Journal articles on the topic 'Aqueous rechargeable batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aqueous rechargeable batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bennet, P. D., Kathryn R. Bullock, and M. Elaine Fiorino. "Aqueous Rechargeable Batteries." Electrochemical Society Interface 4, no. 4 (December 1, 1995): 26–30. http://dx.doi.org/10.1149/2.f05954if.
Full textPuttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli, and Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries." Advanced Materials Letters 10, no. 3 (December 31, 2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.
Full textYan, Jing, Jing Wang, Hao Liu, Zhumabay Bakenov, Denise Gosselink, and P. Chen. "Rechargeable hybrid aqueous batteries." Journal of Power Sources 216 (October 2012): 222–26. http://dx.doi.org/10.1016/j.jpowsour.2012.05.063.
Full textSmajic, Jasmin, Bashir E. Hasanov, Amira Alazmi, Abdul‐Hamid Emwas, Nimer Wehbe, Alessandro Genovese, Abdulrahman El Labban, and Pedro M. F. J. Costa. "Aqueous Aluminum‐Carbon Rechargeable Batteries." Advanced Materials Interfaces 9, no. 4 (December 31, 2021): 2101733. http://dx.doi.org/10.1002/admi.202101733.
Full textIMANISHI, Nobuyuki, Yasuo TAKEDA, and Osamu YAMAMOTO. "Aqueous Lithium-Air Rechargeable Batteries." Electrochemistry 80, no. 10 (2012): 706–15. http://dx.doi.org/10.5796/electrochemistry.80.706.
Full textBeck, Fritz, and Paul Rüetschi. "Rechargeable batteries with aqueous electrolytes." Electrochimica Acta 45, no. 15-16 (May 2000): 2467–82. http://dx.doi.org/10.1016/s0013-4686(00)00344-3.
Full textZhang, Tao, Nobuyuki Imanishi, Yasuo Takeda, and Osamu Yamamoto. "Aqueous Lithium/Air Rechargeable Batteries." Chemistry Letters 40, no. 7 (July 5, 2011): 668–73. http://dx.doi.org/10.1246/cl.2011.668.
Full textLiu, Jilei, Chaohe Xu, Zhen Chen, Shibing Ni, and Ze Xiang Shen. "Progress in aqueous rechargeable batteries." Green Energy & Environment 3, no. 1 (January 2018): 20–41. http://dx.doi.org/10.1016/j.gee.2017.10.001.
Full textTang, Boya, Lutong Shan, Shuquan Liang, and Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries." Energy & Environmental Science 12, no. 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.
Full textLi, W., J. R. Dahn, and D. S. Wainwright. "Rechargeable Lithium Batteries with Aqueous Electrolytes." Science 264, no. 5162 (May 20, 1994): 1115–18. http://dx.doi.org/10.1126/science.264.5162.1115.
Full textMiyazaki, Kohei, Toshiki Shimada, Satomi Ito, Yuko Yokoyama, Tomokazu Fukutsuka, and Takeshi Abe. "Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries." Chemical Communications 52, no. 28 (2016): 4979–82. http://dx.doi.org/10.1039/c6cc00873a.
Full textAo, Huaisheng, Yingyue Zhao, Jie Zhou, Wenlong Cai, Xiaotan Zhang, Yongchun Zhu, and Yitai Qian. "Rechargeable aqueous hybrid ion batteries: developments and prospects." Journal of Materials Chemistry A 7, no. 32 (2019): 18708–34. http://dx.doi.org/10.1039/c9ta06433h.
Full textLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.
Full textLeung, P., D. Aili, Q. Xu, A. Rodchanarowan, and A. A. Shah. "Rechargeable organic–air redox flow batteries." Sustainable Energy & Fuels 2, no. 10 (2018): 2252–59. http://dx.doi.org/10.1039/c8se00205c.
Full textSharma, Lalit, and Arumugam Manthiram. "Polyanionic insertion hosts for aqueous rechargeable batteries." Journal of Materials Chemistry A 10, no. 12 (2022): 6376–96. http://dx.doi.org/10.1039/d1ta11080b.
Full textSakamoto, Ryo, Maho Yamashita, Kosuke Nakamoto, Yongquan Zhou, Nobuko Yoshimoto, Kenta Fujii, Toshio Yamaguchi, Ayuko Kitajou, and Shigeto Okada. "Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries." Physical Chemistry Chemical Physics 22, no. 45 (2020): 26452–58. http://dx.doi.org/10.1039/d0cp04376a.
Full textFenta, Fekadu Wubatu, Bizualem Wakuma Olbasa, Meng-Che Tsai, Misganaw Adigo Weret, Tilahun Awoke Zegeye, Chen-Jui Huang, Wei-Hsiang Huang, et al. "Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life." Journal of Materials Chemistry A 8, no. 34 (2020): 17595–607. http://dx.doi.org/10.1039/d0ta04175k.
Full textClark, Simon, Aroa R. Mainar, Elena Iruin, Luis C. Colmenares, J. Alberto Blázquez, Julian R. Tolchard, Arnulf Latz, and Birger Horstmann. "Towards rechargeable zinc–air batteries with aqueous chloride electrolytes." Journal of Materials Chemistry A 7, no. 18 (2019): 11387–99. http://dx.doi.org/10.1039/c9ta01190k.
Full textHu, Zhiqiu, Yue Guo, Hongchang Jin, Hengxing Ji, and Li-Jun Wan. "A rechargeable aqueous aluminum–sulfur battery through acid activation in water-in-salt electrolyte." Chemical Communications 56, no. 13 (2020): 2023–26. http://dx.doi.org/10.1039/c9cc08415k.
Full textLiu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Correction: Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 2 (2020): 643–44. http://dx.doi.org/10.1039/c9cs90105a.
Full textDemir-Cakan, Rezan, Mathieu Morcrette, Jean-Bernard Leriche, and Jean-Marie Tarascon. "An aqueous electrolyte rechargeable Li-ion/polysulfide battery." J. Mater. Chem. A 2, no. 24 (2014): 9025–29. http://dx.doi.org/10.1039/c4ta01308e.
Full textLiu, Nian. "(Invited) Deeply Rechargeable Zinc Anodes for High-Energy Rechargeable Aqueous Batteries." ECS Meeting Abstracts MA2022-01, no. 38 (July 7, 2022): 1664. http://dx.doi.org/10.1149/ma2022-01381664mtgabs.
Full textNam, Kwan Woo, Heejin Kim, Jin Hyeok Choi, and Jang Wook Choi. "Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries." Energy & Environmental Science 12, no. 6 (2019): 1999–2009. http://dx.doi.org/10.1039/c9ee00718k.
Full textHan, Cuiping, Jiaxiong Zhu, Chunyi Zhi, and Hongfei Li. "The rise of aqueous rechargeable batteries with organic electrode materials." Journal of Materials Chemistry A 8, no. 31 (2020): 15479–512. http://dx.doi.org/10.1039/d0ta03947k.
Full textHe, Z., F. Xiong, S. Tan, X. Yao, C. Zhang, and Q. An. "Iron metal anode for aqueous rechargeable batteries." Materials Today Advances 11 (September 2021): 100156. http://dx.doi.org/10.1016/j.mtadv.2021.100156.
Full textHuang, Jianhang, Xuan Qiu, Nan Wang, and Yonggang Wang. "Aqueous rechargeable zinc batteries: Challenges and opportunities." Current Opinion in Electrochemistry 30 (December 2021): 100801. http://dx.doi.org/10.1016/j.coelec.2021.100801.
Full textLi, Haizeng, Curtis J. Firby, and Abdulhakem Y. Elezzabi. "Rechargeable Aqueous Hybrid Zn2+/Al3+ Electrochromic Batteries." Joule 3, no. 9 (September 2019): 2268–78. http://dx.doi.org/10.1016/j.joule.2019.06.021.
Full textWang, H., Z. Chen, Z. Ji, P. Wang, J. Wang, W. Ling, and Y. Huang. "Temperature adaptability issue of aqueous rechargeable batteries." Materials Today Energy 19 (March 2021): 100577. http://dx.doi.org/10.1016/j.mtener.2020.100577.
Full textKim, Haegyeom, Jihyun Hong, Kyu-Young Park, Hyungsub Kim, Sung-Wook Kim, and Kisuk Kang. "Aqueous Rechargeable Li and Na Ion Batteries." Chemical Reviews 114, no. 23 (September 11, 2014): 11788–827. http://dx.doi.org/10.1021/cr500232y.
Full textYang, Dan, Yanping Zhou, Hongbo Geng, Chuntai Liu, Bo Lu, Xianhong Rui, and Qingyu Yan. "Pathways towards high energy aqueous rechargeable batteries." Coordination Chemistry Reviews 424 (December 2020): 213521. http://dx.doi.org/10.1016/j.ccr.2020.213521.
Full textManjunatha, H., G. S. Suresh, and T. V. Venkatesha. "Electrode materials for aqueous rechargeable lithium batteries." Journal of Solid State Electrochemistry 15, no. 3 (June 12, 2010): 431–45. http://dx.doi.org/10.1007/s10008-010-1117-6.
Full textShin, Jaeho, and Jang Wook Choi. "Opportunities and Reality of Aqueous Rechargeable Batteries." Advanced Energy Materials 10, no. 28 (June 5, 2020): 2001386. http://dx.doi.org/10.1002/aenm.202001386.
Full textBin, Duan, Fei Wang, Andebet Gedamu Tamirat, Liumin Suo, Yonggang Wang, Chunsheng Wang, and Yongyao Xia. "Progress in Aqueous Rechargeable Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (March 12, 2018): 1703008. http://dx.doi.org/10.1002/aenm.201703008.
Full textZhang, Tao, Nobuyuki Imanishi, Yasuo Takeda, and Osamu Yamamoto. "ChemInform Abstract: Aqueous Lithium/Air Rechargeable Batteries." ChemInform 42, no. 44 (October 6, 2011): no. http://dx.doi.org/10.1002/chin.201144210.
Full textGonzález, J. R., F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela, and J. L. Tirado. "Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries." RSC Advances 6, no. 67 (2016): 62157–64. http://dx.doi.org/10.1039/c6ra11030d.
Full textMa, Longtao, Shengmei Chen, Hongfei Li, Zhaoheng Ruan, Zijie Tang, Zhuoxin Liu, Zifeng Wang, et al. "Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode." Energy & Environmental Science 11, no. 9 (2018): 2521–30. http://dx.doi.org/10.1039/c8ee01415a.
Full textZhu, Qiancheng, Mingyu Cheng, Xianfeng Yang, Bing Zhang, Zhanzi Wan, Qin Xiao, and Ying Yu. "Self-supported ultrathin bismuth nanosheets acquired by in situ topotactic transformation of BiOCl as a high performance aqueous anode material." Journal of Materials Chemistry A 7, no. 12 (2019): 6784–92. http://dx.doi.org/10.1039/c8ta11979a.
Full textLuo, Zhiqiang, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqin Duan, Fujun Li, and Zhihao Yuan. "High energy density aqueous zinc–benzoquinone batteries enabled by carbon cloth with multiple anchoring effects." Journal of Materials Chemistry A 9, no. 10 (2021): 6131–38. http://dx.doi.org/10.1039/d0ta12127d.
Full textMinami, Hironari, Hiroaki Izumi, Takumi Hasegawa, Fan Bai, Daisuke Mori, Sou Taminato, Yasuo Takeda, Osamu Yamamoto, and Nobuyuki Imanishi. "Aqueous Lithium--Air Batteries with High Power Density at Room Temperature under Air Atmosphere." Journal of Energy and Power Technology 03, no. 03 (June 30, 2021): 1. http://dx.doi.org/10.21926/jept.2103041.
Full textChen, Peng, Yutong Wu, Yamin Zhang, Tzu-Ho Wu, Yao Ma, Chloe Pelkowski, Haochen Yang, Yi Zhang, Xianwei Hu, and Nian Liu. "A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries." Journal of Materials Chemistry A 6, no. 44 (2018): 21933–40. http://dx.doi.org/10.1039/c8ta07809b.
Full textKulkarni, Pranav, Debasis Ghosh, and R. Geetha Balakrishna. "Recent progress in ‘water-in-salt’ and ‘water-in-salt’-hybrid-electrolyte-based high voltage rechargeable batteries." Sustainable Energy & Fuels 5, no. 6 (2021): 1619–54. http://dx.doi.org/10.1039/d0se01313g.
Full textPark, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak, and Sang-Young Lee. "A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries." Chemical Science 11, no. 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.
Full textDuan, Wenyuan, Mubashir Husain, Yanlin Li, Najeeb ur Rehman Lashari, Yuhuan Yang, Cheng Ma, Yuzhen Zhao, and Xiaorui Li. "Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries." RSC Advances 13, no. 36 (2023): 25327–33. http://dx.doi.org/10.1039/d3ra04143c.
Full textWang, Xiao, Baojuan Xi, Zhenyu Feng, Weihua Chen, Haibo Li, Yuxi Jia, Jinkui Feng, Yitai Qian, and Shenglin Xiong. "Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries." Journal of Materials Chemistry A 7, no. 32 (2019): 19130–39. http://dx.doi.org/10.1039/c9ta05922a.
Full textLu, Changyu, Tuan K. A. Hoang, The Nam Long Doan, Hongbin Zhao, Ran Pan, Li Yang, Weisheng Guan, and P. Chen. "Rechargeable hybrid aqueous batteries using silica nanoparticle doped aqueous electrolytes." Applied Energy 170 (May 2016): 58–64. http://dx.doi.org/10.1016/j.apenergy.2016.02.117.
Full textShiga, Tohru, Yuichi Kato, and Yoko Hase. "Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium–oxygen battery." Journal of Materials Chemistry A 5, no. 25 (2017): 13212–19. http://dx.doi.org/10.1039/c7ta03422a.
Full textPan, Wending, Yifei Wang, Yingguang Zhang, Holly Yu Ho Kwok, Muyan Wu, Xiaolong Zhao, and Dennis Y. C. Leung. "A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance." Journal of Materials Chemistry A 7, no. 29 (2019): 17420–25. http://dx.doi.org/10.1039/c9ta05207k.
Full textVerma, Vivek, Sonal Kumar, William Manalastas, and Madhavi Srinivasan. "Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries." ACS Energy Letters 6, no. 5 (April 13, 2021): 1773–85. http://dx.doi.org/10.1021/acsenergylett.1c00393.
Full textWainwright, David, and Jeffery Dahn. "Safer Rechargeable Lithium Ion Batteries Use Aqueous ElectroIyte." Materials Technology 11, no. 1 (January 1996): 9–12. http://dx.doi.org/10.1080/10667857.1996.11752650.
Full textLi, Leilei, Long Chen, Yuehua Wen, Tengfei Xiong, Hong Xu, Wenfeng Zhang, Gaoping Cao, Yusheng Yang, Liqiang Mai, and Hao Zhang. "Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries." Journal of Materials Chemistry A 8, no. 48 (2020): 26013–22. http://dx.doi.org/10.1039/d0ta08600b.
Full text