To see the other types of publications on this topic, follow the link: Aqueous and non-aqueous.

Journal articles on the topic 'Aqueous and non-aqueous'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Aqueous and non-aqueous.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Majidzade, V. A. "ELECTROREDUCTION OF THIOSULPHATE IONS FROM NON-AQUEOUS SOLUTIONS." Azerbaijan Chemical Journal, no. 2 (June 18, 2020): 61–66. http://dx.doi.org/10.32737/0005-2531-2020-2-61-66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voronina, Yuliya, Yuliya Krylova, and Anastasiya Tereshko. "Development of aqueous phase formulation for non-toxic paints." From Chemistry Towards Technology Step-By-Step 4, no. 2 (June 23, 2023): 77–81. http://dx.doi.org/10.52957/2782-1900-2024-4-2-77-81.

Full text
Abstract:
The paper presents a well-proven formulation for the production of aqueous phase for non-toxic paints. The authors investigated the rheological properties of the aqueous phase depending on the ratio of the components. The authors studied the effect of a thickener (FLOGEL 700) on the rheological characteristics of the aqueous phase and estimated the best pH value of the aqueous phase
APA, Harvard, Vancouver, ISO, and other styles
3

Ashokkumar, Muthupandian, and Franz Grieser. "Sonophotoluminescence from aqueous and non-aqueous solutions." Ultrasonics Sonochemistry 6, no. 1-2 (March 1999): 1–5. http://dx.doi.org/10.1016/s1350-4177(98)00038-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dordick, Jonathan S. "Non-aqueous enzymology." Current Opinion in Biotechnology 2, no. 3 (June 1991): 401–7. http://dx.doi.org/10.1016/s0958-1669(05)80146-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quitmeyer, Joann. "pH Measurement in aqueous and non-aqueous solutions." Metal Finishing 106, no. 10 (October 2008): 21–24. http://dx.doi.org/10.1016/s0026-0576(08)00036-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marcus, Yizhak. "Tetraalkylammonium Ions in Aqueous and Non-aqueous Solutions." Journal of Solution Chemistry 37, no. 8 (June 6, 2008): 1071–98. http://dx.doi.org/10.1007/s10953-008-9291-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Jianhang, Xiaoli Dong, Nan Wang, and Yonggang Wang. "Building low-temperature batteries: Non-aqueous or aqueous electrolyte?" Current Opinion in Electrochemistry 33 (June 2022): 100949. http://dx.doi.org/10.1016/j.coelec.2022.100949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sirén, Heli, Tarja Hiissa, and Yuan Min. "Aqueous and non-aqueous capillary electrophoresis of polar drugs." Analyst 125, no. 9 (2000): 1561–68. http://dx.doi.org/10.1039/a910305h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Callaghan, I. C., F. T. Lawrence, and P. M. Melton. "An equation describing aqueous and non-aqueous foam collapse." Colloid & Polymer Science 264, no. 5 (May 1986): 423–34. http://dx.doi.org/10.1007/bf01419546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tager, A. A., and A. P. Safronov. "Complexing in aqueous and non-aqueous solutions of polyvinylazoles." Polymer Science U.S.S.R. 33, no. 1 (January 1991): 66–73. http://dx.doi.org/10.1016/0032-3950(91)90271-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Iyer, Padma V., and Laxmi Ananthanarayan. "Enzyme stability and stabilization—Aqueous and non-aqueous environment." Process Biochemistry 43, no. 10 (October 2008): 1019–32. http://dx.doi.org/10.1016/j.procbio.2008.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Riekkola, Marja-Liisa, Matti Jussila, Simo P. Porras, and István E. Valkó. "Non-aqueous capillary electrophoresis." Journal of Chromatography A 892, no. 1-2 (September 2000): 155–70. http://dx.doi.org/10.1016/s0021-9673(00)00108-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sano, A. "Non-aqueous electrolyte cell." Journal of Power Sources 70, no. 1 (January 30, 1998): 171. http://dx.doi.org/10.1016/s0378-7753(97)84144-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fujii, Rui, and Yoshitaka Ishikawa. "Procurement of Non-Aqueous Base Fluids in Japan." Journal of the Japanese Association for Petroleum Technology 80, no. 3 (2015): 181–86. http://dx.doi.org/10.3720/japt.80.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Manning, Alan P., Alex L. MacKay, and Carl A. Michal. "Understanding aqueous and non-aqueous proton T1 relaxation in brain." Journal of Magnetic Resonance 323 (February 2021): 106909. http://dx.doi.org/10.1016/j.jmr.2020.106909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Basavaiah, K., K. Tharpa, and K. B. Vinay. "Titrimetric assay of lisinopril in aqueous and non-aqueous media." Eclética Química Journal 35, no. 2 (January 16, 2018): 07. http://dx.doi.org/10.26850/1678-4618eqj.v35.2.2010.p07-14.

