Contents
Academic literature on the topic 'Approximation des erreurs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Approximation des erreurs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Approximation des erreurs"
Guerreau, Alain. "Édifices médiévaux, métrologie, organisation de l'espace, à propos de la cathédrale de Beauvais." Annales. Histoire, Sciences Sociales 47, no. 1 (February 1992): 87–106. http://dx.doi.org/10.3406/ahess.1992.279032.
Full textLoye-Pilot, M. D., and C. Jusserand. "Décomposition chimique et isotopique d'un hydrogramme de crue d'un torrent méditerranéen - Réflexions méthodologiques." Revue des sciences de l'eau 3, no. 2 (April 12, 2005): 211–31. http://dx.doi.org/10.7202/705072ar.
Full textAmbroise, B. "Génèse des débits dans les petits bassins versants ruraux en milieu tempéré : 2 - Modélisation systémique et dynamique." Revue des sciences de l'eau 12, no. 1 (April 12, 2005): 125–53. http://dx.doi.org/10.7202/705346ar.
Full textWorms, Rym. "Approximation de Pareto généralisée pour une loi dans le domaine d'attraction de Fréchet ou de Gumbel : erreur relative sur un quantile extrême." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 332, no. 3 (February 2001): 253–58. http://dx.doi.org/10.1016/s0764-4442(01)01800-6.
Full textDufour, Jean-Marie, Abdeljelil Farhat, and Lynda Khalaf. "Tests multiples simulés et tests de normalité basés sur plusieurs moments dans les modèles de régression*." Articles 80, no. 2-3 (October 24, 2005): 501–22. http://dx.doi.org/10.7202/011397ar.
Full textHitrik, Michael, Andrea Mantile, and Johannes Sjoestrand. "Adiabatic Evolution and Shape Resonances." Memoirs of the American Mathematical Society 280, no. 1380 (November 2022). http://dx.doi.org/10.1090/memo/1380.
Full textAlla, Abdellah, Zoubida Mghazli, Michel Fortin, and Frédéric Hecht. "R-adaptation par l'estimateur d'erreur hiérarchique." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 5, Special Issue TAM... (August 19, 2006). http://dx.doi.org/10.46298/arima.1850.
Full textBuson, Christian. "L’écologie, une science confisquée? Conférence donnée à Florac, en Lozère, le 6 août 2018, en hommage à Claude Monnier (1916-2018)." Recursos Rurais, no. 14 (February 1, 2019). http://dx.doi.org/10.15304/rr.id5782.
Full textGriewank, Andreas, and Daniel Kressner. "Time-lag Derivative Convergence for Fixed Point Iterations." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 3, Special Issue... (September 29, 2005). http://dx.doi.org/10.46298/arima.1837.
Full textBalesdent, Jérôme, Isabelle Basile-Doelsch, Joël Chadoeuf, Sophie Cornu, Zuzana Fekiacova, Sébastien Fontaine, Bertrand Guenet, and Christine Hatté. "Renouvellement du carbone profond des sols cultivés : une estimation par compilation de données isotopiques." BASE, 2017, 181–90. http://dx.doi.org/10.25518/1780-4507.13562.
Full textDissertations / Theses on the topic "Approximation des erreurs"
Boulbrachene, Messaoud. "Sur quelques questions d'approximations de problèmes à frontière libre, de sous-domaines et d'erreurs d'arrondi." Besançon, 1987. http://www.theses.fr/1987BESA2020.
Full textChevillard, Sylvain. "Évaluation efficace de fonctions numériques - Outils et exemples." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2009. http://tel.archives-ouvertes.fr/tel-00460776.
Full textKamel, Slimani. "Estimation a posteriori et méthode de décomposition de domaine." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0025.
Full textThis thesis is devoted to numerical analysis in particular a postoriori estimates of the error in the method of asymptotic partial domain decomposition. There are problems in linear elliptic partial and semi-linear with a source which depends only of one variable in a portion of domain. Method of Asymptotic Partial Decomposition of a Domain (MAPDD) originates from the works of Grigori.Panasonko [12, 13]. The idea is to replace an original 3D or 2D problem by a hybrid one 3D − 1D; or 2D − 1D, where the dimension of the problem decreases in part of domain. Effective solution methods for the resulting hybrid problem have recently become available for several systems (linear/nonlinear, fluid/solid, etc.) which allow for each subproblem to be computed with an independent black-box code [21, 17, 18]. The location of the junction between the heterogeneous problems is asymptotically estimated in the works of Panasenko [12]. MAPDD has been designed for handling problems where a small parameter appears, and provides a series expansion of the solution with solutions of simplified problems with respect to this small parameter. In the problem considered in chapter 3 and 4, no small parameter exists, but due to geometrical considerations concerning the domain Ω it is assumed that the solution does not differ very much from a function which depends only on one variable in a part of the domain. The MAPDD theory is not suited for such a context, but if this theory is applied formally it does not provide any error estimate. The a posteriori error estimate proved in this chapter 3 and 4, is able to measure the discrepancy between the exact solution and the hybrid solution which corresponds to the zero-order term in the series expansion with respect to a small parameter when it exists. Numerically, independently of the existence of an asymptotical estimate of the location of the junction, it is essential to detect with accuracy the location of the junction. Let us also mention the interest of locating with accuracy the position of the junction in blood flows simulations [23]. Here in this chapter 3,4 the method proposed is to determine the location of the junction (i.e. the location of the boundary Γ in the example treated) by using optimization techniques. First it is shown that MAPDD can be expressed with a mixed domain decomposition formulation (as in [22]) in two different ways. Then it is proposed to use an a posteriori error estimate for locating the best position of the junction. A posteriori error estimates have been extensively used in optimization problems, the reader is referred to, e.g. [1, 11]
Resmerita, Diana. "Compression pour l'apprentissage en profondeur." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4043.
Full textAutonomous cars are complex applications that need powerful hardware machines to be able to function properly. Tasks such as staying between the white lines, reading signs, or avoiding obstacles are solved by using convolutional neural networks (CNNs) to classify or detect objects. It is highly important that all the networks work in parallel in order to transmit all the necessary information and take a common decision. Nowadays, as the networks improve, they also have become bigger and more computational expensive. Deploying even one network becomes challenging. Compressing the networks can solve this issue. Therefore, the first objective of this thesis is to find deep compression methods in order to cope with the memory and computational power limitations present on embedded systems. The compression methods need to be adapted to a specific processor, Kalray's MPPA, for short term implementations. Our contributions mainly focus on compressing the network post-training for storage purposes, which means compressing the parameters of the network without retraining or changing the original architecture and the type of the computations. In the context of our work, we decided to focus on quantization. Our first contribution consists in comparing the performances of uniform quantization and non-uniform quantization, in order to identify which of the two has a better rate-distortion trade-off and could be quickly supported in the company. The company's interest is also directed towards finding new innovative methods for future MPPA generations. Therefore, our second contribution focuses on comparing standard floating-point representations (FP32, FP16) to recently proposed alternative arithmetical representations such as BFloat16, msfp8, Posit8. The results of this analysis were in favor for Posit8. This motivated the company Kalray to conceive a decompressor from FP16 to Posit8. Finally, since many compression methods already exist, we decided to move to an adjacent topic which aims to quantify theoretically the effects of quantization error on the network's accuracy. This is the second objective of the thesis. We notice that well-known distortion measures are not adapted to predict accuracy degradation in the case of inference for compressed neural networks. We define a new distortion measure with a closed form which looks like a signal-to-noise ratio. A set of experiments were done using simulated data and small networks, which show the potential of this distortion measure
Maftei, Radu. "Analyse stochastique pour la simulation de particules lagrangiennes : application aux collisions de particules colloïdes." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4130/document.
Full textThis thesis broadly concerns colloidal particle simulation which plays an important role in understanding two-phase flows. More specifically, we track the particles inside a turbulent flow and model their dynamics as a stochastic process, their interactions as perfectly elastic collisions where the influence of the flow is modelled by a drift on the velocity term. By coupling each particle and considering their relative position and velocity, the perfectly elastic collision becomes a specular reflection condition. We put forward a time discretisation scheme for the resulting Lagrange system with specular boundary conditions and prove that the convergence rate of the weak error decreases at most linearly in the time discretisation step. The evidence is based on regularity results of the Feynman-Kac PDE and requires some regularity on the drift. We numerically experiment a series of conjectures, amongst which the weak error linearly decreasing for drifts that do not comply with the theorem conditions. We test the weak error convergence rate for a Richardson Romberg extrapolation. We finally deal with Lagrangian/Brownian approximations by considering a Lagrangian system where the velocity component behaves as a fast process. We control the weak error between the position of the Lagrangian system and an appropriately chosen uniformly elliptic diffusion process and subsequently prove a similar control by introducing a specular reflecting boundary on the Lagrangian and an appropriate reflection on the elliptic diffusion
Joldes, Mioara Maria. "Approximations polynomiales rigoureuses et applications." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00657843.
Full textEl, Fassi Kaouthar. "Sur l'estimation non-paramétrique de la fonction d' "Egalisation Equipercentile" : applications à la qualité de vie." Paris 6, 2009. https://tel.archives-ouvertes.fr/tel-00425330.
Full textBraud, Isabelle. "Etude méthodologique de l'analyse en composantes principales de processus bidimensionnels : effets des approximations numériques et de l'échantillonnage et utilisation pour la simulation de champs aléatoires : application au traitement des températures de surface de la mer sur l'Atlantique intertropical." Phd thesis, Grenoble INPG, 1990. http://www.theses.fr/1990INPG0042.
Full textEl, Fassi Kaouthar. "Sur l'estimation non paramétrique de la fonction d'égalisation équipercentile. Application à la qualité de vie." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00425330.
Full textDeshpande, Lalita Narhar. "Des algorithmes rapides pour la validation croisée sur des problèmes d'approximation non linéaires." Grenoble 1, 1990. http://tel.archives-ouvertes.fr/tel-00337860.
Full textBooks on the topic "Approximation des erreurs"
Novak, Erich. Deterministic and stochastic error bounds in numerical analysis. Berlin: Springer-Verlag, 1988.
Find full textGeometry and codes. Dordrecht [Netherlands]: Kluwer Academic Publishers, 1988.
Find full text