Academic literature on the topic 'Approximate String Matching (ASM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Approximate String Matching (ASM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Approximate String Matching (ASM)"
Liu, Bing, Dan Han, and Shuang Zhang. "Approximate Chinese String Matching Techniques Based on Pinyin Input Method." Applied Mechanics and Materials 513-517 (February 2014): 1017–20. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1017.
Full textAlba, Alfonso, Martin O. Mendez, Miguel E. Rubio-Rincon, and Edgar R. Arce-Santana. "A consensus algorithm for approximate string matching and its application to QRS complex detection." International Journal of Modern Physics C 27, no. 03 (February 23, 2016): 1650029. http://dx.doi.org/10.1142/s0129183116500297.
Full textYang, Zhenglu, Jianjun Yu, and Masaru Kitsuregawa. "Fast Algorithms for Top-k Approximate String Matching." Proceedings of the AAAI Conference on Artificial Intelligence 24, no. 1 (July 5, 2010): 1467–73. http://dx.doi.org/10.1609/aaai.v24i1.7527.
Full textMustafa, Suleiman H. "Word-oriented approximate string matching using occurrence heuristic tables: A heuristic for searching Arabic text." Journal of the American Society for Information Science and Technology 56, no. 14 (2005): 1504–11. http://dx.doi.org/10.1002/asi.20244.
Full textWang, Rui, Ping Gu, and Jian Min Zeng. "A Vague Words Retrieval Method in a Relational Database." Applied Mechanics and Materials 268-270 (December 2012): 1692–96. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1692.
Full textBaeza-Yates and G. Navarro, R. "Faster Approximate String Matching." Algorithmica 23, no. 2 (February 1999): 127–58. http://dx.doi.org/10.1007/pl00009253.
Full textOwolabi, O., and D. R. McGregor. "Fast approximate string matching." Software: Practice and Experience 18, no. 4 (April 1988): 387–93. http://dx.doi.org/10.1002/spe.4380180407.
Full textShang, H., and T. H. Merrettal. "Tries for approximate string matching." IEEE Transactions on Knowledge and Data Engineering 8, no. 4 (1996): 540–47. http://dx.doi.org/10.1109/69.536247.
Full textUkkonen, Esko. "Algorithms for approximate string matching." Information and Control 64, no. 1-3 (January 1985): 100–118. http://dx.doi.org/10.1016/s0019-9958(85)80046-2.
Full textDas, Shibsankar, and Kalpesh Kapoor. "Weighted approximate parameterized string matching." AKCE International Journal of Graphs and Combinatorics 14, no. 1 (April 1, 2017): 1–12. http://dx.doi.org/10.1016/j.akcej.2016.11.010.
Full textDissertations / Theses on the topic "Approximate String Matching (ASM)"
Cheng, Lok-lam, and 鄭樂霖. "Approximate string matching in DNA sequences." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29350591.
Full textNguyen, Hong-Thinh. "Approximate string matching distance for image classification." Thesis, Saint-Etienne, 2014. http://www.theses.fr/2014STET4029/document.
Full textThe exponential increasing of the number of images requires efficient ways to classify them based on their visual content. The most successful and popular approach is the Bag of visual Word (BoW) representation due to its simplicity and robustness. Unfortunately, this approach fails to capture the spatial image layout, which plays an important roles in modeling image categories. Recently, Lazebnik et al (2006) introduced the Spatial Pyramid Representation (SPR) which successfully incorporated spatial information into the BoW model. The idea of their approach is to split the image into a pyramidal grid and to represent each grid cell as a BoW. Assuming that images belonging to the same class have similar spatial distributions, it is possible to use a pairwise matching as similarity measurement. However, this rigid matching scheme prevents SPR to cope with image variations and transformations. The main objective of this dissertation is to study a more flexible string matching model. Keeping the idea of local BoW histograms, we introduce a new class of edit distance to compare strings of local histograms. Our first contribution is a string based image representation model and a new edit distance (called SMD for String Matching Distance) well suited for strings composed of symbols which are local BoWs. The new distance benefits from an efficient Dynamic Programming algorithm. A corresponding edit kernel including both a weighting and a pyramidal scheme is also derived. The performance is evaluated on classification tasks and compared to the standard method and several related methods. The new method outperforms other methods thanks to its ability to detect and ignore identical successive regions inside images. Our second contribution is to propose an extended version of SMD replacing insertion and deletion operations by merging operations between successive symbols. In this approach, the number of sub regions ie. the grid divisions may vary according to the visual content. We describe two algorithms to compute this merge-based distance. The first one is a greedy version which is efficient but can produce a non optimal edit script. The other one is an optimal version but it requires a 4th degree polynomial complexity. All the proposed distances are evaluated on several datasets and are shown to outperform comparable existing methods
Marco-Sola, Santiago. "Efficient approximate string matching techniques for sequence alignment." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/460835.
Full textUno de los avances más importantes de los últimos años en el campo de la biotecnología ha sido el desarrollo de las llamadas técnicas de secuenciación de alto rendimiento (high-throughput sequencing, HTS). Debido a las limitaciones técnicas para secuenciar un genoma, las técnicas de alto rendimiento secuencian individualmente billones de pequeñas partes del genoma provenientes de regiones aleatorias. Posteriormente, estas pequeñas secuencias han de ser localizadas en el genoma de referencia del organismo en cuestión. Este proceso se denomina alineamiento - o mapeado - y consiste en identificar aquellas regiones del genoma de referencia que comparten una alta similaridad con las lecturas producidas por el secuenciador. De esta manera, en cuestión de horas, la secuenciación de alto rendimiento puede secuenciar un individuo y establecer las diferencias de este con el resto de la especie. En última instancia, estas tecnologías han potenciado nuevos protocolos y metodologías de investigación con un profundo impacto en el campo de la genómica, la medicina y la biología en general. La secuenciación alto rendimiento, sin embargo, supone un reto para los procesos tradicionales de análisis de datos. Debido a la elevada cantidad de datos a analizar, se necesitan nuevas y mejoradas técnicas algorítmicas que puedan escalar con el volumen de datos y producir resultados precisos. Esta tesis aborda dicho problema. Las contribuciones que en ella se realizan se enfocan desde una perspectiva metodológica y otra algorítmica que propone el desarrollo de nuevos algoritmos y técnicas que permitan alinear secuencias de manera eficiente, precisa y escalable. Desde el punto de vista metodológico, esta tesis analiza y propone un marco de referencia para evaluar la calidad de los resultados del alineamiento de secuencias. Para ello, se analiza el origen de los conflictos durante la alineación de secuencias y se exploran los límites alcanzables en calidad con las tecnologías de secuenciación de alto rendimiento. Desde el punto de vista algorítmico, en el contexto de la búsqueda aproximada de patrones, esta tesis propone nuevas técnicas algorítmicas y de diseño de índices con el objetivo de mejorar la calidad y el desempeño de las herramientas dedicadas a alinear secuencias. En concreto, esta tesis presenta técnicas de diseño de índices genómicos enfocados a obtener un acceso más eficiente y escalable. También se presentan nuevas técnicas algorítmicas de filtrado con el fin de reducir el tiempo de ejecución necesario para alinear secuencias. Y, por último, se proponen algoritmos incrementales y técnicas híbridas para combinar métodos de alineamiento y mejorar el rendimiento en búsquedas donde el error esperado es alto. Todo ello sin degradar la calidad de los resultados y con garantías formales de precisión. Para concluir, es preciso apuntar que todos los algoritmos y metodologías propuestos en esta tesis están implementados y forman parte del alineador GEM. Este versátil alineador ofrece resultados de alta calidad en entornos de producción siendo varias veces más rápido que otros alineadores. En la actualidad este software se ofrece gratuitamente, tiene una amplia comunidad de usuarios y ha sido citado en numerosas publicaciones científicas.
Mäkinen, Veli. "Parameterized approximate string matching and local-similarity-based point-pattern matching." Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/mat/tieto/vk/makinen/.
Full textSiragusa, Enrico [Verfasser]. "Approximate string matching for high-throughput sequencing / Enrico Siragusa." Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1074404882/34.
Full textKeng, Leng Hui. "Approximate String Matching With Dynamic Programming and Suffix Trees." UNF Digital Commons, 2006. http://digitalcommons.unf.edu/etd/196.
Full textSmith, David. "Parallel approximate string matching applied to occluded object recognition." PDXScholar, 1987. https://pdxscholar.library.pdx.edu/open_access_etds/3724.
Full textDubois, Simon. "Offline Approximate String Matching forInformation Retrieval : An experiment on technical documentation." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH. Forskningsmiljö Informationsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-22566.
Full textPockrandt, Christopher Maximilian [Verfasser]. "Approximate String Matching : Improving Data Structures and Algorithms / Christopher Maximilian Pockrandt." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/1183675879/34.
Full textRichter, Christoph Jan [Verfasser]. "Über die Vermeidung redundanter Betrachtungen beim Approximate String Matching / Christoph Jan Richter." Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2005. http://d-nb.info/1011533499/34.
Full textBooks on the topic "Approximate String Matching (ASM)"
Landau, Gad M. Efficient parallel and serial approximate string matching. New York: Courant Institute of Mathematical Sciences, New York University, 1986.
Find full textVishkin, U., and Gad M. Landau. Efficient Parallel and Serial Approximate String Matching. Creative Media Partners, LLC, 2018.
Find full textBook chapters on the topic "Approximate String Matching (ASM)"
Navarro, Gonzalo. "Approximate String Matching." In Encyclopedia of Algorithms, 102–6. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_363.
Full textNavarro, Gonzalo. "Approximate String Matching." In Encyclopedia of Algorithms, 1–5. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_363-2.
Full textMuth, Robert, and Udi Manber. "Approximate multiple string search." In Combinatorial Pattern Matching, 75–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61258-0_7.
Full textBaeza-Yates, Ricardo, and Gonzalo Navarro. "Multiple approximate string matching." In Lecture Notes in Computer Science, 174–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63307-3_57.
Full textSung, Wing-Kin. "Indexed Approximate String Matching." In Encyclopedia of Algorithms, 964–68. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_188.
Full textSung, Wing-Kin. "Indexed Approximate String Matching." In Encyclopedia of Algorithms, 1–6. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-3-642-27848-8_188-2.
Full textSung, Wing-Kin. "Indexed Approximate String Matching." In Encyclopedia of Algorithms, 408–11. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_188.
Full textNavarro, Gonzalo. "Sequential Approximate String Matching." In Encyclopedia of Algorithms, 818–20. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_363.
Full textRusso, Luís M. S., Gonzalo Navarro, and Arlindo L. Oliveira. "Indexed Hierarchical Approximate String Matching." In String Processing and Information Retrieval, 144–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89097-3_15.
Full textBaeza-Yates, Ricardo A., and Chris H. Perleberg. "Fast and practical approximate string matching." In Combinatorial Pattern Matching, 185–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-56024-6_15.
Full textConference papers on the topic "Approximate String Matching (ASM)"
Huerta, Juan M. "A stack decoder approach to approximate string matching." In Proceeding of the 33rd international ACM SIGIR conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1835449.1835634.
Full textBüch, Lutz, and Artur Andrzejak. "Approximate String Matching by End-Users using Active Learning." In CIKM'15: 24th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2806416.2806453.
Full textMasihi, Z. G., and N. M. Charkari. "Content based Video Retrieval based on Approximate String Matching." In EUROCON 2005 - The International Conference on "Computer as a Tool". IEEE, 2005. http://dx.doi.org/10.1109/eurcon.2005.1630196.
Full textFlouri, Tomáš, Kunsoo Park, Kimon Frousios, Solon P. Pissis, Costas S. Iliopoulos, and German Tischler. "Approximate string-matching with a single gap for sequence alignment." In the 2nd ACM Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2147805.2147879.
Full textStroe, Mihai, Radu Berinde, Cosmin Negruseri, and Dan Popovici. "An approximate string matching approach for handling incorrectly typed urls." In Proceeding of the 17th ACM conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1458082.1458268.
Full textLandau, G. M., and U. Vishkin. "Introducing efficient parallelism into approximate string matching and a new serial algorithm." In the eighteenth annual ACM symposium. New York, New York, USA: ACM Press, 1986. http://dx.doi.org/10.1145/12130.12152.
Full textCali, Damla Senol, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis." In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020. http://dx.doi.org/10.1109/micro50266.2020.00081.
Full textKatsumata, Akifumi, and Takao Miura. "Spatial Approximate String Matching." In 2009 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim). IEEE, 2009. http://dx.doi.org/10.1109/pacrim.2009.5291387.
Full text"Approximate String Matching Techniques." In 16th International Conference on Enterprise Information Systems. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004892802170224.
Full textKatsumata, A., T. Miura, and I. Shioya. "Approximate String Matching Using Markovian Distance." In Third International Symposium on Parallel Architectures, Algorithms and Programming (PAAP 2010). IEEE, 2010. http://dx.doi.org/10.1109/paap.2010.11.
Full textReports on the topic "Approximate String Matching (ASM)"
Smith, David. Parallel approximate string matching applied to occluded object recognition. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5608.
Full textRay, Laura, Madeleine Jordan, Steven Arcone, Lynn Kaluzienski, Benjamin Walker, Peter Ortquist Koons, James Lever, and Gordon Hamilton. Velocity field in the McMurdo shear zone from annual ground penetrating radar imaging and crevasse matching. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42623.
Full text