Academic literature on the topic 'Aquaponic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aquaponic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aquaponic"
Short, Gianna, Chengyan Yue, Neil Anderson, Carol Russell, and Nicholas Phelps. "Consumer Perceptions of Aquaponic Systems." HortTechnology 27, no. 3 (June 2017): 358–66. http://dx.doi.org/10.21273/horttech03606-16.
Full textEichhorn, Theresa, and Oliver Meixner. "Factors Influencing the Willingness to Pay for Aquaponic Products in a Developed Food Market: A Structural Equation Modeling Approach." Sustainability 12, no. 8 (April 24, 2020): 3475. http://dx.doi.org/10.3390/su12083475.
Full textEck, Mathilde, Iris Szekely, Sébastien Massart, and M. Haïssam Jijakli. "Ecological Study of Aquaponics Bacterial Microbiota over the Course of a Lettuce Growth Cycle." Water 13, no. 15 (July 30, 2021): 2089. http://dx.doi.org/10.3390/w13152089.
Full textBaganz, Gösta F. M., Manfred Schrenk, Oliver Körner, Daniela Baganz, Karel J. Keesman, Simon Goddek, Zorina Siscan, et al. "Causal Relations of Upscaled Urban Aquaponics and the Food-Water-Energy Nexus—A Berlin Case Study." Water 13, no. 15 (July 24, 2021): 2029. http://dx.doi.org/10.3390/w13152029.
Full textStouvenakers, Gilles, Sébastien Massart, Pierre Depireux, and M. Haïssam Jijakli. "Microbial Origin of Aquaponic Water Suppressiveness against Pythium aphanidermatum Lettuce Root Rot Disease." Microorganisms 8, no. 11 (October 29, 2020): 1683. http://dx.doi.org/10.3390/microorganisms8111683.
Full textYang, Teng, and Hye-Ji Kim. "Characterizing Nutrient Composition and Concentration in Tomato-, Basil-, and Lettuce-Based Aquaponic and Hydroponic Systems." Water 12, no. 5 (April 29, 2020): 1259. http://dx.doi.org/10.3390/w12051259.
Full textKovrigin, Aleksandr, Grigorii Pokhodnya, Yuriy Breslavets, Alexander Breslavets, and Valerya Zhabinskaya. "Growing fish and plants using aquaponic, hydroponic and mixed technologies." E3S Web of Conferences 282 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202128203028.
Full textSetiadi, Eri, Yohana R. Widyastuti, and Tri Heru Prihadi. "Water Quality, Survival, and Growth of Red Tilapia, Oreochromis niloticus Cultured In Aquaponics System." E3S Web of Conferences 47 (2018): 02006. http://dx.doi.org/10.1051/e3sconf/20184702006.
Full textRadosavljević, Vladimir, Miroslav Ćirković, Dragana Ljubojević, Dobrila Jakić Dimić, Zoran Marković, Jadranka Žutić, and Vesna Milićević. "SEARCHING FOR SOLUTIONS IN AQUACULTURE: AQUAPONICS." Archives of Veterinary Medicine 7, no. 2 (January 21, 2015): 71–78. http://dx.doi.org/10.46784/e-avm.v7i2.132.
Full textTanaya, Fista Yohana, Kisworo, and Guruh Prihatmo. "Combination of Zeolite, Charcoal and Water Spinach as Integrated Filters to Reduce Ammonia Level in Aquaponic System." SCISCITATIO 2, no. 1 (March 29, 2021): 7–15. http://dx.doi.org/10.21460/sciscitatio.2021.21.42.
Full textDissertations / Theses on the topic "Aquaponic"
Cunningham, Beau. "A Study of Aquaponic Systems." The University of Arizona, 2015. http://hdl.handle.net/10150/552651.
Full textThis capstone project compares traditional agricultural methods to those of aquaponics. Qualitative research is used to study the effectiveness of aquaponic systems and its ability to solve the financial and environmental impacts of current agricultural methods. This study looks at the environmental, financial, and health impacts of agriculture. Three case studies are used to compare an aquaponic system, aquaculture operation, and an organic farm.
Storey, Nathaniel R. "An aquaponic system component comparisons and applications /." Laramie, Wyo. : University of Wyoming, 2009. http://proquest.umi.com/pqdweb?did=1939351881&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textKralik, Brittany A. "Quality and Nutritional Analysis of Aquaponic Tomatoes and Perch." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1617139965099778.
Full textWicoff, Emily. "Development of a simplified commercial-scale aquaponic facility for implementation in northern Uganda." Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/8848.
Full textDepartment of Civil Engineering
Steven K. Starrett
Current aquaponic technology ranges from backyard hobbyist to technologically advanced commercial production. A single source for protein (fish) and nutrients/vitamins (vegetables), development of a technologically simplified commercial-scale system is a realistic solution for many impoverished nations. This study develops a simplified aquaponic facility to be implemented in rural northern Uganda. Research objectives were to: (1) identify simplified commercial-scale system design components, (2) establish a water quality baseline, (3) identify plant/tilapia production ratios, (4) identify construction materials available in northern Uganda, (5) integrate culturally familiar elements, (6) complete preliminary facility design, and (7) calculate facility water balance. The study established that a viable simplified design achieves: (1) water circulation with weir gravity flow and one return pump, (2) tank cleaning with strategically sloped floors and manual waste siphoning, and (3) breeding control with raised bottom fishnets. Submerged aeration is critical to optimal fish growth, and cannot be eliminated despite surface aeration’s low energy appeal. Baseline water quality parameter values of DO > 3 mg/L, pH > 5.5, and TAN > 3 mg/L (2 mg/L average) were established for the pilot study configuration and hydraulic retention time (HRT). A plant/tilapia ratio of 2.5 ft[superscript]2/lb was identified for the proposed facility’s design. The simplified design was assessed compatible with concrete block construction local to northern Uganda. Incorporating the following culturally familiar elements will facilitate technology adoption: utilize native fish (tilapia) and vegetable crops identified in community markets, replace commercially produced plant tank raft components with woven matting from locally available natural materials, and identify the unfamiliar proposed tank design with newly adopted raceway culture techniques at a well-known Ugandan national fishery institute. A proposed facility preliminary design represents local materials, identified plant/tilapia ratio, minimum HRT, and simplified design components for tilapia densities ranging from 12 to 3 gal/lb. With the facility supplied by both rainwater and groundwater, corresponding water balances for 12 to 3 gal/lb densities ranged from a 9,735 gal/yr well supply demand to a 10,984 gal/yr rainwater surplus.
Amin, Majdi Talal. "Dynamic Modeling and Verification of an Energy-Efficient Greenhouse With an Aquaponic System Using TRNSYS." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1450432214.
Full textMedina, Miles D. "Effect of Aquafeed on Productivity of Red Amaranth and on Water Quality under Aquaponic Cultivation." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1206.
Full textÁrendásová, Veronika. "Využití hmyzí mouky pro potravinářské a krmní účely." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449726.
Full textMonsees, Hendrik. "Overcoming major bottlenecks in aquaponics - A practical approach." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18658.
Full textAquaponics is the combination of fish production in aquaculture and hydroponic (soilless) production of crop plants. Despite of representing already a sustainable, innovative approach for future food production systems, aquaponics are still missing economic success and up to date major bottlenecks were not scientifically addressed. Therefore the main aims of this thesis were (I) to identify safe nitrate concentrations under which best growth and health status of tilapia can be guaranteed in aquaponics, (II) to evaluate the best design concept for an optimal combined production of fish and plants and (III) to increase the overall system efficiency by recycling waste water and nutrients deposited in the sludge of the mechanical filtration unit. The growth and health status of Nile tilapia (Oreochromis niloticus) is negatively affected by high nitrate concentrations (> 500 mgL-1 NO3--N) commonly reported for RAS. Nevertheless, optimal nitrate concentrations for plant production in aquaponic systems (~ 200 mgL-1 NO3--N) are not affecting fish welfare and allow for an efficient production of Nile tilapia. Decoupled aquaponics proved to be favorable for professional aquaponic production, whereas coupled systems were suboptimal for a combined production of fish and plants. There were no differences in fish production, whereas tomato production within the decoupled system was considerably increased by 36 %. Aerobic mineralization of phosphate revealed best phosphate recovery with only minor losses of nitrate. Recycling of water sludge mixture from clarifiers resulted in a substantial phosphor recovery, an increase in potassium and additional water savings. Conclusively, the results of this holistic thesis clearly revealed the bottlenecks in aquaponic technology and provided guidance in overcoming mayor obstacles in terms of optimized nutrient and resource management to increase the overall sustainability of these systems and improve production efficiency and profitability.
van, der Merwe Marnus. "Integrating aquaculture with crop systems : an aquaponic enterprise project proposal for the Ntinga Multipurpose Co-Operative in Philippi, South Africa." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96858.
Full textENGLISH ABSTRACT: Stellenbosch University was approached to assist with developing a techno-financial model for an urban freshwater aquaculture system in Philippi, Cape Town. Rapidly growing urban areas are predominantly becoming concentrated zones for malnutrition and poverty which require attention. Having enough food to eat does not mean that a family is food secure, the problem is usually associated with the lack of access to nutritious food. Fish is seen as an extremely healthy food which has the potential to effectively support food security and alleviate malnutrition. Aquaculture is identified as a largely underdeveloped sector in South Africa. It is currently undergoing rapid transition, being promoted by government as an industry that has potential to develop and create jobs, provide food security and grow the South African economy. Aquaponics- a method to integrate aquaculture with growing crops in a symbiotic system is a highly resource efficient closed-integrated food producing technology which has the potential to benefit from South African biosecurity regulations and climate-geographic characteristics. It is viewed as an effective food production alternative to deal with the challenges of declining high quality freshwater resources and available arable land. Training and capacity building is important for the development of aquaponic technology. This study explores and identifies the advantages aquaponic technology development would have in South Africa. The study has reviewed and assessed the fundamental principles for aquaculture production and management required for aquaponic systems development and management. A practical case study identifies the daily challenges and design parameters of aquaponic systems. The study is concluded with a techno-financial project proposal which shows how aquaponic systems can be planned.
AFRIKAANSE OPSOMMING: Universiteit Stellenbosch was genader om 'n tegno-finansiele model to ontwikkel vir 'n stedelike akwakultuur plaas in Philippi, Kaapstad. The tempo waarteen die stedelike areas groei ontwikkel kommerwekkende uitdagings soos wanvoeding en armoede. In hierdie studie is vis geindentifiseer as 'n uiters voedsame aanvulling in die dieet van Suid Afrikaners. Akwakultuur is grootliks agter in terme van ontwikkeling. Dit word beskou as 'n sektor wat groot potensiaal inhou vir Suid Afrika se eknomiese groei, werkskepping en voedselsekuriteit. Akwaponika is die hersirkulerende integrasie van akwakultuur en hidroponika. Akwaponika hou groot voordele in terme van Suid Afrika se biosekuriteit regulasies and geografiese eienskappe en is 'n effektiewe manier om gebruikte akwakultuur te suiwer. Opleiding en beplanning word gesien as 'n fundamentele benadering tot suskesvolle akwaponika ontwikkeling. Hierdie studie bestudeer die Suid Afrikaanse omgewing en potensiaal vir akwaponika ontwikkeling. Die fundamentele beginsels van akwakultuur en hidroponika bestuur en produksie is saamgesit wat beskou word as die aanbevele manier om akwaponika te bestuur. 'n Praktiese gevallestudie toon die daaglikse uitdagings aan en gee raad oor daaglikse bestuur van akwaponika stelsels. Die studie word afgesluit met 'n tegno-finansiele model wat wys hoe om 'n akwaponika sisteem te beplan.
Björn, Erik. "A circular production of fish and vegetables in Guatemala : An in-depth analysis of the nitrogen cycle in the Maya Chay aquaponic systems." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227646.
Full textDen här studien gjordes med syftet att fördjupa förståelsen kring Maya Chay akvaponiska system. För att uppnå syftet, utfördes en litteraturstudie som fokuserade på metabolismen av kväve i sådana system. Vidare undersöktes specifika Maya Chay system för att förstå hur dessa system skulle kunna skilja sig från den generella akvaponiska designen. Slutligen utvecklades två kvävebalanser i syfte att utforska dynamiken i de kväveomvandlingar som sker i två Maya Chay akvaponiska system. Mätningarna för kvävebalanserna gjordes i perioden mars 2017 till juli 2017, och modellen för kvävebalanserna utvärderade mängden kväve som: i) kväve som tillförts till systemet genom fodret, ii) kväve som assimilerats av fiskarna och växterna, iii) kväve som ackumulerats i slammet, och iv) kväve som gått förlorat till atmosfären genom denitrifikation och liknande processer så som anammox. Resultaten från kvävebalanserna visade intressanta skillnader kring dynamiken av kvävefördelningen. I det mindre Maya Chay XS systemet i Antigua, assimilerades endast 36 % av kvävet av fiskarna (30 %) och växterna (6 %) och 64 % av kvävet ansågs som förluster, antingen till atmosfären (46 %) eller genom slammet (18 %). Den andra kvävebalansen visade att fördelningen av kväve i Maya Chay S systemet i Chinautla är mycket mer effektivt gällande tillvaratagandet av tillfört kväve. I detta system assimilerades 70 % av fiskarna (33 %) och av växterna (37 %) och de resterande 30 % gick förlorat, antingen till atmosfären (14 %) eller i slammet (16 %). Kvävebalanserna visade även att bägge systemen är mer eller mindre likvärdiga gällande assimilering av kväve från fiskarna, och att den stora skillnaden mellan systemen ligger i hur mycket kväve som assimilerats av växterna (6 % vs. 37 %) samt hur mycket kväve som gått förlorat till atmosfären (46 % vs. 14 %). En sannolik förklaring till dessa skillnader är skillnaden i designen av växtbäddarna för två systemen, där det mindre effektiva systemet i Antigua har större area för växtbädden, men endast en mindre del av denna kunde nyttjas för odling av grönsaker. Som konsekvens av den större arean av växtbädden är en större volym syrefattigt vatten i botten av växtbädden, vilket verkar för tillväxt av denitrifierande och anammoxa bakterier. Dessa typer av bakterier omvandlar den upplösta ammoniaken, nitriten samt nitratet till kväveföreningar i gasform, till exempel kvävgas och lustgas och därav går kvävet förlorat till atmosfären. Slutligen visade den här studien stora skillnader i förhållandet mellan växt- och fisk-produktion mellan de två systemen, där förhållandet var 0.43 i Antigua och 2.7 i Chinautla. Skillnaden mellan de två olika förhållandena är ytterligare en indikation till att skillnaden i designen mellan systemen, speciellt med avseende på växtbäddarna, har en effekt på hur väl systemen presterar, både i termer som ekonomi och produktivitet, men också i termer som utsläpp av växthusgaser (lustgas). Därför kan slutsatsen dras att den ursprungliga designen av Maya Chay systemen (det vill säga systemet i Chinautla) är att föredra. Även om noggrannheten i mätningarna i detta experiment skulle kunna förbättras i framtida experiment, så visar denna studie värdet av att utföra kvävebalanser för akvaponiska system. Kvävebalanserna ökar kunskapen om hur väl systemen fungerar och dom ökar kunskapen kring dynamiken i kväveomvandlingarna som sker i systemen. Denna kunskap kan sedan utnyttjas för att justera designen av systemen och/eller verifiera om antingen vattenbruksdelen eller hydroponidelen i systemet är feldimensionerad.
Books on the topic "Aquaponic"
The complete idiot's guide to aquaponic gardening. Indianapolis, IN: Alpha Books, 2013.
Find full textGoddek, Simon, Alyssa Joyce, Benz Kotzen, and Gavin M. Burnell, eds. Aquaponics Food Production Systems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6.
Full textAquaponics Q and A: The answers to your questions about aquaponics. Montello, WI: Nelson and Pade, 2011.
Find full textBakhsh, Hamid Khoda. Integrated culture, hydroponics & aquaponics systems. Kuala Terengganu: Universiti Malaysia Terengganu, 2008.
Find full textBakhsh, Hamid Khoda. Integrated culture, hydroponics & aquaponics systems. Kuala Terengganu: Universiti Malaysia Terengganu, 2008.
Find full textBakhsh, Hamid Khoda. Integrated culture, hydroponics & aquaponics systems. Kuala Terengganu: Universiti Malaysia Terengganu, 2008.
Find full textMalcolm, Joel, ed. The IBC of Aquaponics: Bringing food production home. Perth, Australia: Backyard Aquaponics, 2011.
Find full textHerbert, Shannida. Aquaponics in Australia: The integration of aquaculture and hydroponics. Mudgee, N.S.W: Aquaponics Pty Ltd, 2008.
Find full textBakhsh, Hamid Khoda. Production of freshwater prawn through integrated culture system: (hydroponics & aquaponics). Kuala Terengganu: Universiti Malaysia Terengganu, 2008.
Find full textGoddek, Simon. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future. Cham: Springer Nature, 2019.
Find full textBook chapters on the topic "Aquaponic"
Reinhardt, Tilman, Kyra Hoevenaars, and Alyssa Joyce. "Regulatory Frameworks for Aquaponics in the European Union." In Aquaponics Food Production Systems, 501–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_20.
Full textYavuzcan Yildiz, Hijran, Vladimir Radosavljevic, Giuliana Parisi, and Aleksandar Cvetkovikj. "Insight into Risks in Aquatic Animal Health in Aquaponics." In Aquaponics Food Production Systems, 435–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_17.
Full textStouvenakers, Gilles, Peter Dapprich, Sebastien Massart, and M. Haïssam Jijakli. "Plant Pathogens and Control Strategies in Aquaponics." In Aquaponics Food Production Systems, 353–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_14.
Full textRobaina, Lidia, Juhani Pirhonen, Elena Mente, Javier Sánchez, and Neill Goosen. "Fish Diets in Aquaponics." In Aquaponics Food Production Systems, 333–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_13.
Full textMilliken, Sarah, and Henk Stander. "Aquaponics and Social Enterprise." In Aquaponics Food Production Systems, 607–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_24.
Full textProksch, Gundula, Alex Ianchenko, and Benz Kotzen. "Aquaponics in the Built Environment." In Aquaponics Food Production Systems, 523–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_21.
Full textTurnšek, Maja, Rolf Morgenstern, Iris Schröter, Marcus Mergenthaler, Silke Hüttel, and Michael Leyer. "Commercial Aquaponics: A Long Road Ahead." In Aquaponics Food Production Systems, 453–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_18.
Full textDelaide, Boris, Hendrik Monsees, Amit Gross, and Simon Goddek. "Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation." In Aquaponics Food Production Systems, 247–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_10.
Full textLennard, Wilson, and Simon Goddek. "Aquaponics: The Basics." In Aquaponics Food Production Systems, 113–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_5.
Full textMikkelsen, Bent Egberg, and Collins Momanyi Bosire. "Food, Sustainability, and Science Literacy in One Package? Opportunities and Challenges in Using Aquaponics Among Young People at School, a Danish Perspective." In Aquaponics Food Production Systems, 597–606. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_23.
Full textConference papers on the topic "Aquaponic"
Shafahi, Maryam, and Daniel Woolston. "Aquaponics: A Sustainable Food Production System." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39441.
Full textPrabha, R., R. Sri Saranish, S. Sowndharya, AC Santhosh, R. Varsha, and K. Sumathi. "IoT Controlled Aquaponic System." In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020. http://dx.doi.org/10.1109/icaccs48705.2020.9074401.
Full textSaaid, M. F., N. S. M. Fadhil, M. S. A. Megat Ali, and M. Z. H. Noor. "Automated indoor Aquaponic cultivation technique." In 2013 IEEE 3rd International Conference on System Engineering and Technology (ICSET). IEEE, 2013. http://dx.doi.org/10.1109/icsengt.2013.6650186.
Full textBracino, Amir A., Ronnie S. Concepcion, Elmer P. Dadios, and Ryan Rhay P. Vicerra. "Biofiltration for Recirculating Aquaponic Systems: A Review." In 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). IEEE, 2020. http://dx.doi.org/10.1109/hnicem51456.2020.9400136.
Full textDygert, Joseph P., Melissa L. Morris, Erik M. Messick, and Patrick H. Browning. "Feasibility of an Energy Efficient Large-Scale Aquaponic Food Production and Distribution Facility." In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6567.
Full textThomas, Hannah, Danielle Coombs, Ivaylo Nedyalkov, and Todd Guerdat. "Experimental Analysis of Water Flow in Aquaponics Fish Tanks." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5481.
Full textDanilova, A. A., N. A. Yurina, D. A. Yurin, and E. A. Maksim. "Aquaponic system as a promising direction of agriculture." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2019. http://dx.doi.org/10.33952/09.09.2019.12.
Full textAmin, Majdi T., and J. Kelly Kissock. "Dynamic Modeling and Verification of an Energy-Efficient Greenhouse With Aquaponics." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59180.
Full textNedyalkov, Ivaylo, Todd Guerdat, Drue Seksinsky, Sylvia Romero, Justin Stickney, and Ethan Pirie. "Numerical and Experimental Investigation of Flow in Fish Tanks for Small-Scale Aquaponic Systems." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69395.
Full textVernandhes, Wanda, N. S. Salahuddin, A. Kowanda, and Sri Poernomo Sari. "Smart aquaponic with monitoring and control system based on iot." In 2017 Second International Conference on Informatics and Computing (ICIC). IEEE, 2017. http://dx.doi.org/10.1109/iac.2017.8280590.
Full textReports on the topic "Aquaponic"
Boedijn, Alexander, Esteban Baeza, and Eric Poot. GEOFOOD - Energy model of geothermalgreenhouse aquaponic systems, Part I, Model description and applications. Bleiswijk: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Greenhouse Horticulture, 2020. http://dx.doi.org/10.18174/527778.
Full textBoedijn, Alexander, Esteban Baeza, and Eric Poot. GEOFOOD - Energy model of geothermalgreenhouse aquaponic systems, Part II, Simulations for geothermal greenhouse production in the Netherlands. Bleiswijk: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Greenhouse Horticulture, 2020. http://dx.doi.org/10.18174/527779.
Full textPham, Thao. Changes in Cerebral Cortical Aquaporin-1 Expression in Multiple Sclerosis. Portland State University Library, January 2015. http://dx.doi.org/10.15760/honors.166.
Full textvan Senten, Jonathan, Carole R. Engle, Matthew A. Smith, Charles Clark, Shannon Fluharty, and Michael H. Schwarz. Impacts of COVID-19 on U.S. aquaculture, aquaponics, and allied businesses: Quarter 1 - March 23, 2020 to April 10, 2020. Blacksburg, VA: Virginia Cooperative Extension, January 2021. http://dx.doi.org/10.21061/aaec-246np.
Full textEngle, Carole R., Jonathan van Senten, Matthew A. Smith, Charles Clark, Shannon Fluharty, and Michael H. Schwarz. Impacts of COVID-19 on U.S. aquaculture, aquaponics, and allied businesses located in the USDA Western Aquaculture Region: Quarter 1 Results March 23, 2020 to April 10, 2020. Blacksburg, VA: Virginia Cooperative Extension, January 2021. http://dx.doi.org/10.21061/aaec-243np.
Full textSmith, Matthew A., Jonathan van Senten, Carole R. Engle, Charles Clark, Shannon Fluharty, and Michael H. Schwarz. Impacts of COVID-19 on U.S. aquaculture, aquaponics, and allied businesses located in the USDA North Central Aquaculture Region: Quarter 1 Results March 23, 2020 to April 10, 2020. Blacksburg, VA: Virginia Cooperative Extension, January 2021. http://dx.doi.org/10.21061/aaec-238np.
Full textvan Senten, Jonathan, Matthew A. Smith, Carole R. Engle, Charles Clark, Shannon Fluharty, and Michael H. Schwarz. Impacts of COVID-19 on U.S. aquaculture, aquaponics, and allied businesses located in the USDA Tropical and Subtropical Aquaculture Region: Quarter 1 Results March 23, 2020 to April 10, 2020. Blacksburg, VA: Virginia Cooperative Extension, January 2021. http://dx.doi.org/10.21061/aaec-240np.
Full text