Full text
Abstract:
Four simple titrimetric procedures are described for the determination of lisinopril (LNP) in bulk and in pharmaceuticals based on the neutralization of basic-amino and acidic carboxylic acid groups present in LNP. Method A is based on the neutralization of basic amino groups using perchloric acid as titrant in anhydrous acetic acid medium. Method B, method C and method D are based on neutralization of carboxylic acid group using NaOH, sodium methoxide and methanolic KOH, as titrants, respectively. Method A is applicable over 2.0-20.0 mg range and the calculations are based in the molar ratio of 1:2 (LNP:HClO4). Method B, method C and method D are applicable over 2.0-20.0 mg, 1.0-10.0 mg and 5.0-15.0 mg range, respectively, and their respective molar ratios are 1:1 (LNP:NaOH), 1:2 (LNP:CH3ONa) and 1:1 (LNP:KOH). Intraday and inter day accuracy and precision of the methods were evaluated and the results showed intra- and inter-day precision less than 2.7% (RSD), and accuracy of < 2.5% (RE). The developed methods were applied to determine LNP in tablets and the results were validated statistically by comparing the results with those of the reference method by applying the Student’s t-test and F-test. The accuracy was further ascertained by recovery studies via standard addition technique. No interferences from common tablet exipients was observed.
APA, Harvard, Vancouver, ISO, and other styles
17

Basavaiah, K., K. Tharpa, and K. B. Vinay. "Titrimetric assay of lisinopril in aqueous and non-aqueous media." Eclética Química 35, no. 2 (2010): 07–14. http://dx.doi.org/10.1590/s0100-46702010000200001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ambrosi, Adriano, and Richard D. Webster. "3D printing for aqueous and non-aqueous redox flow batteries." Current Opinion in Electrochemistry 20 (April 2020): 28–35. http://dx.doi.org/10.1016/j.coelec.2020.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Marx, G., R. Gauglitz, V. Friehmelt, and K. H. Feldner. "Transport processes of actinides in aqueous and non-aqueous solutions." Journal of the Less Common Metals 122 (August 1986): 185–88. http://dx.doi.org/10.1016/0022-5088(86)90407-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Rongying, Xiaoning Lu, Huijun Xin, and Mingjia Wu. "Separation of phenothiazines in aqueous and non-aqueous capillary electrophoresis." Chromatographia 51, no. 1-2 (January 2000): 29–36. http://dx.doi.org/10.1007/bf02490692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kolker, A. R. "Thermodynamic modelling of concentrated aqueous electrolyte and non-aqueous systems." Fluid Phase Equilibria 69 (December 1991): 155–69. http://dx.doi.org/10.1016/0378-3812(91)90031-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

SASAJIMA, Yasuhide, Lee Wah LIM, Toyohide TAKEUCHI, Koichi SUENAMI, Kiyohito SATO, and Yuji TAKEKOSHI. "Simultaneous Determination of Antidepressants by Non-aqueous or Quasi-non-aqueous Capillary Electrophoresis." Analytical Sciences 26, no. 6 (2010): 693–98. http://dx.doi.org/10.2116/analsci.26.693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rajagopal, C., Venusubramanyan, Vijayalakshmi Ramakrishnan, and K. Balakrishnan. "Studies on Non-Aqueous Phosphating." Key Engineering Materials 20-28 (January 1991): 1275–84. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.1275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Otsubo, Yasufumi. "Electrorheology of Non-aqueous Suspensions." KONA Powder and Particle Journal 15 (1997): 43–53. http://dx.doi.org/10.14356/kona.1997009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dyab, Amro K. F., and Hafiz N. Al-Haque. "Particle-stabilised non-aqueous systems." RSC Advances 3, no. 32 (2013): 13101. http://dx.doi.org/10.1039/c3ra42338g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Brown, L. "Electroplating with non-aqueous solutions." Transactions of the IMF 88, no. 3 (May 2010): 122–23. http://dx.doi.org/10.1179/174591910x12729686675914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Suslick, Kenneth S., and Edward B. Flint. "Sonoluminescence from non-aqueous liquids." Nature 330, no. 6148 (December 1987): 553–55. http://dx.doi.org/10.1038/330553a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yamahira, T. "Non-aqueous electrolyte secondary cell." Journal of Power Sources 70, no. 1 (January 30, 1998): 138. http://dx.doi.org/10.1016/s0378-7753(97)84016-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Turan, Nahid, and John F. Kennedy. "Methods in Non-Aqueous Enzymology." Carbohydrate Polymers 47, no. 1 (January 2002): 88. http://dx.doi.org/10.1016/s0144-8617(01)00276-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zuman, Petr. "Electrochemistry in non-aqueous solutions." Microchemical Journal 75, no. 2 (September 2003): 139–40. http://dx.doi.org/10.1016/s0026-265x(03)00087-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gifford, Paul R. "High energy non-aqueous batteries." Materials Research Bulletin 28, no. 12 (December 1993): 1356–57. http://dx.doi.org/10.1016/0025-5408(93)90185-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Culpin, B. "High energy non-aqueous batteries." Journal of Power Sources 48, no. 3 (March 1994): 393–94. http://dx.doi.org/10.1016/0378-7753(94)80036-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gong, S. "Non-aqueous liquid membrane system." Journal of Membrane Science 205, no. 1-2 (August 1, 2002): 265–72. http://dx.doi.org/10.1016/s0376-7388(02)00126-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Thompson, Kate L., Jacob A. Lane, Matthew J. Derry, and Steven P. Armes. "Non-aqueous Isorefractive Pickering Emulsions." Langmuir 31, no. 15 (April 8, 2015): 4373–76. http://dx.doi.org/10.1021/acs.langmuir.5b00630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dyab, Amro K. F., and Ayman M. Atta. "Microgel-stabilised non-aqueous emulsions." RSC Advances 3, no. 48 (2013): 25662. http://dx.doi.org/10.1039/c3ra45263h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wiesener, K. "High-Energy Non-Aqueous Batteries." Zeitschrift für Physikalische Chemie 185, Part_1 (January 1994): 150. http://dx.doi.org/10.1524/zpch.1994.185.part_1.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dryfe, Robert A. W., Patrick Hayes, and Stuart M. Holmes. "Non-aqueous potentiometry using zeolites." Analyst 126, no. 6 (2001): 733–35. http://dx.doi.org/10.1039/b102262h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Friberg, Stig E. "Foams from non-aqueous systems." Current Opinion in Colloid & Interface Science 15, no. 5 (October 2010): 359–64. http://dx.doi.org/10.1016/j.cocis.2010.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Feakins, David, Fiona M. Bates, and W. Earle Waghorne. "Quasi-thermodynamics of Viscous Flow of Electrolyte Solutions in Aqueous, Non-aqueous and Mixed Aqueous Solvents." Journal of Solution Chemistry 37, no. 6 (April 17, 2008): 727–47. http://dx.doi.org/10.1007/s10953-008-9271-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

RYU, Beyong-hwan, and Suguru SUZUKI. "Viscosity of Non-aqueous and Aqueous Alumina Slurry for Tape Casting." Nihon Reoroji Gakkaishi(Journal of the Society of Rheology, Japan) 21, no. 3 (1993): 138–41. http://dx.doi.org/10.1678/rheology1973.21.3_138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jukić, Ivo, Martina Požar, and Bernarda Lovrinčević. "Comparative analysis of ethanol dynamics in aqueous and non-aqueous solutions." Physical Chemistry Chemical Physics 22, no. 41 (2020): 23856–68. http://dx.doi.org/10.1039/d0cp03160g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Frasch, Duncan M., and Daniel R. Spiegel. "Experiments on tracer diffusion in aqueous and non-aqueous solvent combinations." Journal of Chemical Physics 141, no. 12 (September 28, 2014): 124507. http://dx.doi.org/10.1063/1.4896303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bjelica, Luka J., and Ljiljana S. Jovanović. "Activation of glassy carbon electrode in aqueous and non-aqueous media." Electrochimica Acta 37, no. 2 (February 1992): 371–72. http://dx.doi.org/10.1016/0013-4686(92)85027-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bjørnsdottir, Inga, and Steen HonoréHansen. "Comparison of separation selectivity in aqueous and non-aqueous capillary electrophoresis." Journal of Chromatography A 711, no. 2 (September 1995): 313–22. http://dx.doi.org/10.1016/0021-9673(95)98953-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Durán, Teresa, Esteban Climent-Pascual, Maria T. Pérez-Prior, Belen Levenfeld, Alejandro Varez, Isabel Sobrados, and Jesus Sanz. "Aqueous and non-aqueous Li+/H+ ion exchange in Li0.44La0.52TiO3 perovskite." Advanced Powder Technology 28, no. 2 (February 2017): 514–20. http://dx.doi.org/10.1016/j.apt.2016.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nayak, Satish, D. C. Goupale, Atul Dubey, and Vipin shukla. "COMPARATIVE STABILITY STUDY OF METRONIDAZOLE IN AQUEOUS AND NON AQUEOUS VEHICLE." Journal of Applied Pharmacy 3 (July 11, 2011): 295–300. http://dx.doi.org/10.21065/19204159.3.295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Verma, M., W. Azmi, and S. Kanwar. "Microbial lipases: At the interface of aqueous and non-aqueous media." Acta Microbiologica et Immunologica Hungarica 55, no. 3 (September 2008): 265–94. http://dx.doi.org/10.1556/amicr.55.2008.3.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Digar, Mohan L., Sailendra N. Bhattacharyya, and Broja M. Mandal. "Conducting polypyrrole particles dispersible in both aqueous and non-aqueous media." Journal of the Chemical Society, Chemical Communications, no. 1 (1992): 18. http://dx.doi.org/10.1039/c39920000018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pei, Liujun, Yuni Luo, Xiaomin Gu, Huashu Dou, and Jiping Wang. "Diffusion Mechanism of Aqueous Solutions and Swelling of Cellulosic Fibers in Silicone Non-Aqueous Dyeing System." Polymers 11, no. 3 (March 4, 2019): 411. http://dx.doi.org/10.3390/polym11030411.

Full text
Abstract:
The main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber could not swell as a result of the non-polar media. However, because water molecules can diffuse into the non-crystalline region of the fiber, cellulosic fiber could swell by water which was dispersed or emulsified in a non-aqueous dyeing system. To study the diffusion mechanism of an aqueous solution in the siloxane non-aqueous dyeing system, siloxane non-aqueous media was first diffused to the cellulosic fiber because of its lower surface tension. The resulting aqueous solution took more time to diffuse the surface of the cellulosic fiber, because water molecules must penetrate the siloxane non-aqueous media film. Compared with the fluorescent intensity of the fiber surface, the siloxane film could be re-transferred to the dye bath under the emulsification of the surfactant and the mechanical force. Therefore, a longer diffusion time of the aqueous solution ensured the dyeing feasibility for cellulosic fiber in the non-aqueous dyeing system.
APA, Harvard, Vancouver, ISO, and other styles
50

Ghosh, Ayndrila, Sudipto Bhowmick, Anirban Mondal, Harekrishna Garai, and Kartick C. Bhowmick. "Advances on Asymmetric Organocatalyzed Mannich Reactions in Aqueous and Non-aqueous Media." Current Organocatalysis 3, no. 2 (March 4, 2016): 133–60. http://dx.doi.org/10.2174/2213337202666150604232523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography