Journal articles on the topic 'Approximate Mining'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Approximate Mining.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Livshits, Ester, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. "Approximate denial constraints." Proceedings of the VLDB Endowment 13, no. 10 (June 2020): 1682–95. http://dx.doi.org/10.14778/3401960.3401966.
Full textYip, Kelly K., and David A. Nembhard. "Mining approximate sequential patterns with gaps." International Journal of Data Mining, Modelling and Management 7, no. 2 (2015): 108. http://dx.doi.org/10.1504/ijdmmm.2015.069249.
Full textCombi, Carlo, and Pietro Sala. "Mining approximate interval-based temporal dependencies." Acta Informatica 53, no. 6-8 (September 14, 2015): 547–85. http://dx.doi.org/10.1007/s00236-015-0246-x.
Full textChen, Yan, and Aijun An. "Approximate Parallel High Utility Itemset Mining." Big Data Research 6 (December 2016): 26–42. http://dx.doi.org/10.1016/j.bdr.2016.07.001.
Full textSu, Na, Zhe Hui Wu, Ji Min Liu, Tai An Liu, Xin Jun An, and Chang Qing Yan. "Mining Approximate Frequent Itemsets over Data Streams." Applied Mechanics and Materials 685 (October 2014): 536–39. http://dx.doi.org/10.4028/www.scientific.net/amm.685.536.
Full textSilvestri, Claudio, and Salvatore Orlando. "Approximate mining of frequent patterns on streams." Intelligent Data Analysis 11, no. 1 (March 15, 2007): 49–73. http://dx.doi.org/10.3233/ida-2007-11104.
Full textMcCoy, Corren G., Michael L. Nelson, and Michele C. Weigle. "Mining the Web to approximate university rankings." Information Discovery and Delivery 46, no. 3 (August 20, 2018): 173–83. http://dx.doi.org/10.1108/idd-05-2018-0014.
Full textMazlack, Lawrence J. "Approximate reasoning applied to unsupervised database mining." International Journal of Intelligent Systems 12, no. 5 (May 1997): 391–414. http://dx.doi.org/10.1002/(sici)1098-111x(199705)12:5<391::aid-int3>3.0.co;2-i.
Full textBashir, Shariq, and Daphne Teck Ching Lai. "Mining Approximate Frequent Itemsets Using Pattern Growth Approach." Information Technology and Control 50, no. 4 (December 16, 2021): 627–44. http://dx.doi.org/10.5755/j01.itc.50.4.29060.
Full textCHEN, Siyu, Ning WANG, and Mengmeng ZHANG. "Mining Approximate Primary Functional Dependency on Web Tables." IEICE Transactions on Information and Systems E102.D, no. 3 (March 1, 2019): 650–54. http://dx.doi.org/10.1587/transinf.2018edl8130.
Full textSuperfesky, Michael J. "ACHIEVING APPROXIMATE ORIGINAL CONTOUR IN MOUNTAIN TOP MINING." Journal American Society of Mining and Reclamation 2000, no. 1 (2000): 487–92. http://dx.doi.org/10.21000/jasmr00010487.
Full textYun, Unil, Keun Ho Ryu, and Eunchul Yoon. "Weighted approximate sequential pattern mining within tolerance factors." Intelligent Data Analysis 15, no. 4 (June 23, 2011): 551–69. http://dx.doi.org/10.3233/ida-2011-0482.
Full textBaek, Yoonji, Unil Yun, Heonho Kim, Jongseong Kim, Bay Vo, Tin Truong, and Zhi-Hong Deng. "Approximate high utility itemset mining in noisy environments." Knowledge-Based Systems 212 (January 2021): 106596. http://dx.doi.org/10.1016/j.knosys.2020.106596.
Full textGupta, Parul, Swati Agnihotri, and Suman Saha. "Approximate Data Mining Using Sketches for Massive Data." Procedia Technology 10 (2013): 781–87. http://dx.doi.org/10.1016/j.protcy.2013.12.422.
Full textUppal, Veepu. "An Efficient Algorithm for Approximate Frequent Intemset Mining." International Journal of Database Theory and Application 8, no. 3 (June 30, 2015): 279–88. http://dx.doi.org/10.14257/ijdta.2015.8.3.24.
Full textNakamura, Atsuyoshi, Ichigaku Takigawa, Hisashi Tosaka, Mineichi Kudo, and Hiroshi Mamitsuka. "Mining approximate patterns with frequent locally optimal occurrences." Discrete Applied Mathematics 200 (February 2016): 123–52. http://dx.doi.org/10.1016/j.dam.2015.07.002.
Full textTang, Huijun, Le Wang, Yangguang Liu, and Jiangbo Qian. "Discovering Approximate and Significant High-Utility Patterns from Transactional Datasets." Journal of Mathematics 2022 (November 16, 2022): 1–17. http://dx.doi.org/10.1155/2022/6975130.
Full textHadi, Raghad M. "Best Approximate of Vector Space Model by Using SVD." Al-Mustansiriyah Journal of Science 28, no. 2 (April 11, 2018): 143. http://dx.doi.org/10.23851/mjs.v28i2.509.
Full textNasir, Muhammad Anis Uddin, Cigdem Aslay, Gianmarco De Francisci Morales, and Matteo Riondato. "Approximate Mining of Frequent -Subgraph Patterns in Evolving Graphs." ACM Transactions on Knowledge Discovery from Data 15, no. 3 (April 12, 2021): 1–35. http://dx.doi.org/10.1145/3442590.
Full textJiadong Ren, Yufeng Tian, Haitao He, Xiao Cui, and Qian Wang. "Mining approximate Time-interval sequential pattern in data stream." Journal of Convergence Information Technology 7, no. 3 (February 29, 2012): 282–91. http://dx.doi.org/10.4156/jcit.vol7.issue3.33.
Full textKum, Hye-Chung, and Joong-Hyuk Chang. "Mining Approximate Sequential Patterns in a Large Sequence Database." KIPS Transactions:PartD 13D, no. 2 (April 1, 2006): 199–206. http://dx.doi.org/10.3745/kipstd.2006.13d.2.199.
Full textLiao, Zhifang, Limin Liu, Xiaoping Fan, Yueshan Xie, Zhining Liao, and Yan Zhang. "An outlier mining algorithm based on approximate outlier factor." International Journal of Autonomous and Adaptive Communications Systems 8, no. 2/3 (2015): 243. http://dx.doi.org/10.1504/ijaacs.2015.069567.
Full textChaudhuri, Surajit, Venkatesh Ganti, and Dong Xin. "Mining document collections to facilitate accurate approximate entity matching." Proceedings of the VLDB Endowment 2, no. 1 (August 2009): 395–406. http://dx.doi.org/10.14778/1687627.1687673.
Full textLi, Haifeng, Yuejin Zhang, Ning Zhang, and Hengyue Jia. "A Heuristic Rule Based Approximate Frequent Itemset Mining Algorithm." Procedia Computer Science 91 (2016): 324–33. http://dx.doi.org/10.1016/j.procs.2016.07.087.
Full textYun, Unil, and Keun Ho Ryu. "Approximate weighted frequent pattern mining with/without noisy environments." Knowledge-Based Systems 24, no. 1 (February 2011): 73–82. http://dx.doi.org/10.1016/j.knosys.2010.07.007.
Full textLiu, Yijun, Feiyue Ye, Jixue Liu, and Sheng He. "Mining Approximate Keys based on Reasoning from XML Data." Applied Mathematics & Information Sciences 8, no. 4 (July 1, 2014): 2005–16. http://dx.doi.org/10.12785/amis/080459.
Full textLiu, Shengxin, and Chung Keung Poon. "On mining approximate and exact fault-tolerant frequent itemsets." Knowledge and Information Systems 55, no. 2 (July 11, 2017): 361–91. http://dx.doi.org/10.1007/s10115-017-1079-4.
Full textAcosta-Mendoza, Niusvel, Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad, Andrés Gago-Alonso, and José Eladio Medina-Pagola. "Mining clique frequent approximate subgraphs from multi-graph collections." Applied Intelligence 50, no. 3 (October 19, 2019): 878–92. http://dx.doi.org/10.1007/s10489-019-01564-8.
Full textYun, Unil, and Eunchul Yoon. "An Efficient Approach for Mining Weighted Approximate Closed Frequent Patterns Considering Noise Constraints." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 22, no. 06 (December 2014): 879–912. http://dx.doi.org/10.1142/s0218488514500470.
Full textAcosta-Mendoza, Niusvel, Andrés Gago-Alonso, Jesús Ariel Carrasco-Ochoa, José Fco Martínez-Trinidad, and José E. Medina-Pagola. "Extension of Canonical Adjacency Matrices for Frequent Approximate Subgraph Mining on Multi-Graph Collections." International Journal of Pattern Recognition and Artificial Intelligence 31, no. 08 (May 9, 2017): 1750025. http://dx.doi.org/10.1142/s0218001417500252.
Full textValiullin, Timur, Zhexue Huang, Chenghao Wei, Jianfei Yin, Dingming Wu, and Luliia Egorova. "A new approximate method for mining frequent itemsets from big data." Computer Science and Information Systems, no. 00 (2020): 15. http://dx.doi.org/10.2298/csis200124015v.
Full textHUANG, Chong-Zheng, Hai-Feng LI, and Hong CHEN. "An Approximate Non-Derivable Itemset Mining Algorithm over Data Streams." Chinese Journal of Computers 33, no. 8 (December 1, 2010): 1427–36. http://dx.doi.org/10.3724/sp.j.1016.2010.01427.
Full textAtoum, Jalal. "Approximate Functional Dependencies Mining Using Association Rules Specificity Interestingness Measure." British Journal of Mathematics & Computer Science 15, no. 5 (January 10, 2016): 1–10. http://dx.doi.org/10.9734/bjmcs/2016/25206.
Full textLucchese, Claudio, Salvatore Orlando, and Raffaele Perego. "A Unifying Framework for Mining Approximate Top- $k$ Binary Patterns." IEEE Transactions on Knowledge and Data Engineering 26, no. 12 (December 2014): 2900–2913. http://dx.doi.org/10.1109/tkde.2013.181.
Full textGuo, Lichao, Hongye Su, and Yu Qu. "Approximate mining of global closed frequent itemsets over data streams." Journal of the Franklin Institute 348, no. 6 (August 2011): 1052–81. http://dx.doi.org/10.1016/j.jfranklin.2011.04.006.
Full textYu, Xiaomei, Hong Wang, and Xiangwei Zheng. "Mining top-k approximate closed patterns in an imprecise database." International Journal of Grid and Utility Computing 9, no. 2 (2018): 97. http://dx.doi.org/10.1504/ijguc.2018.091696.
Full textZheng, Xiangwei, Xiaomei Yu, and Hong Wang. "Mining top-k approximate closed patterns in an imprecise database." International Journal of Grid and Utility Computing 9, no. 2 (2018): 97. http://dx.doi.org/10.1504/ijguc.2018.10012791.
Full textHe, Dan, Xingquan Zhu, and Xindong Wu. "MINING APPROXIMATE REPEATING PATTERNS FROM SEQUENCE DATA WITH GAP CONSTRAINTS." Computational Intelligence 27, no. 3 (August 2011): 336–62. http://dx.doi.org/10.1111/j.1467-8640.2011.00383.x.
Full textWu, Youxi, Bojing Jian, Yan Li, He Jiang, and Xindong Wu. "NetNDP: Nonoverlapping (delta, gamma)-approximate pattern matching." Intelligent Data Analysis 26, no. 6 (November 12, 2022): 1661–82. http://dx.doi.org/10.3233/ida-216325.
Full textChang, Chia-Yo, Jason T. L. Wang, and Roger K. Chang. "Scientific Data Mining: A Case Study." International Journal of Software Engineering and Knowledge Engineering 08, no. 01 (March 1998): 77–96. http://dx.doi.org/10.1142/s0218194098000078.
Full textKuzniar, Krystyna, Krystyna Stec, and Tadeusz Tatara. "Approximate classification of mining tremors harmfulness based on free-field and building foundation vibrations." E3S Web of Conferences 36 (2018): 01006. http://dx.doi.org/10.1051/e3sconf/20183601006.
Full textJiadong Ren, Yufeng Tian, and Haitao He. "Bitmap-based Algorithm of Mining Approximate Sequential Pattern in Data Stream." INTERNATIONAL JOURNAL ON Advances in Information Sciences and Service Sciences 3, no. 9 (October 31, 2011): 132–39. http://dx.doi.org/10.4156/aiss.vol3.issue9.18.
Full textPyun, Gwangbum, and Unil Yun. "Performance evaluation of approximate frequent pattern mining based on probabilistic technique." Journal of Korean Society for Internet Information 14, no. 1 (February 28, 2013): 63–69. http://dx.doi.org/10.7472/jksii.2013.14.63.
Full textWANG, Wei-Ping. "An Efficient Algorithm for Mining Approximate Frequent Item over Data Streams." Journal of Software 18, no. 4 (2007): 884. http://dx.doi.org/10.1360/jos180884.
Full textLee, Gangin, Unil Yun, Heungmo Ryang, and Donggyu Kim. "Approximate Maximal Frequent Pattern Mining with Weight Conditions and Error Tolerance." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 06 (May 9, 2016): 1650012. http://dx.doi.org/10.1142/s0218001416500129.
Full textLiu, Haibin, Lawrence Hunter, Vlado Kešelj, and Karin Verspoor. "Approximate Subgraph Matching-Based Literature Mining for Biomedical Events and Relations." PLoS ONE 8, no. 4 (April 17, 2013): e60954. http://dx.doi.org/10.1371/journal.pone.0060954.
Full textAcosta-Mendoza, Niusvel, Andrés Gago-Alonso, Jesús Ariel Carrasco-Ochoa, José Francisco Martínez-Trinidad, and José Eladio Medina-Pagola. "A new algorithm for approximate pattern mining in multi-graph collections." Knowledge-Based Systems 109 (October 2016): 198–207. http://dx.doi.org/10.1016/j.knosys.2016.07.003.
Full textYu, Xiaomei, Jun Zhao, Hong Wang, Xiangwei Zheng, and Xiaoyan Yan. "A model of mining approximate frequent itemsets using rough set theory." International Journal of Computational Science and Engineering 19, no. 1 (2019): 71. http://dx.doi.org/10.1504/ijcse.2019.099640.
Full textYan, Xiaoyan, Jun Zhao, Hong Wang, Xiangwei Zheng, and Xiaomei Yu. "A model of mining approximate frequent itemsets using rough set theory." International Journal of Computational Science and Engineering 19, no. 1 (2019): 71. http://dx.doi.org/10.1504/ijcse.2019.10020958.
Full textAridhi, Sabeur, Laurent d'Orazio, Mondher Maddouri, and Engelbert Mephu Nguifo. "Density-based data partitioning strategy to approximate large-scale subgraph mining." Information Systems 48 (March 2015): 213–23. http://dx.doi.org/10.1016/j.is.2013.08.005.
Full text