http://dx.doi.org/10.1039/d0cp04376a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fenta, Fekadu Wubatu, Bizualem Wakuma Olbasa, Meng-Che Tsai, Misganaw Adigo Weret, Tilahun Awoke Zegeye, Chen-Jui Huang, Wei-Hsiang Huang, et al. "Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life." Journal of Materials Chemistry A 8, no. 34 (2020): 17595–607. http://dx.doi.org/10.1039/d0ta04175k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Clark, Simon, Aroa R. Mainar, Elena Iruin, Luis C. Colmenares, J. Alberto Blázquez, Julian R. Tolchard, Arnulf Latz, and Birger Horstmann. "Towards rechargeable zinc–air batteries with aqueous chloride electrolytes." Journal of Materials Chemistry A 7, no. 18 (2019): 11387–99. http://dx.doi.org/10.1039/c9ta01190k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hu, Zhiqiu, Yue Guo, Hongchang Jin, Hengxing Ji, and Li-Jun Wan. "A rechargeable aqueous aluminum–sulfur battery through acid activation in water-in-salt electrolyte." Chemical Communications 56, no. 13 (2020): 2023–26. http://dx.doi.org/10.1039/c9cc08415k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Correction: Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 2 (2020): 643–44. http://dx.doi.org/10.1039/c9cs90105a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Demir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche, and Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery." J. Mater. Chem. A 2, no. 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.

Full text
Abstract:
In spite of great research efforts on Li–S batteries in aprotic organic electrolytes, there have been very few studies showing the potential application of this system in aqueous electrolyte. Herein, we explore this option and report on a cheaper and safer new aqueous system coupling a well-known cathode material in Li-ion batteries (i.e. LiMn2O4) with a dissolved polysulfide anode.
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Nian. "(Invited) Deeply Rechargeable Zinc Anodes for High-Energy Rechargeable Aqueous Batteries." ECS Meeting Abstracts MA2022-01, no. 38 (July 7, 2022): 1664. http://dx.doi.org/10.1149/ma2022-01381664mtgabs.

Full text
Abstract:
Zinc-based aqueous batteries are promising alternative to many mainstream battery technologies today, due to the superior safety. However, existing zinc anodes suffer from either poor cycle life or low utilization in both neutral and alkaline aqueous electrolytes. Passivation, dissolution, and hydrogen evolution are three main reasons for irreversibility of zinc anodes in alkaline electrolytes, which limits the rechargeability and usable energy density. In this talk, I will present our recent works on using nanoscale material design to overcome passivation, dissolution, and hydrogen evolution issues of zinc anode, towards a deeply rechargeable zinc-based battery. I will also introduce the battery-gas chromatography quantitative analysis, as well as in situ microscopy methodologies we have developed, to quantify gas evolution side reaction, as well as visualize the reaction on electrodes during operation.
APA, Harvard, Vancouver, ISO, and other styles
23

Nam, Kwan Woo, Heejin Kim, Jin Hyeok Choi, and Jang Wook Choi. "Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries." Energy & Environmental Science 12, no. 6 (2019): 1999–2009. http://dx.doi.org/10.1039/c9ee00718k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Han, Cuiping, Jiaxiong Zhu, Chunyi Zhi, and Hongfei Li. "The rise of aqueous rechargeable batteries with organic electrode materials." Journal of Materials Chemistry A 8, no. 31 (2020): 15479–512. http://dx.doi.org/10.1039/d0ta03947k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

He, Z., F. Xiong, S. Tan, X. Yao, C. Zhang, and Q. An. "Iron metal anode for aqueous rechargeable batteries." Materials Today Advances 11 (September 2021): 100156. http://dx.doi.org/10.1016/j.mtadv.2021.100156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Jianhang, Xuan Qiu, Nan Wang, and Yonggang Wang. "Aqueous rechargeable zinc batteries: Challenges and opportunities." Current Opinion in Electrochemistry 30 (December 2021): 100801. http://dx.doi.org/10.1016/j.coelec.2021.100801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Haizeng, Curtis J. Firby, and Abdulhakem Y. Elezzabi. "Rechargeable Aqueous Hybrid Zn2+/Al3+ Electrochromic Batteries." Joule 3, no. 9 (September 2019): 2268–78. http://dx.doi.org/10.1016/j.joule.2019.06.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, H., Z. Chen, Z. Ji, P. Wang, J. Wang, W. Ling, and Y. Huang. "Temperature adaptability issue of aqueous rechargeable batteries." Materials Today Energy 19 (March 2021): 100577. http://dx.doi.org/10.1016/j.mtener.2020.100577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim, and Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries." Chemical Reviews 114, no. 23 (September 11, 2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Dan, Yanping Zhou, Hongbo Geng, Chuntai Liu, Bo Lu, Xianhong Rui, and Qingyu Yan. "Pathways towards high energy aqueous rechargeable batteries." Coordination Chemistry Reviews 424 (December 2020): 213521. http://dx.doi.org/10.1016/j.ccr.2020.213521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Manjunatha, H., G. S. Suresh, and T. V. Venkatesha. "Electrode materials for aqueous rechargeable lithium batteries." Journal of Solid State Electrochemistry 15, no. 3 (June 12, 2010): 431–45. http://dx.doi.org/10.1007/s10008-010-1117-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shin, Jaeho, and Jang Wook Choi. "Opportunities and Reality of Aqueous Rechargeable Batteries." Advanced Energy Materials 10, no. 28 (June 5, 2020): 2001386. http://dx.doi.org/10.1002/aenm.202001386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bin, Duan, Fei Wang, Andebet Gedamu Tamirat, Liumin Suo, Yonggang Wang, Chunsheng Wang, and Yongyao Xia. "Progress in Aqueous Rechargeable Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (March 12, 2018): 1703008. http://dx.doi.org/10.1002/aenm.201703008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Tao, Nobuyuki Imanishi, Yasuo Takeda, and Osamu Yamamoto. "ChemInform Abstract: Aqueous Lithium/Air Rechargeable Batteries." ChemInform 42, no. 44 (October 6, 2011): no. http://dx.doi.org/10.1002/chin.201144210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

González, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela, and J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries." RSC Advances 6, no. 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ma, Longtao, Shengmei Chen, Hongfei Li, Zhaoheng Ruan, Zijie Tang, Zhuoxin Liu, Zifeng Wang, et al. "Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode." Energy & Environmental Science 11, no. 9 (2018): 2521–30. http://dx.doi.org/10.1039/c8ee01415a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhu, Qiancheng, Mingyu Cheng, Xianfeng Yang, Bing Zhang, Zhanzi Wan, Qin Xiao, and Ying Yu. "Self-supported ultrathin bismuth nanosheets acquired by in situ topotactic transformation of BiOCl as a high performance aqueous anode material." Journal of Materials Chemistry A 7, no. 12 (2019): 6784–92. http://dx.doi.org/10.1039/c8ta11979a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Luo, Zhiqiang, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqin Duan, Fujun Li, and Zhihao Yuan. "High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects." Journal of Materials Chemistry A 9, no. 10 (2021): 6131–38. http://dx.doi.org/10.1039/d0ta12127d.

Full text
Abstract:
Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.
APA, Harvard, Vancouver, ISO, and other styles
39

Minami, Hironari, Hiroaki Izumi, Takumi Hasegawa, Fan Bai, Daisuke Mori, Sou Taminato, Yasuo Takeda, Osamu Yamamoto, and Nobuyuki Imanishi. "Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere." Journal of Energy and Power Technology 03, no. 03 (June 30, 2021): 1. http://dx.doi.org/10.21926/jept.2103041.

Full text
Abstract:
Rechargeable batteries with higher energy and power density exceeding the performance of the currently available lithium-ion batteries are suitable for application as the power source in electric vehicles (EVs). Aqueous lithium-air batteries are candidates for various EV applications due to their high energy density of 1910 Wh kg-1. The present study reports a rechargeable aqueous lithium-air battery with high power density at room temperature. The battery cell comprised a lithium anode, a non-aqueous anode electrolyte, a water-stable lithium-ion-conducting NASICON type separator, an aqueous catholyte, and an air electrode. The non-aqueous electrolyte served as an interlayer between the lithium anode and the solid electrolyte because the solid electrolyte in contact with lithium was unstable. The mixed separator comprised a Kimwipe paper and a Celgard polypropylene membrane for the interlayer electrolyte, which was used for preventing the formation of lithium dendrites at a high current density. The proposed aqueous lithium-air battery was successfully cycled at 2 mA cm-2 for 6 h at room temperature under an air atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, Peng, Yutong Wu, Yamin Zhang, Tzu-Ho Wu, Yao Ma, Chloe Pelkowski, Haochen Yang, Yi Zhang, Xianwei Hu, and Nian Liu. "A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries." Journal of Materials Chemistry A 6, no. 44 (2018): 21933–40. http://dx.doi.org/10.1039/c8ta07809b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kulkarni, Pranav, Debasis Ghosh, and R. Geetha Balakrishna. "Recent progress in ‘water-in-salt’ and ‘water-in-salt’-hybrid-electrolyte-based high voltage rechargeable batteries." Sustainable Energy & Fuels 5, no. 6 (2021): 1619–54. http://dx.doi.org/10.1039/d0se01313g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Park, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak, and Sang-Young Lee. "A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries." Chemical Science 11, no. 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Duan, Wenyuan, Mubashir Husain, Yanlin Li, Najeeb ur Rehman Lashari, Yuhuan Yang, Cheng Ma, Yuzhen Zhao, and Xiaorui Li. "Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries." RSC Advances 13, no. 36 (2023): 25327–33. http://dx.doi.org/10.1039/d3ra04143c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Xiao, Baojuan Xi, Zhenyu Feng, Weihua Chen, Haibo Li, Yuxi Jia, Jinkui Feng, Yitai Qian, and Shenglin Xiong. "Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries." Journal of Materials Chemistry A 7, no. 32 (2019): 19130–39. http://dx.doi.org/10.1039/c9ta05922a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lu, Changyu, Tuan K. A. Hoang, The Nam Long Doan, Hongbin Zhao, Ran Pan, Li Yang, Weisheng Guan, and P. Chen. "Rechargeable hybrid aqueous batteries using silica nanoparticle doped aqueous electrolytes." Applied Energy 170 (May 2016): 58–64. http://dx.doi.org/10.1016/j.apenergy.2016.02.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shiga, Tohru, Yuichi Kato, and Yoko Hase. "Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium–oxygen battery." Journal of Materials Chemistry A 5, no. 25 (2017): 13212–19. http://dx.doi.org/10.1039/c7ta03422a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pan, Wending, Yifei Wang, Yingguang Zhang, Holly Yu Ho Kwok, Muyan Wu, Xiaolong Zhao, and Dennis Y. C. Leung. "A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance." Journal of Materials Chemistry A 7, no. 29 (2019): 17420–25. http://dx.doi.org/10.1039/c9ta05207k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Verma, Vivek, Sonal Kumar, William Manalastas, and Madhavi Srinivasan. "Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries." ACS Energy Letters 6, no. 5 (April 13, 2021): 1773–85. http://dx.doi.org/10.1021/acsenergylett.1c00393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wainwright, David, and Jeffery Dahn. "Safer Rechargeable Lithium Ion Batteries Use Aqueous ElectroIyte." Materials Technology 11, no. 1 (January 1996): 9–12. http://dx.doi.org/10.1080/10667857.1996.11752650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Leilei, Long Chen, Yuehua Wen, Tengfei Xiong, Hong Xu, Wenfeng Zhang, Gaoping Cao, Yusheng Yang, Liqiang Mai, and Hao Zhang. "Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries." Journal of Materials Chemistry A 8, no. 48 (2020): 26013–22. http://dx.doi.org/10.1039/d0ta08600b.

Full text
Abstract:
A nano-phenazine@Ketjen black anode was achieved by the in situ dissolution–precipitation method, possessing the cycle life of 100 000 times due to the stabilities and insolubilities of phenazine and its reduction products in aqueous electrolytes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography