Academic literature on the topic 'Aqueous rechargeable batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aqueous rechargeable batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aqueous rechargeable batteries"

1

Bennet, P. D., Kathryn R. Bullock, and M. Elaine Fiorino. "Aqueous Rechargeable Batteries." Electrochemical Society Interface 4, no. 4 (December 1, 1995): 26–30. http://dx.doi.org/10.1149/2.f05954if.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli, and Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries." Advanced Materials Letters 10, no. 3 (December 31, 2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, Jing, Jing Wang, Hao Liu, Zhumabay Bakenov, Denise Gosselink, and P. Chen. "Rechargeable hybrid aqueous batteries." Journal of Power Sources 216 (October 2012): 222–26. http://dx.doi.org/10.1016/j.jpowsour.2012.05.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smajic, Jasmin, Bashir E. Hasanov, Amira Alazmi, Abdul‐Hamid Emwas, Nimer Wehbe, Alessandro Genovese, Abdulrahman El Labban, and Pedro M. F. J. Costa. "Aqueous Aluminum‐Carbon Rechargeable Batteries." Advanced Materials Interfaces 9, no. 4 (December 31, 2021): 2101733. http://dx.doi.org/10.1002/admi.202101733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

IMANISHI, Nobuyuki, Yasuo TAKEDA, and Osamu YAMAMOTO. "Aqueous Lithium-Air Rechargeable Batteries." Electrochemistry 80, no. 10 (2012): 706–15. http://dx.doi.org/10.5796/electrochemistry.80.706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beck, Fritz, and Paul Rüetschi. "Rechargeable batteries with aqueous electrolytes." Electrochimica Acta 45, no. 15-16 (May 2000): 2467–82. http://dx.doi.org/10.1016/s0013-4686(00)00344-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Tao, Nobuyuki Imanishi, Yasuo Takeda, and Osamu Yamamoto. "Aqueous Lithium/Air Rechargeable Batteries." Chemistry Letters 40, no. 7 (July 5, 2011): 668–73. http://dx.doi.org/10.1246/cl.2011.668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Jilei, Chaohe Xu, Zhen Chen, Shibing Ni, and Ze Xiang Shen. "Progress in aqueous rechargeable batteries." Green Energy & Environment 3, no. 1 (January 2018): 20–41. http://dx.doi.org/10.1016/j.gee.2017.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Boya, Lutong Shan, Shuquan Liang, and Jiang Zhou. "Issues and opportunities facing aqueous zinc-ion batteries." Energy & Environmental Science 12, no. 11 (2019): 3288–304. http://dx.doi.org/10.1039/c9ee02526j.

Full text
Abstract:
We retrospect recent advances in rechargeable aqueous zinc-ion batteries system and the facing challenges of aqueous zinc-ion batteries. Importantly, some concerns and feasible solutions for achieving practical aqueous zinc-ion batteries are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, W., J. R. Dahn, and D. S. Wainwright. "Rechargeable Lithium Batteries with Aqueous Electrolytes." Science 264, no. 5162 (May 20, 1994): 1115–18. http://dx.doi.org/10.1126/science.264.5162.1115.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Aqueous rechargeable batteries"

1

Liu, Yu. "Aqueous Rechargeable Batteries with High Electrochemical Performance." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-227357.

Full text
Abstract:
Mit der Entwicklung der Weltwirtschaft steigt der Energieverbrauch weiterhin stark an. Darüber hinaus reduzieren sich die nicht erneuerbaren Energiequellen, wie Öl, Erdgas und Kohle und die Umweltverschmutzung wird größer. Daher soll die Energienutzung in eine neue, erneuerbare und umweltfreundliche Richtung gehen. Die Arbeit hat zum Ziel innovative, wässrige Akkumulatoren zu entwickeln. Im Allgemeinen können wässrige Akkumulatoren gemäß der Elektrolyte in drei verschiedenen Kategorien eingeteilt werden. Es gibt feste, organische und wässrige Elektrolyte einschließlich saurer, alkalischer und neutraler. In Bezug auf metallbasierte negative Elektroden können sie auch als Lithiumbatterie, Natriumbatterie sowie Magnesiumbatterie etc. bezeichnet werden. Daher werden im ersten Kapitel einige typische Akkumulatoren, wie die Lithiumionenbatterien, Daniell-Element, Weston-Zelle, Nickel-Cadmium-Batterie und Bleibatterie vorgestellt. Im Vergleich zu organischen Elektrolyten wurden wässrige Akkumulatoren aufgrund ihrer billigen, leichten und sicheren Bauweise in den letzten Jahren umfassend untersucht. Zusätzlich dazu ist die ionische Leitfähigkeit von wässrigen Elektrolyten um zwei Größenordnungen höher als die von organischen Elektrolyten. Dies garantiert eine hohe Entladungsrate für wässrige wiederaufladbare Batterien. Somit bieten wiederaufladbare Batterien potentielle Anwendungen in der Energiespeicherung und -umwandlung. Allerdings verursachen starke Säuren oder Basen, die als Elektrolyte für sekundäre Batterien eingesetzt werden, eine starke Korrosion. Somit wären neutrale wässrige Elektrolyten (oder Elektrolytlösungen) mit einem pH-Wert in der Nähe von sieben, wie zum Beispiel schwach basisch oder sauer, die beste Wahl für wässrige Akkumulatoren. Aktive Elektrodenmaterialien der Batterien, die hochgiftige Schwermetalle wie Blei, Quecksilber und Cadmium enthalten, belasten die Umwelt. Um die Menge an Schwermetallen und Säure (oder Basen) zu verringern, sowie die spezifische Kapazität von Batterien zu erhöhen, untersucht diese Dissertation vor allem die elektrochemische Leistung der PbSO4/0,5M Li2SO4/LiMn2O4-Zelle, der Cd/0,5M Li2SO4+10mM Cd(Ac)2/LiCoO2-Zelle und von C/Cu/CNT-Gemischen als negative Materialien in 0,5 M K2CO3–Elektrolyt-Halbzellen. Die zugehörigen experimentellen Ergebnisse werden wie folgt zusammengefaßt: Im Kapitel 3 wurde eine säurefreie Bleibatterie auf Basis des LiMn2O4-Spinells als positive Elektrode, PbSO4 als negativer Elektrode und der wässrigen Lösung von 0,5 M Li2SO4 als Elektrolyt zusammengesetzt. Die spezifische Kapazität auf Basis von LiMn2O4 beträgt 128 mA•h•g-1 und die durchschnittliche Entladungsspannung beträgt 1,3 V. Die berechnete Energiedichte ist 68 W•h•kg-1, bezogen auf die praktischen Kapazitäten der beiden Elektroden. Diese Ergebnisse zeigen, dass die positive Elektrode der Bleibatterie (PbO2) vollständig durch umweltfreundliches und billiges LiMn2O4 ersetzt werden kann, wodurch 50 % des Bleis eingespart werden können. Außerdem wird Schwefelsäure nicht benötigt. Kapitel 4 zeigt eine wässrige wiederaufladbare Lithiumionenbatterie, die metallisches Cadmium als negative Elektrode, LiCoO2-Nanopartikel als positive Elektrode und eine wässrige, neutrale Lösung von 0,5 M Li2SO4 und 10 mM Cd(Ac)2 als Elektrolyt enthält. Die durchschnittliche Entladungsspannung beträgt 1,2 V und die spezifische Entladungskapazität beträgt 107 mA•h•g-1 auf Basis von LiCoO2. Die berechnete Energiedichte beträgt 72 W•h•kg-1, bezogen auf die praktischen Kapazitäten der beiden Elektroden. Wie bereits oben beschrieben demonstrieren die Ergebnisse, dass 100 % von Quecksilber und der alkalischen Elektrolyt im Vergleich zur Weston-Zelle bzw. der Ni-Cd-Batterie, eingespart werden können. Kapitel 5 zeigt einen Verbundwerkstoff von Kupfer, das auf der Oberfläche von CNTs durch eine Redoxreaktion zwischen Kupferacetat und Ethylenglykol, zur Verwendung als negative Elektrode bei hohen Strömen in der Energiespeicherung, hergestellt wurde. Der so hergestellte C/Cu/CNT-Verbundwerkstoff zeigt ein besseres Geschwindigkeitsverhalten und eine höhere Kapazität ebenso wie eine exzellente Zyklusstabilität in wässrigen 0,5 M K2CO3-Lösungen im Vergleich zu einfachem Kupfer. Die Kohlenstoffbeschichtung kann die Auflösung von Kupfercarbonatkomplexen verhindern, die Elektrodenleitfähigkeit erhöhen und die Oberflächenchemie des aktiven Materials verbessern
With the economic development of the world, energy consumption continues to rise sharply. Moreover, non-renewable energy sources including fossil oil, natural gas and coal are declining gradually and environmental pollution is becoming more severe. Hence, energy usage should go into a new direction of development that is renewable and environmental-friendly. This thesis aims to explore innovative aqueous rechargeable batteries. Generally, rechargeable batteries could be classified into three categories according to the different electrolytes. There are solid electrolytes, organic electrolytes and aqueous electrolytes including acidic, alkaline and neutral. In terms of metal-based negative electrodes, they also could be named lithium battery, sodium battery as well as magnesium battery etc. Therefore, some typical rechargeable batteries are introduced in Chapter 1, such as lithium ion batteries, Daniell-type cell, Weston cell, Ni-Cd battery and lead-acid battery. Compared to organic electrolytes, aqueous rechargeable batteries have been investigated broadly in recent years because they are inexpensive, easy to construct and safe. Additionally, the ionic conductivity of aqueous electrolytes is higher than that of organic electrolytes by about two orders of magnitude. Furthermore, it ensures high rate capability for aqueous rechargeable battery. Consequently, aqueous rechargeable batteries present potential applications in energy storage and conversion. However, strong acid or alkaline, which is used as the electrolyte for secondary batteries, will cause serious corrosion. Thus, neutral aqueous electrolyte (or pH value of electrolyte solution close to 7 such as weak alkaline and acid) would be the best choice for aqueous rechargeable battery. In addition, the electrode active materials of batteries containing highly toxic heavy metals such as Pb, Hg and Cd, pollute the environment. As a result, in order to reduce the amount of heavy metals and acid (or alkaline) as well as increase the specific capacity of batteries, this dissertation mainly studies the electrochemical performance of PbSO4/0.5M Li2SO4/LiMn2O4 full battery, Cd/0.5M Li2SO4+10 mM Cd(Ac)2/LiCoO2 full battery and C/Cu/CNT composites as negative material in 0.5 M K2CO3 electrolyte as half cell. The related experimental results are as follows: In Chapter 3, an acid-free lead battery was assembled based on spinel LiMn2O4 as the positive electrode, PbSO4 as the negative electrode, and 0.5 M Li2SO4 aqueous solution as the electrolyte. Its specific capacity based on the LiMn2O4 is 128 mA•h•g-1 and the average discharge voltage is 1.3 V. The calculated energy density is 68 W•h•kg-1 based on the practical capacities of the two electrodes. These results show that the positive electrode of the lead acid battery (PbO2) can be totally replaced by the environmentally friendly and cheap LiMn2O4, which implies that 50 % of Pb can be saved. In addition, H2SO4 is not needed. Chapter 4 shows an aqueous rechargeable lithium ion battery using metallic Cd as the negative electrode, LiCoO2 nanoparticles as the positive electrode, and an aqueous neutral solution of 0.5 M Li2SO4 and 10 mM Cd(Ac)2 as the electrolyte. Its average discharge voltage is 1.2 V and the specific discharge capacity is 107 mA•h•g-1 based on the LiCoO2 . In addition, the calculated energy density based on the capacities of the electrodes is 72 W•h•kg-1. As described above, the results demonstrate that 100 % of Hg and alkaline electrolyte can be saved compared with the Weston cell and the Ni-Cd battery, respectively. The work reported in Chapter 5 deals with a composite of copper grown on the surface of CNTs as prepared by a redox reaction between copper acetate and ethylene glycol for use as negative electrode at high currents in energy storage. The as-prepared C/Cu/CNTs composite exhibits better rate behavior and higher capacity as well as excellent cycling stability in aqueous 0.5 M K2CO3 solution compared to the unsupported copper. The carbon coating can effectively prevent the dissolution of copper carbonate complexes, increase the electrode conductivity, improve the surface chemistry of the active material and protect the electrode from direct contact with electrolyte solution
APA, Harvard, Vancouver, ISO, and other styles
2

Yokoyama, Yuko. "Studies on Electrolytes for High-Voltage Aqueous Rechargeable Lithium-ion Batteries." Kyoto University, 2019. http://hdl.handle.net/2433/242525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Yu [Verfasser], Rudolf [Akademischer Betreuer] Holze, and Qunting [Gutachter] Qu. "Aqueous Rechargeable Batteries with High Electrochemical Performance / Yu Liu ; Gutachter: Qunting Qu ; Betreuer: Rudolf Holze." Chemnitz : Universitätsbibliothek Chemnitz, 2017. http://d-nb.info/1214377076/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhong, Yijun. "Development of Functional Transition Metal Oxide and Sulfide Cathodes for Aqueous Zinc-Based Rechargeable Batteries." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/83345.

Full text
Abstract:
Transition metal oxides and sulfides are promising multi-functional cathode materials for zinc-based batteries. Herein, new cathode materials are developed based on rational designs for promoting kinetics of redox reactions and facilitating the electronic and mass transfer, demonstrating improved performance and stability of the batteries. Multiple material characterizations combined with electrochemical analysis are utilized to investigate the material properties and provide a better understanding of mechanisms behind the improved results.
APA, Harvard, Vancouver, ISO, and other styles
5

Joseph, Jickson. "Investigation of organic-inorganic nano hybrid materials for aluminum ion batteries." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/198086/1/Jickson_Joseph_Thesis.pdf.

Full text
Abstract:
The objective of this project was to develop efficient electrode materials for use in an aqueous aluminum-ion battery. This study of electrodes mainly focuses on the development of earth-abundant materials fabricated by a simple hydrothermal process. This project describes the development of highly stable and efficient battery electrodes from different metal oxides from manganese and molybdenum. A cation exchange mechanism is proposed and validated in this thesis where the cations trapped in the electrodes and exchanged during aluminum-ion intercalation and extraction. In short, this thesis focuses on the development of a sustainable aqueous aluminum ion battery.
APA, Harvard, Vancouver, ISO, and other styles
6

Konarov, Aishuak. "Self-discharge of Rechargeable Hybrid Aqueous Battery." Thesis, 2014. http://hdl.handle.net/10012/8437.

Full text
Abstract:
This thesis studies the self-discharge performance of recently developed rechargeable hybrid aqueous batteries, using LiMn2O4 as a cathode and Zinc as an anode. It is shown through a variety of electrochemical and ex-situ analytical techniques that many parts of the composite cathode play important roles on the self-discharge of the battery. It was determined that the current collector must be passive towards corrosion, and polyethylene was identified as the best option for this application. The effect of amount and type of conductive agent was also investigated, with low surface area carbonaceous material giving best performances. It was also shown that the state of charge has strong effects on the extension of self-discharge. More importantly, this study shows that the self-discharge mechanism in the ReHAB system involves the cathode active material and contains a reversible and an irreversible part. The reversible portion is predominant and is due to lithium re-intercalation into the LiMn2O4 spinel framework, and results from Zn dissolution into the electrolyte, which drives the Li+ ions out of the solution. The irreversible portion of the self-discharge occurs as a result of the decomposition of the LiMn2O4 material in the presence of the acidic electrolyte, and is much less extensive than the reversible process.
APA, Harvard, Vancouver, ISO, and other styles
7

Venkatesha, Akshatha. "Structural and Electrochemical Investigations of Monovalent and Divalent Aqueous Rechargeable Batteries." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6205.

Full text
Abstract:
Several stringent laws and regulations have been enforced by various National/International agencies for the adoption of sustainable methods for energy production and usage. In recent times, electric grids based on alternative renewable sources such as solar, tidal, geothermal, and biomass have witnessed an upsurge. However, the intermittent nature of renewable resources and the sub-optimal electricity distribution/transmission calls for corrective measures leading to enhancement in the efficiency of electricity utilization. It is now widely recognized that energy storage via rechargeable batteries can be an efficient strategy in making the process(es) of electricity production and utilization from the grid to the end-user. Lithium-ion batteries are considered one of the most promising candidates with their outreach in various sectors, such as portable electronics, electric mobility, and grid storage applications. While advanced LiBs may offer good power and energy density, these are unlikely to meet the stiff scale-up targets concerning performance, cost, and safety in large-scale applications such as electric vehicles and the grid. Lithium reserves are limited and distributed heterogeneously. Additionally, conventional Li-ion uses expensive and flammable organic liquid electrolytes Aqueous rechargeable batteries (both monovalent and multivalent) are considered safer alternatives to state-of-the-art LIB technology and other non-aqueous battery chemistries owing to several advantages based on higher safety, cost-effectiveness, and higher ionic conductivity. As water is the solvent, aqueous rechargeable batteries do not require a sophisticated cell assembly line. One of the significant challenges that hinder their wide-scale application is the choice of suitable electrode materials that can work in the aqueous environment. In this thesis, various electrode materials with optimized electrolyte compositions for both aqueous monovalent and multivalent metal-ion rechargeable batteries have been explored. Chapter 3 explores the aqueous rechargeable mixed ion batteries we have developed using a NASICON anode and an olivine cathode in mixed ion electrolytes. The interesting phenomenon of selective ion insertion by the host structure in the presence of more than one cation in the electrolyte is probed in detail. In Chapters 4 to 7, we have explored various host materials (redox-active 2-D covalent organic frameworks, transition metal oxides, Prussian blue analogs) for the aqueous rechargeable divalent metal ion batteries (Zn, Ca, and Mg). The electrochemical characterizations of the materials are performed in detail to account for their redox behavior. The effect of electrolyte composition on the electrochemical performance of the cell is studied in detail. The thesis also probes the underlying mechanism of the battery operation associated with the structural/phase evolution of the electrode structure (with successive cycling) in detail with the help of various post-cycling ex-situ measurements.
UGC, DST
APA, Harvard, Vancouver, ISO, and other styles
8

Kuo, Ping-Hsuan, and 郭秉軒. "Effects of various additives and their concentrations in aqueous KOH electrolyte on electrochemical performance of Zn electrodes for rechargeable batteries." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/71187580217421155389.

Full text
Abstract:
碩士
國立中央大學
材料科學與工程研究所
104
From the viewpoint of electrolytes design, we aim at solving the zinc dendrites formation, facile corrosion and low coulombic efficiency during charge/discharge process in an alkaline aqueous solution. In 0.3 M ZnO/6 M KOH solution, the effects of electrolyte additives species and concentration on the aforementioned problems are investigated in this study. Our experimental results shows the addition of 3000 ppm citric acid helps promote the deposition/stripping coulombic efficiency by 5.7 %. After cyclic charge/discharge, the obtained dendrite-free morphology indicates that the additive inhibits the dendrites formation and refines zinc grains. Besides, the Tafel analyses shows a decrease of 157 μA/cm2 (~31.5 %) in corrosion current as compared to that without additive. By tuning the additive concentration to 750 ppm, a maximum decrease of 280 μA/cm2 (~56.2 %) is achieved without trading off against other properties. Among amine-based additives, the addition of 3000 ppm 1-methylpiperazine can promote coulombic efficiency to ~80% and decrease the corrosion current by 102 μA/cm2 (~20.5 %) as compared to that without additive. Reducing the concentration to 750 ppm also causes a more significant decrease by 230 μA/cm2 (~46.2 %). Polyethylenimine (PEI) additive demonstrates the best effect on inhibiting corrosion behavior and dendrite formation. While the concentration decreases from 3000 ppm to 50 ppm, the decrease amount of corrosion current is enhanced from 330 μA/cm2 (~66.4 %) to 380 μA/cm2 (~76.3 %). At last, the synergistic effects of the effective additives combination are discussed. After combing different additives and tuning their concentrations, we explore that the addition of 3000 ppm 1-methylpiperazine and 750 ppm citric acid can raise the coulombic efficiency to 82 % (without losing redox charge) and still retain the dendrite-free morphology. Moreover, the corrosion current decreases by 46 %, which shows a synergistic effect on suppressing zinc corrosion.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aqueous rechargeable batteries"

1

Yamamoto, O., and N. Imanishi. "Aqueous Lithium-Air Batteries." In Rechargeable Batteries, 559–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radin, Maxwell D., and Donald J. Siegel. "Non-aqueous Metal–Oxygen Batteries: Past, Present, and Future." In Rechargeable Batteries, 511–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Yuping. "Aqueous Rechargeable Lithium Batteries (ARLB)." In Encyclopedia of Applied Electrochemistry, 105–7. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Piernas Muñoz, María José, and Elizabeth Castillo Martínez. "Electrochemical Performance of Prussian Blue and Analogues in Aqueous Rechargeable Batteries." In Prussian Blue Based Batteries, 23–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91488-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krüger, F., and F. Beck. "Precompacted Carbon Black (C.B.) — Electrodes in Aqueous Sulphuric Acid: Galvanostatic Charge and Discharge of the Electrochemical Double Layer Capacitor (ECDLC) in Single Electrodes." In New Promising Electrochemical Systems for Rechargeable Batteries, 373–89. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1643-2_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Shuang, Dinesh Selvakumaran, Anqiang Pan, and Guozhong Cao. "Cathode Materials for Rechargeable Aqueous Zn Batteries." In Encyclopedia of Energy Storage, 207–22. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-819723-3.00118-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adarakatti, Prashanth S., and Manukumar K. N. "A new class of pseudocapacitive electrode materials for electrochemical energy storage in rechargeable batteries." In Electrochemistry, 181–224. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169366-00181.

Full text
Abstract:
Electrochemical energy storage devices comprising electrode material with both high power and energy density, is in high demand across the world. Designing advanced pseudocapacitive materials are one approach to achieve above mentioned challenging perspective. Pseudocapacitance, a faradaic process involving surface or near-surface redox processes, allows for high energy density while maintaining high charge–discharge rates. The fundamental electrochemical characteristics of pseudocapacitive materials are described in this chapter, with an emphasis on kinetic processes and differences between battery and pseudocapacitive materials. In addition, we discuss the various types of pseudocapacitive materials, highlighting the differences between intrinsic and extrinsic pseudocapacitive materials. Finally, we articulate the application of pseudocapacitive materials in aqueous and non-aqueous rechargeable batteries.
APA, Harvard, Vancouver, ISO, and other styles
8

Gupta, Shivani, Abhishek Kumar Gupta, Sarvesh Kumar Gupta, and Mohan L. Verma. "Recent Advancements in the Design of Electrode Materials for Rechargeable Batteries." In Advanced Materials and Nano Systems: Theory and Experiment (Part-1), 52–65. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815050745122010006.

Full text
Abstract:
As the world progresses towards sustainable energy and concomitant decarbonization of its electrical supply, modern civilization is approaching the fourth industrial revolution with a boom of digital devices and innovative technologies. As a result, the demand for high-performance batteries has skyrocketed, and many research initiatives for the design and development of high-performance rechargeable batteries are being taken. With the incremental standardization of battery designs, enhancement in their performance mainly relies on technical advancement in key electrode materials (cathode and anode materials). This chapters reviews the state-of-the-art materials used in fabricating electrodes, including a description of their structures and storage mechanisms and modification of commonly used materials for electrode working either in the solid-state or in the solution for aqueous or non-aqueous electrolytes. Based on the appropriate metrics such as operating voltage, specific energy, capacity, cyclic stability and life cycle, the performance of different electrodes has also been assessed. Along with the recent advancement, pertaining limitations are briefly covered and analyzed with some viable solutions in the pursuit of cathode and anode materials with fast kinetics, high voltage, and long cycle life.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aqueous rechargeable batteries"

1

Alshareef, Husam. "Electrode & Electrolyte Engineering in Rechargeable Aqueous Zinc-ion Batteries." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography