To see the other types of publications on this topic, follow the link: Apprentissage statistique profond.

Dissertations / Theses on the topic 'Apprentissage statistique profond'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 39 dissertations / theses for your research on the topic 'Apprentissage statistique profond.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Sors, Arnaud. "Apprentissage profond pour l'analyse de l'EEG continu." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS006/document.

Full text
Abstract:
Ces travaux de recherche visent à développer des méthodes d’apprentissage automatique pour l’analyse de l’électroencéphalogramme (EEG) continu. L’EEG continu est une modalité avantageuse pour l’évaluation fonctionnelle des états cérébraux en réanimation ou pour d’autres applications. Cependant son utilisation aujourd’hui demeure plus restreinte qu’elle ne pourrait l’être, car dans la plupart des cas l’interprétation est effectuée visuellement par des spécialistes.Les sous-parties de ce travail s’articulent autour de l’évaluation pronostique du coma post-anoxique, choisie comme application pilote. Un petit nombre d’enregistrement longue durée a été réalisé, et des enregistrements existants ont été récupérés au CHU Grenoble.Nous commençons par valider l’efficacité des réseaux de neurones profonds pour l’analyse EEG d’échantillons bruts. Nous choisissons à cet effet de travailler sur la classification de stades de sommeil. Nous utilisons un réseau de neurones convolutionnel adapté pour l’EEG que nous entrainons et évaluons sur le jeu de données SHHS (Sleep Heart Health Study). Cela constitue le premier system neuronal à cette échelle (5000 patients) pour l’analyse du sommeil. Les performances de classification atteignent ou dépassent l’état de l’art.En utilisation réelle, pour la plupart des applications cliniques le défi principal est le manque d’annotations adéquates sur les patterns EEG ou sur de court segments de données (et la difficulté d’en établir). Les annotations disponibles sont généralement haut niveau (par exemple, le devenir clinique) est sont donc peu nombreuses. Nous recherchons comment apprendre des représentations compactes de séquences EEG de façon non-supervisée/semi-supervisée. Le domaine de l’apprentissage non supervisé est encore jeune. Pour se comparer aux travaux existants nous commençons avec des données de type image, et investiguons l’utilisation de réseaux adversaires génératifs (GANs) pour l’apprentissage adversaire non-supervisé de représentations. La qualité et la stabilité de différentes variantes sont évaluées. Nous appliquons ensuite un GAN de Wasserstein avec pénalité sur les gradients à la génération de séquences EEG. Le système, entrainé sur des séquences mono-piste de patients en coma post anoxique, est capable de générer des séquences réalistes. Nous développons et discutons aussi des idées originales pour l’apprentissage de représentations en alignant des distributions dans l’espace de sortie du réseau représentatif.Pour finir, les signaux EEG multipistes ont des spécificités qu’il est souhaitable de prendre en compte dans les architectures de caractérisation. Chaque échantillon d’EEG est un mélange instantané des activités d’un certain nombre de sources. Partant de ce constat nous proposons un système d’analyse composé d’un sous-système d’analyse spatiale suivi d’un sous-système d’analyse temporelle. Le sous-système d’analyse spatiale est une extension de méthodes de séparation de sources construite à l’aide de couches neuronales avec des poids adaptatifs pour la recombinaison des pistes, c’est à dire que ces poids ne sont pas appris mais dépendent de caractéristiques du signal d’entrée. Nous montrons que cette architecture peut apprendre à réaliser une analyse en composantes indépendantes, si elle est entrainée sur une mesure de non-gaussianité. Pour l’analyse temporelle, des réseaux convolutionnels classiques utilisés séparément sur les pistes recombinées peuvent être utilisés
The objective of this research is to explore and develop machine learning methods for the analysis of continuous electroencephalogram (EEG). Continuous EEG is an interesting modality for functional evaluation of cerebral state in the intensive care unit and beyond. Today its clinical use remains more limited that it could be because interpretation is still mostly performed visually by trained experts. In this work we develop automated analysis tools based on deep neural models.The subparts of this work hinge around post-anoxic coma prognostication, chosen as pilot application. A small number of long-duration records were performed and available existing data was gathered from CHU Grenoble. Different components of a semi-supervised architecture that addresses the application are imagined, developed, and validated on surrogate tasks.First, we validate the effectiveness of deep neural networks for EEG analysis from raw samples. For this we choose the supervised task of sleep stage classification from single-channel EEG. We use a convolutional neural network adapted for EEG and we train and evaluate the system on the SHHS (Sleep Heart Health Study) dataset. This constitutes the first neural sleep scoring system at this scale (5000 patients). Classification performance reaches or surpasses the state of the art.In real use for most clinical applications, the main challenge is the lack of (and difficulty of establishing) suitable annotations on patterns or short EEG segments. Available annotations are high-level (for example, clinical outcome) and therefore they are few. We search how to learn compact EEG representations in an unsupervised/semi-supervised manner. The field of unsupervised learning using deep neural networks is still young. To compare to existing work we start with image data and investigate the use of generative adversarial networks (GANs) for unsupervised adversarial representation learning. The quality and stability of different variants are evaluated. We then apply Gradient-penalized Wasserstein GANs on EEG sequences generation. The system is trained on single channel sequences from post-anoxic coma patients and is able to generate realistic synthetic sequences. We also explore and discuss original ideas for learning representations through matching distributions in the output space of representative networks.Finally, multichannel EEG signals have specificities that should be accounted for in characterization architectures. Each EEG sample is an instantaneous mixture of the activities of a number of sources. Based on this statement we propose an analysis system made of a spatial analysis subsystem followed by a temporal analysis subsystem. The spatial analysis subsystem is an extension of source separation methods built with a neural architecture with adaptive recombination weights, i.e. weights that are not learned but depend on features of the input. We show that this architecture learns to perform Independent Component Analysis if it is trained on a measure of non-gaussianity. For temporal analysis, standard (shared) convolutional neural networks applied on separate recomposed channels can be used
APA, Harvard, Vancouver, ISO, and other styles
2

Moukari, Michel. "Estimation de profondeur à partir d'images monoculaires par apprentissage profond." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC211/document.

Full text
Abstract:
La vision par ordinateur est une branche de l'intelligence artificielle dont le but est de permettre à une machine d'analyser, de traiter et de comprendre le contenu d'images numériques. La compréhension de scène en particulier est un enjeu majeur en vision par ordinateur. Elle passe par une caractérisation à la fois sémantique et structurelle de l'image, permettant d'une part d'en décrire le contenu et, d'autre part, d'en comprendre la géométrie. Cependant tandis que l'espace réel est de nature tridimensionnelle, l'image qui le représente, elle, est bidimensionnelle. Une partie de l'information 3D est donc perdue lors du processus de formation de l'image et il est d'autant plus complexe de décrire la géométrie d'une scène à partir d'images 2D de celle-ci.Il existe plusieurs manières de retrouver l'information de profondeur perdue lors de la formation de l'image. Dans cette thèse nous nous intéressons à l’estimation d'une carte de profondeur étant donné une seule image de la scène. Dans ce cas, l'information de profondeur correspond, pour chaque pixel, à la distance entre la caméra et l'objet représenté en ce pixel. L'estimation automatique d'une carte de distances de la scène à partir d'une image est en effet une brique algorithmique critique dans de très nombreux domaines, en particulier celui des véhicules autonomes (détection d’obstacles, aide à la navigation).Bien que le problème de l'estimation de profondeur à partir d'une seule image soit un problème difficile et intrinsèquement mal posé, nous savons que l'Homme peut apprécier les distances avec un seul œil. Cette capacité n'est pas innée mais acquise et elle est possible en grande partie grâce à l'identification d'indices reflétant la connaissance a priori des objets qui nous entourent. Par ailleurs, nous savons que des algorithmes d'apprentissage peuvent extraire ces indices directement depuis des images. Nous nous intéressons en particulier aux méthodes d’apprentissage statistique basées sur des réseaux de neurones profond qui ont récemment permis des percées majeures dans de nombreux domaines et nous étudions le cas de l'estimation de profondeur monoculaire
Computer vision is a branch of artificial intelligence whose purpose is to enable a machine to analyze, process and understand the content of digital images. Scene understanding in particular is a major issue in computer vision. It goes through a semantic and structural characterization of the image, on one hand to describe its content and, on the other hand, to understand its geometry. However, while the real space is three-dimensional, the image representing it is two-dimensional. Part of the 3D information is thus lost during the process of image formation and it is therefore non trivial to describe the geometry of a scene from 2D images of it.There are several ways to retrieve the depth information lost in the image. In this thesis we are interested in estimating a depth map given a single image of the scene. In this case, the depth information corresponds, for each pixel, to the distance between the camera and the object represented in this pixel. The automatic estimation of a distance map of the scene from an image is indeed a critical algorithmic brick in a very large number of domains, in particular that of autonomous vehicles (obstacle detection, navigation aids).Although the problem of estimating depth from a single image is a difficult and inherently ill-posed problem, we know that humans can appreciate distances with one eye. This capacity is not innate but acquired and made possible mostly thanks to the identification of indices reflecting the prior knowledge of the surrounding objects. Moreover, we know that learning algorithms can extract these clues directly from images. We are particularly interested in statistical learning methods based on deep neural networks that have recently led to major breakthroughs in many fields and we are studying the case of the monocular depth estimation
APA, Harvard, Vancouver, ISO, and other styles
3

Belilovsky, Eugene. "Apprentissage de graphes structuré et parcimonieux dans des données de haute dimension avec applications à l’imagerie cérébrale." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC027.

Full text
Abstract:
Cette thèse présente de nouvelles méthodes d’apprentissage structuré et parcimonieux sur les graphes, ce qui permet de résoudre une large variété de problèmes d’imagerie cérébrale, ainsi que d’autres problèmes en haute dimension avec peu d’échantillon. La première partie de cette thèse propose des relaxation convexe de pénalité discrète et combinatoriale impliquant de la parcimonie et bounded total variation d’un graphe, ainsi que la bounded `2. Ceux-ci sont dévelopé dansle but d’apprendre un modèle linéaire interprétable et on démontre son efficacacité sur des données d’imageries cérébrales ainsi que sur les problèmes de reconstructions parcimonieux.Les sections successives de cette thèse traite de la découverte de structure sur des modèles graphiques “undirected” construit à partir de peu de données. En particulier, on se concentre sur des hypothèses de parcimonie et autres hypothèses de structures dans les modèles graphiques gaussiens. Deux contributions s’en dégagent. On construit une approche pour identifier les différentes entre des modèles graphiques gaussiens (GGMs) qui partagent la même structure sous-jacente. On dérive la distribution de différences de paramètres sous une pénalité jointe quand la différence des paramètres est parcimonieuse. On montre ensuite comment cette approche peut être utilisée pour obtenir des intervalles de confiances sur les différences prises par le GGM sur les arêtes. De là, on introduit un nouvel algorithme d’apprentissage lié au problème de découverte de structure sur les modèles graphiques non dirigées des échantillons observés. On démontre que les réseaux de neurones peuvent être utilisés pour apprendre des estimateurs efficacaces de ce problèmes. On montre empiriquement que ces méthodes sont une alternatives flexible et performantes par rapport aux techniques existantes
This dissertation presents novel structured sparse learning methods on graphs that address commonly found problems in the analysis of neuroimaging data as well as other high dimensional data with few samples. The first part of the thesis proposes convex relaxations of discrete and combinatorial penalties involving sparsity and bounded total variation on a graph as well as bounded `2 norm. These are developed with the aim of learning an interpretable predictive linear model and we demonstrate their effectiveness on neuroimaging data as well as a sparse image recovery problem.The subsequent parts of the thesis considers structure discovery of undirected graphical models from few observational data. In particular we focus on invoking sparsity and other structured assumptions in Gaussian Graphical Models (GGMs). To this end we make two contributions. We show an approach to identify differences in Gaussian Graphical Models (GGMs) known to have similar structure. We derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. We then show how this approach can be used to obtain confidence intervals on edge differences in GGMs. We then introduce a novel learning based approach to the problem structure discovery of undirected graphical models from observational data. We demonstrate how neural networks can be used to learn effective estimators for this problem. This is empirically shown to be flexible and efficient alternatives to existing techniques
APA, Harvard, Vancouver, ISO, and other styles
4

Delasalles, Edouard. "Inferring and Predicting Dynamic Representations for Structured Temporal Data." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS296.

Full text
Abstract:
Les données temporelles constituent une partie importante des données digitales. Prévoir leurs prochaines valeurs est une tâche importante et difficile. Les méthodes statistiques standard sont fondées sur des modèles linéaires souvent limitées aux données de faible dimension. Ici, nous utilisons plutôt des méthodes d'apprentissage profond capables de traiter des données structurées en haute dimension. Dans cette thèse, nous nous intéressons aux modèles à variables latentes. Contrairement aux modèles auto-régressifs qui utilisent directement des données passées pour effectuer des prédictions, les modèles latents infèrent des représentations vectorielles qui sont ensuite prédites. Nous proposons d'abord un modèle latent structuré pour la prévision de données spatio-temporelles. Des variables latentes sont inférés à partir d'un ensemble de points dans l'espace où des données sont collectées (météo, trafic). Ensuite, la structure spatiale est utilisée dans la fonction dynamique. Le modèle est également capable de découvrir des corrélations entre des séries sans information spatiale préalable. Ensuite, nous nous intéressons à la prédiction des distributions de données. Nous proposons un modèle qui génère des variables latentes utilisées pour conditionner un modèle génératif. Les données textuelles sont utilisées pour évaluer le modèle sur la modélisation diachronique du langage. Enfin, nous proposons un modèle de prédiction stochastique. Il utilise les premières valeurs des séquences pour générer plusieurs futurs possibles. Ici, le modèle génératif n'est pas conditionné à une époque absolue, mais à une séquence. Le modèle est appliqué à la prédiction vidéo stochastique
Temporal data constitute a large part of data collected digitally. Predicting their next values is an important and challenging task in domains such as climatology, optimal control, or natural language processing. Standard statistical methods are based on linear models and are often limited to low dimensional data. We instead use deep learning methods capable of handling high dimensional structured data and leverage large quantities of examples. In this thesis, we are interested in latent variable models. Contrary to autoregressive models that directly use past data to perform prediction, latent models infer low dimensional vectorial representations of data on which prediction is performed. Latent vectorial spaces allow us to learn dynamic models that are able to generate high-dimensional and structured data. First, we propose a structured latent model for spatio-temporal data forecasting. Given a set of spatial locations where data such as weather or traffic are collected, we infer latent variables for each location and use spatial structure in the dynamic function. The model is also able to discover correlations between series without prior spatial information. Next, we focus on predicting data distributions, rather than point estimates. We propose a model that generates latent variables used to condition a generative model. Text data are used to evaluate the model on diachronic language modeling. Finally, we propose a stochastic prediction model. It uses the first values of sequences to generate several possible futures. Here, the generative model is not conditioned to an absolute epoch, but to a sequence. The model is applied to stochastic video prediction
APA, Harvard, Vancouver, ISO, and other styles
5

Wolinski, Pierre. "Structural Learning of Neural Networks." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS026.

Full text
Abstract:
La structure d'un réseau de neurones détermine dans une large mesure son coût d'entraînement et d'utilisation, ainsi que sa capacité à apprendre. Ces deux aspects sont habituellement en compétition : plus un réseau de neurones est grand, mieux il remplira la tâche qui lui a été assignée, mais plus son entraînement nécessitera des ressources en mémoire et en temps de calcul. L'automatisation de la recherche des structures de réseaux efficaces - de taille raisonnable, mais performantes dans l'accomplissement de la tâche - est donc une question très étudiée dans ce domaine. Dans ce contexte, des réseaux de neurones aux structures variées doivent être entraînés, ce qui nécessite un nouveau jeu d'hyperparamètres d'entraînement à chaque nouvelle structure testée. L'objectif de la thèse est de traiter différents aspects de ce problème. La première contribution est une méthode d'entraînement de réseau qui fonctionne dans un vaste périmètre de structures de réseaux et de tâches à accomplir, sans nécessité de régler le taux d'apprentissage. La deuxième contribution est une technique d'entraînement et d'élagage de réseau, conçue pour être insensible à la largeur initiale de celui-ci. La dernière contribution est principalement un théorème qui permet de traduire une pénalité d'entraînement empirique en a priori bayésien, théoriquement bien fondé. Ce travail résulte d'une recherche des propriétés que doivent théoriquement vérifier les algorithmes d'entraînement et d'élagage pour être valables sur un vaste ensemble de réseaux de neurones et d'objectifs
The structure of a neural network determines to a large extent its cost of training and use, as well as its ability to learn. These two aspects are usually in competition: the larger a neural network is, the better it will perform the task assigned to it, but the more it will require memory and computing time resources for training. Automating the search of efficient network structures -of reasonable size and performing well- is then a very studied question in this area. Within this context, neural networks with various structures are trained, which requires a new set of training hyperparameters for each new structure tested. The aim of the thesis is to address different aspects of this problem. The first contribution is a training method that operates within a large perimeter of network structures and tasks, without needing to adjust the learning rate. The second contribution is a network training and pruning technique, designed to be insensitive to the initial width of the network. The last contribution is mainly a theorem that makes possible to translate an empirical training penalty into a Bayesian prior, theoretically well founded. This work results from a search for properties that theoretically must be verified by training and pruning algorithms to be valid over a wide range of neural networks and objectives
APA, Harvard, Vancouver, ISO, and other styles
6

Malfante, Marielle. "Automatic classification of natural signals for environmental monitoring." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAU025/document.

Full text
Abstract:
Ce manuscrit de thèse résume trois ans de travaux sur l’utilisation des méthodes d’apprentissage statistique pour l’analyse automatique de signaux naturels. L’objectif principal est de présenter des outils efficaces et opérationnels pour l’analyse de signaux environnementaux, en vue de mieux connaitre et comprendre l’environnement considéré. On se concentre en particulier sur les tâches de détection et de classification automatique d’événements naturels.Dans cette thèse, deux outils basés sur l’apprentissage supervisé (Support Vector Machine et Random Forest) sont présentés pour (i) la classification automatique d’événements, et (ii) pour la détection et classification automatique d’événements. La robustesse des approches proposées résulte de l’espace des descripteurs dans lequel sont représentés les signaux. Les enregistrements y sont en effet décrits dans plusieurs espaces: temporel, fréquentiel et quéfrentiel. Une comparaison avec des descripteurs issus de réseaux de neurones convolutionnels (Deep Learning) est également proposée, et favorise les descripteurs issus de la physique au détriment des approches basées sur l’apprentissage profond.Les outils proposés au cours de cette thèse sont testés et validés sur des enregistrements in situ de deux environnements différents : (i) milieux marins et (ii) zones volcaniques. La première application s’intéresse aux signaux acoustiques pour la surveillance des zones sous-marines côtières : les enregistrements continus sont automatiquement analysés pour détecter et classifier les différents sons de poissons. Une périodicité quotidienne est mise en évidence. La seconde application vise la surveillance volcanique : l’architecture proposée classifie automatiquement les événements sismiques en plusieurs catégories, associées à diverses activités du volcan. L’étude est menée sur 6 ans de données volcano-sismiques enregistrées sur le volcan Ubinas (Pérou). L’analyse automatique a en particulier permis d’identifier des erreurs de classification faites dans l’analyse manuelle originale. L’architecture pour la classification automatique d’événements volcano-sismiques a également été déployée et testée en observatoire en Indonésie pour la surveillance du volcan Mérapi. Les outils développés au cours de cette thèse sont rassemblés dans le module Architecture d’Analyse Automatique (AAA), disponible en libre accès
This manuscript summarizes a three years work addressing the use of machine learning for the automatic analysis of natural signals. The main goal of this PhD is to produce efficient and operative frameworks for the analysis of environmental signals, in order to gather knowledge and better understand the considered environment. Particularly, we focus on the automatic tasks of detection and classification of natural events.This thesis proposes two tools based on supervised machine learning (Support Vector Machine, Random Forest) for (i) the automatic classification of events and (ii) the automatic detection and classification of events. The success of the proposed approaches lies in the feature space used to represent the signals. This relies on a detailed description of the raw acquisitions in various domains: temporal, spectral and cepstral. A comparison with features extracted using convolutional neural networks (deep learning) is also made, and favours the physical features to the use of deep learning methods to represent transient signals.The proposed tools are tested and validated on real world acquisitions from different environments: (i) underwater and (ii) volcanic areas. The first application considered in this thesis is devoted to the monitoring of coastal underwater areas using acoustic signals: continuous recordings are analysed to automatically detect and classify fish sounds. A day to day pattern in the fish behaviour is revealed. The second application targets volcanoes monitoring: the proposed system classifies seismic events into categories, which can be associated to different phases of the internal activity of volcanoes. The study is conducted on six years of volcano-seismic data recorded on Ubinas volcano (Peru). In particular, the outcomes of the proposed automatic classification system helped in the discovery of misclassifications in the manual annotation of the recordings. In addition, the proposed automatic classification framework of volcano-seismic signals has been deployed and tested in Indonesia for the monitoring of Mount Merapi. The software implementation of the framework developed in this thesis has been collected in the Automatic Analysis Architecture (AAA) package and is freely available
APA, Harvard, Vancouver, ISO, and other styles
7

Baudry, Maximilien. "Quelques problèmes d’apprentissage statistique en présence de données incomplètes." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1002.

Full text
Abstract:
La plupart des méthodes statistiques ne sont pas nativement conçues pour fonctionner sur des données incomplètes. L’étude des données incomplètes n’est pas nouvelle et de nombreux résultats ont été établis pour pallier l’incomplétude en amont de l’étude statistique. D’autre part, les méthodes de deep learning sont en général appliquées à des données non structurées de type image, texte ou audio, mais peu de travaux s’intéressent au développement de ce type d’approche sur des données tabulaires, et encore moins sur des données incomplètes. Cette thèse se concentre sur l’utilisation d’algorithmes de machine learning appliqués à des données tabulaires, en présence d’incomplétude et dans un cadre assurantiel. Au travers des contributions regroupées dans ce document, nous proposons différentes façons de modéliser des phénomènes complexes en présence de schémas d’incomplétude. Nous montrons que les approches proposées donnent des résultats de meilleure qualité que l’état de l’art
Most statistical methods are not designed to directly work with incomplete data. The study of data incompleteness is not new and strong methods have been established to handle it prior to a statistical analysis. On the other hand, deep learning literature mainly works with unstructured data such as images, text or raw audio, but very few has been done on tabular data. Hence, modern machine learning literature tackling data incompleteness on tabular data is scarce. This thesis focuses on the use of machine learning models applied to incomplete tabular data, in an insurance context. We propose through our contributions some ways to model complex phenomena in presence of incompleteness schemes, and show that our approaches outperform the state-of-the-art models
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Mickaël. "Learning with weak supervision using deep generative networks." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS024.

Full text
Abstract:
Nombre des succès de l’apprentissage profond reposent sur la disponibilité de données massivement collectées et annotées, exploités par des algorithmes supervisés. Ces annotations, cependant, peuvent s’avérer difficiles à obtenir. La conception de méthodes peu gourmandes en annotations est ainsi un enjeu important, abordé dans des approches semi-supervisées ou faiblement supervisées. Par ailleurs ont été récemment introduit les réseaux génératifs profonds, capable de manipuler des distributions complexes et à l’origine d’avancées majeures, en édition d’image et en adaptation de domaine par exemple. Dans cette thèse, nous explorons comment ces outils nouveaux peuvent être exploités pour réduire les besoins en annotations. En premier lieu, nous abordons la tâche de prédiction stochastique. Il s’agit de concevoir des systèmes de prédiction structurée tenant compte de la diversité des réponses possibles. Nous proposons dans ce cadre deux modèles, le premier pour des données multi-vues avec vues manquantes, et le second pour la prédiction de futurs possibles d'une séquence vidéo. Ensuite, nous étudions la décomposition en deux facteurs latents indépendants dans le cas où un seul facteur est annoté. Nous proposons des modèles qui visent à retrouver des représentations latentes sémantiquement cohérentes de ces facteurs explicatifs. Le premier modèle est appliqué en génération de données de capture de mouvements, le second, sur des données multi-vues. Enfin, nous nous attaquons au problème, crucial en vision par ordinateur, de la segmentation d’image. Nous proposons un modèle, inspiré des idées développées dans cette thèse, de segmentation d’objet entièrement non supervisé
Many successes of deep learning rely on the availability of massive annotated datasets that can be exploited by supervised algorithms. Obtaining those labels at a large scale, however, can be difficult, or even impossible in many situations. Designing methods that are less dependent on annotations is therefore a major research topic, and many semi-supervised and weakly supervised methods have been proposed. Meanwhile, the recent introduction of deep generative networks provided deep learning methods with the ability to manipulate complex distributions, allowing for breakthroughs in tasks such as image edition and domain adaptation. In this thesis, we explore how these new tools can be useful to further alleviate the need for annotations. Firstly, we tackle the task of performing stochastic predictions. It consists in designing systems for structured prediction that take into account the variability in possible outputs. We propose, in this context, two models. The first one performs predictions on multi-view data with missing views, and the second one predicts possible futures of a video sequence. Then, we study adversarial methods to learn a factorized latent space, in a setting with two explanatory factors but only one of them is annotated. We propose models that aim to uncover semantically consistent latent representations for those factors. One model is applied to the conditional generation of motion capture data, and another one to multi-view data. Finally, we focus on the task of image segmentation, which is of crucial importance in computer vision. Building on previously explored ideas, we propose a model for object segmentation that is entirely unsupervised
APA, Harvard, Vancouver, ISO, and other styles
9

Novello, Paul. "Combining supervised deep learning and scientific computing : some contributions and application to computational fluid dynamics." Thesis, Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAX005.

Full text
Abstract:
Cette thèse s’inscrit dans le domaine émergent de l’apprentissage automatique scientifique, qui étudie l’application de l’apprentissage automatique au calcul scientifique. Plus précisément, nous nous intéressons à l’utilisation de l’apprentissage profond pour accélérer des simulations numériques.Pour atteindre cet objectif, nous nous concentrons sur l’approximation de certaines parties des logiciels de simulation basés sur des Equations Différentielles Partielles (EDP) par un réseau de neurones. La méthodologie proposée s'appuie sur la construction d’un ensemble de données, la sélection et l'entraînement d’un réseau de neurones et son intégration dans le logiciel original, donnant lieu à une simulation numérique hybride. Malgré la simplicité apparente de cette approche, le contexte des simulations numériques implique des difficultés spécifiques. Puisque nous visons à accélérer des simulations, le premier enjeu est de trouver un compromis entre la précision des réseaux de neurones et leur temps d’exécution. En effet, l’amélioration de la première implique souvent la dégradation du second. L’absence de garantie mathématique sur le contrôle de la précision numérique souhaitée inhérent à la conception du réseau de neurones par apprentissage statistique constitue le second enjeu. Ainsi nous souhaiterions maitriser la fiabilité des prédictions issues de notre logiciel de simulation hybride. Afin de satisfaire ces enjeux, nous étudions en détail chaque étape de la méthodologie d’apprentissage profond. Ce faisant, nous mettons en évidence certaines similitudes entre l'apprentissage automatique et la simulation numérique, nous permettant de présenter des contributions ayant un impact sur chacun de ces domaines.Nous identifions les principales étapes de la méthodologie d’apprentissage profond comme étant la constitution d’un ensemble de données d’entraînement, le choix des hyperparamètres d’un réseau de neurones et son entraînement. Pour la première étape, nous tirons parti de la possibilité d’échantillonner les données d’entraînement à l'aide du logiciel de simulation initial pour caractériser une distribution d’entraînement plus efficace basée sur la variation locale de la fonction à approcher. Nous généralisons cette observation pour permettre son application à des problèmes variés d’apprentissage automatique en construisant une méthodologie de pondération des données appelée ”Variance Based Sample Weighting”. Dans un deuxième temps, nous proposons l’usage de l’analyse de sensibilité, une approche largement utilisée en calcul scientifique, pour l’optimisation des hyperparamètres des réseaux de neurones. Cette approche repose sur l’évaluation qualitative de l’effet des hyperparamètres sur les performances d’un réseau de neurones à l'aide du critère d'indépendance de Hilbert-Schmidt. Les adaptations au contexte de l’optimisation des hyperparamètres conduisent à une méthodologie interprétable permettant de construire des réseaux de neurones à la fois performants et précis. Pour la troisième étape, nous définissons formellement une analogie entre la résolution stochastique d’EDPs et le processus d’optimisation en jeu lors de l'entrainement d’un réseau de neurones. Cette analogie permet d’obtenir un cadre pour l’entraînement des réseaux de neurones basé sur la théorie des EDPs, qui ouvre de nombreuses possibilités d’améliorations pour les algorithmes d’optimisation existants. Enfin, nous appliquons ces méthodologies à une simulation numérique de dynamique des fluides couplée à un code d’équilibre chimique multi-espèces. Celles-ci nous permettent d’atteindre une accélération d’un facteur 21 avec une dégradation de la précision contrôlée ou nulle par rapport à la p rédiction initiale
Recent innovations in mathematics, computer science, and engineering have enabled more and more sophisticated numerical simulations. However, some simulations remain computationally unaffordable, even for the most powerful supercomputers. Lately, machine learning has proven its ability to improve the state-of-the-art in many fields, notoriously computer vision, language understanding, or robotics. This thesis settles in the high-stakes emerging field of Scientific Machine Learning which studies the application of machine learning to scientific computing. More specifically, we consider the use of deep learning to accelerate numerical simulations.We focus on approximating some components of Partial Differential Equation (PDE) based simulation software by a neural network. This idea boils down to constructing a data set, selecting and training a neural network, and embedding it into the original code, resulting in a hybrid numerical simulation. Although this approach may seem trivial at first glance, the context of numerical simulations comes with several challenges. Since we aim at accelerating codes, the first challenge is to find a trade-off between neural networks’ accuracy and execution time. The second challenge stems from the data-driven process of the training, and more specifically, its lack of mathematical guarantees. Hence, we have to ensure that the hybrid simulation software still yields reliable predictions. To tackle these challenges, we thoroughly study each step of the deep learning methodology while considering the aforementioned constraints. By doing so, we emphasize interplays between numerical simulations and machine learning that can benefit each of these fields.We identify the main steps of the deep learning methodology as the construction of the training data set, the choice of the hyperparameters of the neural network, and its training. For the first step, we leverage the ability to sample training data with the original software to characterize a more efficient training distribution based on the local variation of the function to approximate. We generalize this approach to general machine learning problems by deriving a data weighting methodology called Variance Based Sample Weighting. For the second step, we introduce the use of sensitivity analysis, an approach widely used in scientific computing, to tackle neural network hyperparameter optimization. This approach is based on qualitatively assessing the effect of hyperparameters on the performances of a neural network using Hilbert-Schmidt Independence Criterion. We adapt it to the hyperparameter optimization context and build an interpretable methodology that yields competitive and cost-effective networks. For the third step, we formally define an analogy between the stochastic resolution of PDEs and the optimization process at play when training a neural network. This analogy leads to a PDE-based framework for training neural networks that opens up many possibilities for improving existing optimization algorithms. Finally, we apply these contributions to a computational fluid dynamics simulation coupled with a multi-species chemical equilibrium code. We demonstrate that we can achieve a time factor acceleration of 21 with controlled to no degradation from the initial prediction
APA, Harvard, Vancouver, ISO, and other styles
10

Rossi, Simone. "Improving Scalability and Inference in Probabilistic Deep Models." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS042.

Full text
Abstract:
Au cours de la dernière décennie, l'apprentissage profond a atteint un niveau de maturité suffisant pour devenir le choix privilégié pour résoudre les problèmes liés à l'apprentissage automatique ou pour aider les processus de prise de décision.En même temps, l'apprentissage profond n'a généralement pas la capacité de quantifier avec précision l'incertitude de ses prédictions, ce qui rend ces modèles moins adaptés aux applications critiques en matière de risque.Une solution possible pour résoudre ce problème est d'utiliser une formulation bayésienne ; cependant, bien que cette solution soit élégante, elle est analytiquement difficile à mettre en œuvre et nécessite des approximations. Malgré les énormes progrès réalisés au cours des dernières années, il reste encore beaucoup de chemin à parcourir pour rendre ces approches largement applicables. Dans cette thèse, nous adressons certains des défis de l'apprentissage profond bayésien moderne, en proposant et en étudiant des solutions pour améliorer la scalabilité et l'inférence de ces modèles.La première partie de la thèse est consacrée aux modèles profonds où l'inférence est effectuée en utilisant l'inférence variationnelle (VI).Plus précisément, nous étudions le rôle de l'initialisation des paramètres variationnels et nous montrons comment des stratégies d'initialisation prudentes peuvent permettre à l'inférence variationnelle de fournir de bonnes performances même dans des modèles à grande échelle.Dans cette partie de la thèse, nous étudions également l'effet de sur-régularisation de l'objectif variationnel sur les modèles sur-paramétrés.Pour résoudre ce problème, nous proposons une nouvelle paramétrisation basée sur la transformée de Walsh-Hadamard ; non seulement cela résout l'effet de sur-régularisation de l'objectif variationnel mais cela nous permet également de modéliser des postérités non factorisées tout en gardant la complexité temporelle et spatiale sous contrôle.La deuxième partie de la thèse est consacrée à une étude sur le rôle des prieurs.Bien qu'étant un élément essentiel de la règle de Bayes, il est généralement difficile de choisir de bonnes prieurs pour les modèles d'apprentissage profond.Pour cette raison, nous proposons deux stratégies différentes basées (i) sur l'interprétation fonctionnelle des réseaux de neurones et (ii) sur une procédure évolutive pour effectuer une sélection de modèle sur les hyper-paramètres antérieurs, semblable à la maximisation de la vraisemblance marginale.Pour conclure cette partie, nous analysons un autre type de modèle bayésien (processus Gaussien) et nous étudions l'effet de l'application d'un a priori sur tous les hyperparamètres de ces modèles, y compris les variables supplémentaires requises par les approximations du inducing points.Nous montrons également comment il est possible d'inférer des a posteriori de forme libre sur ces variables, qui, par convention, auraient été autrement estimées par point
Throughout the last decade, deep learning has reached a sufficient level of maturity to become the preferred choice to solve machine learning-related problems or to aid decision making processes.At the same time, deep learning is generally not equipped with the ability to accurately quantify the uncertainty of its predictions, thus making these models less suitable for risk-critical applications.A possible solution to address this problem is to employ a Bayesian formulation; however, while this offers an elegant treatment, it is analytically intractable and it requires approximations.Despite the huge advancements in the last few years, there is still a long way to make these approaches widely applicable.In this thesis, we address some of the challenges for modern Bayesian deep learning, by proposing and studying solutions to improve scalability and inference of these models.The first part of the thesis is dedicated to deep models where inference is carried out using variational inference (VI).Specifically, we study the role of initialization of the variational parameters and we show how careful initialization strategies can make VI deliver good performance even in large scale models.In this part of the thesis we also study the over-regularization effect of the variational objective on over-parametrized models.To tackle this problem, we propose an novel parameterization based on the Walsh-Hadamard transform; not only this solves the over-regularization effect of VI but it also allows us to model non-factorized posteriors while keeping time and space complexity under control.The second part of the thesis is dedicated to a study on the role of priors.While being an essential building block of Bayes' rule, picking good priors for deep learning models is generally hard.For this reason, we propose two different strategies based (i) on the functional interpretation of neural networks and (ii) on a scalable procedure to perform model selection on the prior hyper-parameters, akin to maximization of the marginal likelihood.To conclude this part, we analyze a different kind of Bayesian model (Gaussian process) and we study the effect of placing a prior on all the hyper-parameters of these models, including the additional variables required by the inducing-point approximations.We also show how it is possible to infer free-form posteriors on these variables, which conventionally would have been otherwise point-estimated
APA, Harvard, Vancouver, ISO, and other styles
11

Caucheteux, Charlotte. "Language representations in deep learning algorithms and the brain." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG031.

Full text
Abstract:
Algorithmes et cerveau, bien que de nature extrêmement différentes, sont deux systèmes capables d'effectuer des tâches de langage complexes. En particulier, de récentes avancées en intelligence artificielle ont permis l'émergence d'algorithmes produisant des textes de qualité remarquablement similaire à ceux des humains (ChatGPT, GPT-3). De telles similarités interrogent sur la façon dont le cerveau et ces algorithmes traitent le langage, les mécanismes qu'ils utilisent et les représentations internes qu'ils construisent. Ma thèse consiste à comparer les représentations internes de ces deux systèmes, d'identifier leurs similitudes et leurs différences.Pour ce faire, nous analysons les enregistrements par imagerie fonctionnelle (fMRI) et magnéto-encéphalographie (MEG) de participants écoutant et lisant des histoires, et les comparons aux activations de milliers d'algorithmes de langage correspondant à ces mêmes histoires.Nos résultats mettent d'abord en évidence des similarités de haut niveau entre les représentations internes du cerveau et des modèles de langage. Dans une première partie, nous montrons que les activations des réseaux profonds prédisent linéairement l'activité cérébrale de sujets chez différents groupes (>500 participants), pour différentes modalités d'enregistrement (MEG et fMRI), modalités de stimulus (présentation auditive et visuelle), types de stimulus (mots isolés, phrases et histoires naturelles), langues (néerlandais et anglais) et modèles de langage. Cette correspondance est maximale dans les régions cérébrales souvent associées au langage, pour les algorithmes les plus performants et pour les participants qui comprennent le mieux les histoires. De plus, nous mettons en évidence une hiérarchie de traitement similaire entre les deux systèmes. Les premières couches des algorithmes sont alignées sur les régions de traitement de bas niveau dans le cerveau, telles que les zones auditives et le lobe temporal, tandis que les couches profondes sont alignées sur des régions associées à un traitement de plus haut niveau, notamment les zones fronto-pariétales.Nous montrons ensuite, dans une seconde partie, comment de telles similarités peuvent aider à construire de meilleurs modèles prédictifs de l'activité cérébrale, et à décomposer plus finement dans le cerveau différents processus linguistiques tels que la syntaxe et la sémantique.Enfin, dans une troisième partie, nous explorons les différences entre cerveau et algorithmes. Nous montrons que le cerveau prédit des représentations distantes et hiérarchiques, contrairement aux modèles de langage actuels qui sont principalement entraînés à faire des prédictions à court terme et au niveau du mot. Dans l'ensemble, les algorithmes modernes sont encore loin de traiter le langage de la même manière que les humains le font. Cependant, les liens directs entre leur fonctionnement interne et celui du cerveau fournissent une plateforme prometteuse pour mieux comprendre les deux systèmes, et ouvre la voie à la construction d'algorithmes plus similaires au cerveau
Recent deep language models -- like GPT-3 and ChatGPT -- are capable to produce text that closely resembles that of humans. Such similarity raises questions about how the brain and deep models process language, the mechanisms they use, and the internal representations they construct. In this thesis, I compare the internal representations of the brain and deep language models, with the goal of identifying their similarities and differences. To this aim, I analyze functional resonance imaging (fMRI) and magnetoencephalography (MEG) recordings of participants listening to and reading sentences, and compare them to the activations of thousands of language algorithms corresponding to these same sentences.Our results first highlight high-level similarities between the internal representations of the brain and deep language models. We find that deep nets' activations significantly predict brain activity across subjects for different cohorts (>500 participants), recording modalities (MEG and fMRI), stimulus types (isolated words, sentences, and natural stories), stimulus modalities (auditory and visual presentation), languages (Dutch, English and French), and deep language models. This alignment is maximal in brain regions repeatedly associated with language, for the best-performing algorithms and for participants who best understand the stories. Critically, we evidence a similar processing hierarchy between the two systems. The first layers of the algorithms align with low-level processing regions in the brain, such as auditory areas and the temporal lobe, while the deep layers align with regions associated with higher-level processing, such fronto-parietal areas.We then show how such similarities can be leveraged to build better predictive models of brain activity and better decompose several linguistic processes in the brain, such as syntax and semantics. Finally, we explore the differences between deep language models and the brain's activations. We find that the brain predicts distant and hierarchical representations, unlike current language models that are mostly trained to make short-term and word-level predictions. Overall, modern algorithms are still far from processing language in the same way that humans do. However, the direct links between their inner workings and that of the brain provide an promising platform for better understanding both systems, and pave the way for building better algorithms inspired by the human brain
APA, Harvard, Vancouver, ISO, and other styles
12

Mohammad, Noshine. "Exploration des modèles d’apprentissage statistique profonds couplés à la spectrométrie de masse pour améliorer la surveillance épidémiologique des maladies infectieuses." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS617.

Full text
Abstract:
La spectrométrie de masse de type MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) est une méthode de diagnostic en microbiologie rapide et robuste, permettant d'identifier les espèces de micro-organismes grâce à leur empreinte protéique constituée par le spectre de masse. Cependant, les applications clinico-épidémiologiques de cette technologie demeurent limitées par les outils bio-informatiques à disposition. Cette thèse se focalise sur l'application de modèles d'apprentissage statistique profonds aux données de spectrométrie de masse de type MALDI-TOF dans un but de surveillance épidémiologique des maladies infectieuses. Elle inclut la surveillance des épidémies de champignons et de mycobactéries en milieu hospitalier, ainsi que la caractérisation des anophèles vecteurs du paludisme. Nous avons examiné l'impact des méthodes de préparation des échantillons et de l'analyse informatique des spectres de masse sur l'amélioration de l'apprentissage, afin d’identifier les clones fongiques épidémiques en milieu hospitalier et prévenir leur propagation. Notre étude a montré que le réseau de neurones à convolution (CNN) a un potentiel élevé pour identifier les spectres de clones spécifiques de Candida parapsilosis, atteignant une précision de 94 % en optimisant des paramètres essentiels (milieux de culture, temps de croissance, et la machine d'acquisition des spectres). Pour détecter des clones épidémiques Aspergillus flavus dans des cohortes hospitalières multicentriques, le CNN a également réussi à classer correctement la plupart des isolats, atteignant une précision supérieure à 93 % pour deux des trois appareils utilisés. Nous avons aussi montré qu’en utilisant des modèles d'apprentissage profond optimisés, tels qu'un CNN et un réseau de neurones à convolution temporelle (TCN), nous pouvons prédire l'âge des moustiques avec une précision moyenne de deux jours (meilleure erreur absolue moyenne : 1,74 jours). Cette approche permettrait ainsi de surveiller efficacement la structure de l'âge des populations de moustiques anophèles sauvages et de mieux les cibler par des mesures de contrôle. Enfin, nous avons démontré les performances de diverses architectures de réseaux de neurones et de différentes méthodes de représentation des spectres de masse, en utilisant différentes cohortes couvrant diverses problématiques épidémiologiques telles que la prédiction de l'âge, l'identification d'espèces étroitement apparentées des moustiques anophèles, la distinction entre sous-espèces proches, ainsi que la détection de la résistance chez le Mycobacterium abscessus. L'étude a montré que parmi les différents modèles évalués, les modèles les plus performants, tels que les TCN et un réseau de neurones récurrents, pouvaient obtenir des résultats notables, atteignant une précision d'identification de 93 % pour les espèces d'Anophèles étroitement liées et de 95 % pour les sous-espèces de Mycobacterium abscessus. De plus, l'utilisation de CNN et de TCN a permis de détecter les souches résistantes chez Mycobacterium abscessus avec une précision dépassant 97 %. Cette thèse met en lumière l'utilisation de l'apprentissage profond en conjonction avec le MALDI-TOF, une approche jusqu'ici peu explorée. Avec la généralisation des instruments MALDI-TOF et la possibilité de coupler les analyses à des applications en ligne utilisant l'apprentissage profond, cette approche semble prometteuse, ouvrant la voie à d'autres applications épidémiologiques au-delà de la simple identification d’espèce, telles que la détection de clusters épidémiologiques de microorganismes résistants aux médicaments, la surveillance de la transmission des maladies bactériennes et fongiques, et l’évaluation de l'efficacité des interventions ciblées de lutte antivectorielle
MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) mass spectrometry is a rapid and robust diagnostic method for microbiology, enabling microorganism species to be identified on the basis of their protein fingerprint in the mass spectrum. However, the clinical and epidemiological applications of this technology remain limited by the bioinformatics tools available. This thesis focuses on the application of deep statistical learning models to MALDI-TOF mass spectrometry data for the purpose of epidemiological surveillance of infectious diseases. This includes the monitoring of fungal and mycobacterial epidemics in hospitals, as well as the characterisation of Anopheles vectors of malaria.We examined the impact of sample preparation methods and computer analysis of mass spectra on improving learning, in order to identify epidemic fungal clones in hospitals and prevent their spread. Our study showed that the convolution neural network (CNN) has a high potential for identifying the spectra of specific Candida parapsilosis clones, achieving 94% accuracy by optimising essential parameters (culture media, growth time, and the spectra acquisition machine). To detect epidemic Aspergillus flavus clones in multicentre hospital cohorts, the CNN was also able to classify most isolates correctly, achieving accuracy of over 93% for two of the three instruments used. We have also shown that by using optimised deep learning models, such as a CNN and a temporal convolution neural network (TCN), we can predict the age of mosquitoes with an average accuracy of two days (best mean absolute error: 1.74 days). This approach will enable us to effectively monitor the age structure of wild Anopheles mosquito populations and target them more effectively with control measures. Finally, we demonstrated the performance of various neural network architectures and mass spectra representation methods, using different cohorts covering various epidemiological issues such as age prediction, identification of closely related species of Anopheles mosquitoes, distinction between closely related subspecies, and detection of resistance in Mycobacterium abscessus. The study showed that of the different models evaluated, the best performing models, such as TCNs and a recurrent neural network, were able to achieve notable results, reaching an identification accuracy of 93% for closely related Anopheles species and 95% for Mycobacterium abscessus subspecies. In addition, the use of CNN and TCN enabled the detection of resistant strains in Mycobacterium abscessus with an accuracy of over 97%. This thesis highlights the use of deep learning in conjunction with MALDI-TOF, a hitherto little explored approach. With the widespread availability of MALDI-TOF instruments and the possibility of coupling analyses to online applications using deep learning, this approach looks promising, opening the way to other epidemiological applications beyond simple species identification, such as detecting epidemiological clusters of drug-resistant microorganisms, monitoring the transmission of bacterial and fungal diseases, and evaluating the effectiveness of targeted vector control interventions
APA, Harvard, Vancouver, ISO, and other styles
13

Cutajar, Kurt. "Broadening the scope of gaussian processes for large-scale learning." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS063.

Full text
Abstract:
L'importance renouvelée de la prise de décisions dans un contexte d'incertitude exige une réévaluation de techniques d'inférence bayésiennes appliquées aux grands jeux de données. Les processus gaussiens (GPs) sont une composante fondamentale de nombreux algorithmes probabilistes ; cependant, l'application des GPs est entravée par leur complexité de calcul cubique due aux opérations d'algèbre linéaire impliquées. Nous étudions d'abord l'efficacité de l'inférence exacte des GPs à budget de calcul donné en proposant un nouveau procédé qui applique le préconditionnement aux matrices noyaux. En prenant en considération le domaine du calcul numérique probabiliste, nous montrons également comment l'incertitude numérique introduite par ces techniques d'approximation doit être identifiée et évaluée de manière raisonnable. La deuxième grande contribution de cette thèse est d'établir et de renforcer le rôle des GPs, et leurs extension profondes (DGPs), en vu des exigences et contraintes posées par les grands jeux de données. Alors que les GPs et DGPs étaient autrefois jugés inaptes à rivaliser avec les techniques d'apprentissage profond les plus modernes, les modèles présentés dans cette thèse ont contribué à un changement de perspective sur leur capacités et leur limites
The renewed importance of decision making under uncertainty calls for a re-evaluation of Bayesian inference techniques targeting this goal in the big data regime. Gaussian processes (GPs) are a fundamental building block of many probabilistic kernel machines; however, the computational and storage complexity of GPs hinders their scaling to large modern datasets. The contributions presented in this thesis are two-fold. We first investigate the effectiveness of exact GP inference on a computational budget by proposing a novel scheme for accelerating regression and classification by way of preconditioning. In the spirit of probabilistic numerics, we also show how the numerical uncertainty introduced by approximate linear algebra should be adequately evaluated and incorporated. Bridging the gap between GPs and deep learning techniques remains a pertinent research goal, and the second broad contribution of this thesis is to establish and reinforce the role of GPs, and their deep counterparts (DGPs), in this setting. Whereas GPs and DGPs were once deemed unfit to compete with alternative state-of-the-art methods, we demonstrate how such models can also be adapted to the large-scale and complex tasks to which machine learning is now being applied
APA, Harvard, Vancouver, ISO, and other styles
14

Pavão, Adrien. "Methodology for Design and Analysis of Machine Learning Competitions." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG088.

Full text
Abstract:
Nous développons et étudions une méthodologie systématique et unifiée pour organiser et utiliser les compétitions scientifiques dans la recherche, en particulier dans le domaine de l'apprentissage automatique (intelligence artificielle basée sur les données). De nos jours, les compétitions deviennent de plus en plus populaires en tant qu'outil pédagogique et comme moyen de repousser les limites de l'état de l'art en engageant des scientifiques de tous âges, à l'intérieur ou à l'extérieur du milieu universitaire. On peut y voir une forme de science citoyenne. Cette forme de contribution communautaire à la science pourrait contribuer à la recherche reproductible et démocratiser l'intelligence artificielle. Toutefois, si la distinction entre organisateurs et participants peut atténuer certains biais, il existe un risque que des biais dans la sélection des données, les métriques d'évaluation, et d'autres éléments de conception expérimentale compromettent l'intégrité des résultats et amplifient l'influence du hasard. Dans les cas extrêmes, les résultats pourraient être inutiles, voire préjudiciables à la communauté scientifique et, en conséquence, à la société dans son ensemble. Notre objectif est d'inscrire l'organisation de compétitions scientifiques dans un cadre rigoureux et d'offrir à la communauté des recommandations éclairées. Conjointement avec l'effort de développement des outils d'organisation de compétitions que nous développons dans le cadre du projet CodaLab, nous visons à fournir une contribution utile à la communauté. Cette thèse comprend des contributions théoriques s'appuyant sur la conception expérimentale, les statistiques et la théorie des jeux, ainsi que des résultats empiriques pratiques résultant de l'analyse des données de compétitions passées
We develop and study a systematic and unified methodology to organize and use scientific challenges in research, particularly in the domain of machine learning (data-driven artificial intelligence). As of today, challenges are becoming more and more popular as a pedagogic tool and as a means of pushing the state-of-the-art by engaging scientists of all ages, within or outside academia. This can be thought of as a form of citizen science. There is the promise that this form of community involvement in science might contribute to reproducible research and democratize artificial intelligence. However, while the distinction between organizers and participants may mitigate certain biases, there exists a risk that biases in data selection, scoring metrics, and other experimental design elements could compromise the integrity of the outcomes and amplify the influence of randomness. In extreme cases, the results could range from being useless to detrimental for the scientific community and, ultimately, society at large. Our objective is to structure challenge organization within a rigorous framework and offer the community insightful guidelines. In conjunction with the tools of challenge organization that we are developing as part of the CodaLab project, we aim to provide a valuable contribution to the community. This thesis includes theoretical fundamental contributions drawing on experimental design, statistics and game theory, and practical empirical findings resulting from the analysis of data from previous challenges
APA, Harvard, Vancouver, ISO, and other styles
15

Barreau, Baptiste. "Machine Learning for Financial Products Recommendation." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST010.

Full text
Abstract:
L’anticipation des besoins des clients est cruciale pour toute entreprise — c’est particulièrement vrai des banques d’investissement telles que BNP Paribas Corporate and Institutional Banking au vu de leur rôle dans les marchés financiers. Cette thèse s’intéresse au problème de la prédiction des intérêts futurs des clients sur les marchés financiers, et met plus particulièrement l’accent sur le développement d’algorithmes ad hoc conçus pour résoudre des problématiques spécifiques au monde financier.Ce manuscrit se compose de cinq chapitres, répartis comme suit :- Le chapitre 1 expose le problème de la prédiction des intérêts futurs des clients sur les marchés financiers. Le but de ce chapitre est de fournir aux lecteurs toutes les clés nécessaires à la bonne compréhension du reste de cette thèse. Ces clés sont divisées en trois parties : une mise en lumière des jeux de données à notre disposition pour la résolution du problème de prédiction des intérêts futurs et de leurs caractéristiques, une vue d’ensemble, non exhaustive, des algorithmes pouvant être utilisés pour la résolution de ce problème, et la mise au point de métriques permettant d’évaluer la performance de ces algorithmes sur nos jeux de données. Ce chapitre se clôt sur les défis que l’on peut rencontrer lors de la conception d’algorithmes permettant de résoudre le problème de la prédiction des intérêts futurs en finance, défis qui seront, en partie, résolus dans les chapitres suivants ;- Le chapitre 2 compare une partie des algorithmes introduits dans le chapitre 1 sur un jeu de données provenant de BNP Paribas CIB, et met en avant les difficultés rencontrées pour la comparaison d’algorithmes de nature différente sur un même jeu de données, ainsi que quelques pistes permettant de surmonter ces difficultés. Ce comparatif met en pratique des algorithmes de recommandation classiques uniquement envisagés d’un point de vue théorique au chapitre précédent, et permet d’acquérir une compréhension plus fine des différentes métriques introduites au chapitre 1 au travers de l’analyse des résultats de ces algorithmes ;- Le chapitre 3 introduit un nouvel algorithme, Experts Network, i.e., réseau d’experts, conçu pour résoudre le problème de l’hétérogénéité de comportement des investisseurs d’un marché donné au travers d’une architecture de réseau de neurones originale, inspirée de la recherche sur les mélanges d’experts. Dans ce chapitre, cette nouvelle méthodologie est utilisée sur trois jeux de données distincts : un jeu de données synthétique, un jeu de données en libre accès, et un jeu de données provenant de BNP Paribas CIB. Ce chapitre présente aussi en plus grand détail la genèse de l’algorithme et fournit des pistes pour l’améliorer ;- Le chapitre 4 introduit lui aussi un nouvel algorithme, appelé History-augmented collaborative filtering, i.e., filtrage collaboratif augmenté par historiques, qui proposes d’augmenter les approches de factorisation matricielle classiques à l’aide des historiques d’interaction des clients et produits considérés. Ce chapitre poursuit l’étude du jeu de données étudié au chapitre 2 et étend l’algorithme introduit avec de nombreuses idées. Plus précisément, ce chapitre adapte l’algorithme de façon à permettre de résoudre le problème du cold start, i.e., l’incapacité d’un système de recommandation à fournir des prédictions pour de nouveaux utilisateurs, ainsi qu’un nouveau cas d’application sur lequel cette adaptation est essayée ;- Le chapitre 5 met en lumière une collection d’idées et d’algorithmes, fructueux ou non, qui ont été essayés au cours de cette thèse. Ce chapitre se clôt sur un nouvel algorithme mariant les idées des algorithmes introduits aux chapitres 3 et 4
Anticipating clients’ needs is crucial to any business — this is particularly true for corporate and institutional banks such as BNP Paribas Corporate and Institutional Banking due to their role in the financial markets. This thesis addresses the problem of future interests prediction in the financial context and focuses on the development of ad hoc algorithms designed for solving specific financial challenges.This manuscript is composed of five chapters:- Chapter 1 introduces the problem of future interests prediction in the financial world. The goal of this chapter is to provide the reader with all the keys necessary to understand the remainder of this thesis. These keys are divided into three parts: a presentation of the datasets we have at our disposal to solve the future interests prediction problem and their characteristics, an overview of the candidate algorithms to solve this problem, and the development of metrics to monitor the performance of these algorithms on our datasets. This chapter finishes with some of the challenges that we face when designing algorithms to solve the future interests problem in finance, challenges that will be partly addressed in the following chapters;- Chapter 2 proposes a benchmark of some of the algorithms introduced in Chapter 1 on a real-word dataset from BNP Paribas CIB, along with a development on the difficulties encountered for comparing different algorithmic approaches on a same dataset and on ways to tackle them. This benchmark puts in practice classic recommendation algorithms that were considered on a theoretical point of view in the preceding chapter, and provides further intuition on the analysis of the metrics introduced in Chapter 1;- Chapter 3 introduces a new algorithm, called Experts Network, that is designed to solve the problem of behavioral heterogeneity of investors on a given financial market using a custom-built neural network architecture inspired from mixture-of-experts research. In this chapter, the introduced methodology is experimented on three datasets: a synthetic dataset, an open-source one and a real-world dataset from BNP Paribas CIB. The chapter provides further insights into the development of the methodology and ways to extend it;- Chapter 4 also introduces a new algorithm, called History-augmented Collaborative Filtering, that proposes to augment classic matrix factorization approaches with the information of users and items’ interaction histories. This chapter provides further experiments on the dataset used in Chapter 2, and extends the presented methodology with various ideas. Notably, this chapter exposes an adaptation of the methodology to solve the cold-start problem and applies it to a new dataset;- Chapter 5 brings to light a collection of ideas and algorithms, successful or not, that were experimented during the development of this thesis. This chapter finishes on a new algorithm that blends the methodologies introduced in Chapters 3 and 4
APA, Harvard, Vancouver, ISO, and other styles
16

Darmet, Ludovic. "Vers une approche basée modèle-image flexible et adaptative en criminalistique des images." Thesis, Université Grenoble Alpes, 2020. https://tel.archives-ouvertes.fr/tel-03086427.

Full text
Abstract:
Les images numériques sont devenues un moyen de communication standard et universel. Elles prennent place dans notre vie de tous les jours, ce qui entraîne directement des inquiétudes quant à leur intégrité. Nos travaux de recherche étudient différentes méthodes pour examiner l’authenticité d’une image numérique. Nous nous plaçons dans un contexte réaliste où les images sont en grandes quantités et avec une large diversité de manipulations et falsifications ainsi que de sources. Cela nous a poussé à développer des méthodes flexibles et adaptative face à cette diversité.Nous nous sommes en premier lieu intéressés à la détection de manipulations à l’aide de la modélisation statistiques des images. Les manipulations sont des opérations élémentaires telles qu’un flou, l’ajout de bruit ou une compression. Dans ce cadre, nous nous sommes plus particulièrement focalisés sur les effets d’un pré-traitement. A cause de limitations de stockage et autres, une image peut être re-dimensionnée ou re-compressée juste après sa capture. L’ajout d’une manipulation se fait donc ensuite sur une image déjà pré-traitée. Nous montrons qu’un pré-redimensionnement pour les images de test induit une chute de performance pour des détecteurs entraînés avec des images en pleine taille. Partant de ce constat, nous introduisons deux nouvelles méthodes pour mitiger cette chute de performance pour des détecteurs basés sur l’utilisation de mixtures de gaussiennes. Ces détecteurs modélisent les statistiques locales, sur des tuiles (patches), d’images naturelles. Cela nous permet de proposer une adaptation de modèle guidée par les changements dans les statistiques locales de l’image. Notre première méthode est une adaptation entièrement non-supervisée, alors que la seconde requière l’accès à quelques labels, faiblement supervisé, pour les images pré-resizées.Ensuite, nous nous sommes tournés vers la détection de falsifications et plus spécifiquement l’identification de copier-coller. Le copier-coller est l’une des falsification les plus populaires. Une zone source est copiée vers une zone cible de la même image. La grande majorité des détecteurs existants identifient indifféremment les deux zones (source et cible). Dans un scénario opérationnel, seulement la zone cible est intéressante car uniquement elle représente une zone de falsification. Ainsi, nous proposons une méthode pour discerner les deux zones. Notre méthode utilise également la modélisation locale des statistiques de l’image à l’aide de mixtures de gaussiennes. La procédure est spécifique à chaque image et ainsi évite la nécessité d’avoir recours à de larges bases d’entraînement et permet une plus grande flexibilité.Des résultats expérimentaux pour toutes les méthodes précédemment décrites sont présentés sur des benchmarks classiques de la littérature et comparés aux méthodes de l’état de l’art. Nous montrons que le détecteur classique de détection de manipulations basé sur les mixtures de gaussiennes, associé à nos nouvelles méthodes d’adaptation de modèle peut surpasser les résultats de récentes méthodes deep-learning. Notre méthode de discernement entre source/cible pour copier-coller égale ou même surpasse les performances des dernières méthodes d’apprentissage profond. Nous expliquons ces bons résultats des méthodes classiques face aux méthodes d’apprentissage profond par la flexibilité et l’adaptabilité supplémentaire dont elles font preuve.Pour finir, cette thèse s’est déroulée dans le contexte très spécial d’un concours organisé conjointement par l’Agence National de la Recherche et la Direction Général de l’Armement. Nous décrivons dans un appendice, les différents tours de ce concours et les méthodes que nous avons développé. Nous dressons également un bilan des enseignements de cette expérience qui avait pour but de passer de benchmarks publics à une détection de falsifications d’images très réalistes
Images are nowadays a standard and mature medium of communication.They appear in our day to day life and therefore they are subject to concernsabout security. In this work, we study different methods to assess theintegrity of images. Because of a context of high volume and versatilityof tampering techniques and image sources, our work is driven by the necessity to developflexible methods to adapt the diversity of images.We first focus on manipulations detection through statistical modeling ofthe images. Manipulations are elementary operations such as blurring,noise addition, or compression. In this context, we are more preciselyinterested in the effects of pre-processing. Because of storagelimitation or other reasons, images can be resized or compressed justafter their capture. Addition of a manipulation would then be applied on analready pre-processed image. We show that a pre-resizing of test datainduces a drop of performance for detectors trained on full-sized images.Based on these observations, we introduce two methods to counterbalancethis performance loss for a pipeline of classification based onGaussian Mixture Models. This pipeline models the local statistics, onpatches, of natural images. It allows us to propose adaptation of themodels driven by the changes in local statistics. Our first method ofadaptation is fully unsupervised while the second one, only requiring a fewlabels, is weakly supervised. Thus, our methods are flexible to adaptversatility of source of images.Then we move to falsification detection and more precisely to copy-moveidentification. Copy-move is one of the most common image tampering technique. Asource area is copied into a target area within the same image. The vastmajority of existing detectors identify indifferently the two zones(source and target). In an operational scenario, only the target arearepresents a tampering area and is thus an area of interest. Accordingly, wepropose a method to disentangle the two zones. Our method takesadvantage of local modeling of statistics in natural images withGaussian Mixture Model. The procedure is specific for each image toavoid the necessity of using a large training dataset and to increase flexibility.Results for all the techniques described above are illustrated on publicbenchmarks and compared to state of the art methods. We show that theclassical pipeline for manipulations detection with Gaussian MixtureModel and adaptation procedure can surpass results of fine-tuned andrecent deep-learning methods. Our method for source/target disentanglingin copy-move also matches or even surpasses performances of the latestdeep-learning methods. We explain the good results of these classicalmethods against deep-learning by their additional flexibility andadaptation abilities.Finally, this thesis has occurred in the special context of a contestjointly organized by the French National Research Agency and theGeneral Directorate of Armament. We describe in the Appendix thedifferent stages of the contest and the methods we have developed, as well asthe lessons we have learned from this experience to move the image forensics domain into the wild
APA, Harvard, Vancouver, ISO, and other styles
17

Chéron, Guilhem. "Structured modeling and recognition of human actions in video." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE058.

Full text
Abstract:
La compréhension automatique de vidéos devrait impacter notre vie de tous les jours dans de nombreux domaines comme la conduite autonome, les robots domestiques, la recherche et le filtrage de contenu, les jeux vidéo, la défense ou la sécurité. Le nombre de vidéos croît plus vite chaque année, notamment sur les plateformes telles que YouTube, Twitter ou Facebook. L’analyse automatique de ces données est indispensable pour permettre à de nouvelles applications de voir le jour. L’analyse vidéo, en particulier en environnement non contrôlé, se heurte à plusieurs problèmes comme la variabilité intra-classe (les échantillons d’un même concept paraissent très différents) ou la confusion inter-classe (les exemples provenant de deux activités distinctes se ressemblent). Bien que ces difficultés puissent être traitées via des algorithmes d’apprentissage supervisé, les méthodes pleinement supervisées sont souvent synonymes d’un coût d’annotation élevé. Dépendant à la fois de la tâche à effectuer et du niveau de supervision requis, la quantité d’annotations nécessaire peut être prohibitive. Dans le cas de la localisation d’actions, une approche pleinement supervisée nécessite les boîtes englobantes de l’acteur à chaque image où l’action est effectuée. Le coût associé à l’obtention d’un telle annotation empêche le passage à l’échelle et limite le nombre d’échantillons d’entraînement. Trouver un consensus entre les annotateurs est également difficile et mène à des ambiguïtés dans l’étiquetage (Où commence l’action ? Quand se termine-t-elle ? Que doit inclure la boîte englobante ? etc.). Cette thèse adresse les problèmes évoqués ci-dessus dans le contexte de deux tâches, la classification et la localisation d’actions humaines. La classification consiste à reconnaître l’activité effectuée dans une courte vidéo limitée à la durée de l’action. La localisation a pour but de détecter en temps et dans l’espace des activités effectuées dans de plus longues vidéos. Notre approche pour la classification d’actions tire parti de l’information contenue dans la posture humaine et l’intègre avec des descripteurs d’apparence et de mouvement afin d’améliorer les performances. Notre approche pour la localisation d’actions modélise l’évolution temporelle des actions à l’aide d’un réseau récurrent entraîné à partir de suivis de personnes. Enfin, la troisième méthode étudiée dans cette thèse a pour but de contourner le coût prohibitif des annotations de vidéos et utilise le regroupement discriminatoire pour analyser et combiner différents types de supervision
Automatic video understanding is expected to impact our lives through many applications such as autonomous driving, domestic robots, content search and filtering, gaming, defense or security. Video content is growing faster each year, for example on platforms such as YouTube, Twitter or Facebook. Automatic analysis of this data is required to enable future applications. Video analysis, especially in uncontrolled environments, presents several difficulties such as intraclass variability (samples from the same concept appear very differently) or inter-class confusion (examples from two different activities look similar). While these problems can be addressed with the supervised learning algorithms, fully-supervised methods are often associated with high annotation cost. Depending on both the task and the level of required supervision, the annotation can be prohibitive. For example, in action localization, a fully-supervised approach demands person bounding boxes to be annotated at every frames where an activity is performed. The cost of getting such annotation prohibits scalability and limits the number of training samples. Another issue is finding a consensus between annotators, which leads to labeling ambiguities (where does the action start? where does it end? what should be included in the bounding box? etc.). This thesis addresses above problems in the context of two tasks, namely human action classification and localization. The former aims at recognizing the type of activity performed in a short video clip trimmed to the temporal extent of the action. The latter additionally extracts the space-time locations of potentially multiple activities in much longer videos. Our approach to action classification leverages information from human pose and integrates it with appearance and motion descriptors for improved performance. Our approach to action localization models the temporal evolution of actions in the video with a recurrent network trained on the level of person tracks. Finally, the third method in this thesis aims to avoid a prohibitive cost of video annotation and adopts discriminative clustering to analyze and combine different levels of supervision
APA, Harvard, Vancouver, ISO, and other styles
18

Ghrissi, Amina. "Ablation par catheter de fibrillation atriale persistante guidée par dispersion spatiotemporelle d’électrogrammes : Identification automatique basée sur l’apprentissage statistique." Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4026.

Full text
Abstract:
La fibrillation atriale (FA) est l’arythmie cardiaque soutenue la plus fréquemment rencontrée dans la pratique clinique. Pour la traiter, l’ablation par cathéter de zones cardiaques jugées responsables de soutenir l’arythmie est devenue la thérapie la plus utilisée. Un nouveau protocole d’ablation se base sur l’identification des zones atriales où les électrogrammes (EGM) enregistrés à l’aide d’un cathéter à électrodes multiples, appelé PentaRay, manifestent des décalages spatiotemporels significatifs sur plusieurs voies adjacentes. Ce phénomène est appelé dispersion spatio-temporelle (DST). L’intervention devient ainsi plus adaptée aux spécificités de chaque patient et elle atteint un taux de succès procédural de 95%. Cependant, à l’heure actuelle les zones de DST sont identifiées de manière visuelle par le spécialiste pratiquant l’ablation. Cette thèse vise à identifier automatiquement les sites potentiels d’ablation basée sur la DST à l’aide de techniques d’apprentissage statistique et notamment d’apprentissage profond adaptées. Dans la première partie, les enregistrements EGM sont classés par catégorie en DST vs. non-DST. Cependant, le rapport très déséquilibré entre les données issues des deux classes dégrade les résultats de classification. Nous abordons ce problème en utilisant des techniques d’augmentation de données adaptées à la problématique médicale et qui permettent d’obtenir de bons taux de classification. La performance globale s’élève ainsi atteignant des valeurs de précision et d’aire sous la courbe ROC autour de 90%. Deux approches sont ensuite comparées, l’ingénierie des caractéristiques et l’extraction automatique de ces caractéristiques par apprentissage statistique à partir d’une série temporelle, appelée valeur absolue de tension maximale aux branches du PentRay (VAVp). Les résultats montrent que la classification supervisée de VAVp est prometteuse avec des valeurs de précision, sensibilité et spécificité autour de 90%. Ensuite, la classification des enregistrements EGM bruts est effectuée à l’aide de plusieurs outils d’apprentissage statistique. Une première approche consiste à étudier les circuits arithmétiques à convolution pour leur intérêt théorique prometteur, mais les expériences sur des données synthétiques sont infructueuses. Enfin, nous investiguons des outils d’apprentissage supervisé plus conventionnels comme les réseaux de neurones convolutifs (RNC). Nous concevons une sélection de représentation des données adaptées à différents algorithmes de classification. Ces modèles sont ensuite évalués en termes de performance et coût de calcul. L’apprentissage profond par transfert est aussi étudié. La meilleure performance est obtenue avec un RNC peu profond pour la classification des matrices EGM brutes, atteignant 94% de précision et d’aire sous la courbe ROC en plus d’un score F1 de 60%. Dans la deuxième partie, les enregistrements EGM acquis pendant la cartographie sont étiquetés ablatés vs. non-ablatés en fonction de leur proximité par rapport aux sites d’ablation, puis classés dans les mêmes catégories. Les annotations de dispersion sont aussi prises en compte comme une probabilité à priori dans la classification. La meilleure performance représente un score F1 de 76%. L’agrégation de l’étiquette DST ne permet pas d’améliorer les performances du modèle. Globalement, ce travail fait partie des premières tentatives d’application de l’analyse statistique et d’outils d’apprentissage pour l’identification automatique et réussie des zones d’ablation en se basant sur la DST. En fournissant aux cardiologues interventionnels un outil intelligent, objectif et déployé en temps réel qui permet la caractérisation de la dispersion spatiotemporelle, notre solution permet d’améliorer potentiellement l’efficacité de la thérapie personnalisée d’ablation par cathéter de la FA persistante
Catheter ablation is increasingly used to treat atrial fibrillation (AF), the most common sustained cardiac arrhythmia encountered in clinical practice. A recent patient-tailored AF ablation therapy, giving 95% of procedural success rate, is based on the use of a multipolar mapping catheter called PentaRay. It targets areas of spatiotemporal dispersion (STD) in the atria as potential AF drivers. STD stands for a delay of the cardiac activation observed in intracardiac electrograms (EGMs) across contiguous leads.In practice, interventional cardiologists localize STD sites visually using the PentaRay multipolar mapping catheter. This thesis aims to automatically characterize and identify ablation sites in STD-based ablation of persistent AF using machine learning (ML) including deep learning (DL) techniques. In the first part, EGM recordings are classified into STD vs. non-STD groups. However, highly imbalanced dataset ratio hampers the classification performance. We tackle this issue by using adapted data augmentation techniques that help achieve good classification. The overall performance is high with values of accuracy and AUC around 90%. First, two approaches are benchmarked, feature engineering and automatic feature extraction from a time series, called maximal voltage absolute values at any of the bipoles (VAVp). Statistical features are extracted and fed to ML classifiers but no important dissimilarity is obtained between STD and non-STD categories. Results show that the supervised classification of raw VAVp time series itself into the same categories is promising with values of accuracy, AUC, sensi-tivity and specificity around 90%. Second, the classification of raw multichannel EGM recordings is performed. Shallow convolutional arithmetic circuits are investigated for their promising theoretical interest but experimental results on synthetic data are unsuccessful. Then, we move forward to more conventional supervised ML tools. We design a selection of data representations adapted to different ML and DL models, and benchmark their performance in terms of classification and computational cost. Transfer learning is also assessed. The best performance is achieved with a convolutional neural network (CNN) model for classifying raw EGM matrices. The average performance over cross-validation reaches 94% of accuracy and AUC added to an F1-score of 60%. In the second part, EGM recordings acquired during mapping are labeled ablated vs. non-ablated according to their proximity to the ablation sites then classified into the same categories. STD labels, previously defined by interventional cardiologists at the ablation procedure, are also aggregated as a prior probability in the classification task.Classification results on the test set show that a shallow CNN gives the best performance with an F1-score of 76%. Aggregating STD label does not help improve the model’s performance. Overall, this work is among the first attempts at the application of statistical analysis and ML tools to automatically identify successful ablation areas in STD-based ablation. By providing interventional cardiologists with a real-time objective measure of STD, the proposed solution offers the potential to improve the efficiency and effectiveness of this fully patient-tailored catheter ablation approach for treating persistent AF
APA, Harvard, Vancouver, ISO, and other styles
19

Chesneau, Nicolas. "Learning to Recognize Actions with Weak Supervision." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM007/document.

Full text
Abstract:
L'accroissement rapide des données numériques vidéographiques fait de la compréhension automatiquedes vidéos un enjeu de plus en plus important. Comprendre de manière automatique une vidéo recouvrede nombreuses applications, parmi lesquelles l'analyse du contenu vidéo sur le web, les véhicules autonomes,les interfaces homme-machine. Cette thèse présente des contributions dans deux problèmes majeurs pourla compréhension automatique des vidéos : la détection d'actions supervisée par des données web, et la localisation d'actions humaines.La détection d'actions supervisées par des données web a pour objectif d'apprendre à reconnaître des actions dans des contenus vidéos sur Internet, sans aucune autre supervision. Nous proposons une approche originaledans ce contexte, qui s'appuie sur la synergie entre les données visuelles (les vidéos) et leur description textuelle associée, et ce dans le but d'apprendre des classifieurs pour les événements sans aucune supervision. Plus précisément, nous télechargeons dans un premier temps une base de données vidéos à partir de requêtes construites automatiquement en s'appuyant sur la description textuelle des événéments, puis nous enlevons les vidéos téléchargées pour un événement, et dans laquelle celui-ci n'apparaït pas. Enfin, un classifieur est appris pour chaque événement. Nous montrons l'importance des deux étapes principales, c'est-à-dire la créations des requêtes et l'étape de suppression des vidéos, par des résutatsquantitatifs. Notre approche est évaluée dans des conditions difficiles, où aucune annotation manuelle n'est disponible, dénotées EK0 dans les challenges TrecVid. Nous obtenons l'état de l'art sur les bases de donnéesMED 2011 et 2013.Dans la seconde partie de notre thèse, nous nous concentrons sur la localisation des actions humaines, ce qui implique de reconnaïtre à la fois les actions se déroulant dans la vidéo, comme par exemple "boire" ou "téléphoner", et leur étendues spatio-temporelles. Nous proposons une nouvelle méthode centrée sur la personne, traquant celle-ci dans les vidéos pour en extraire des tubes encadrant le corps entier, même en cas d'occultations ou dissimulations partielles. Deux raisons motivent notre approche. La première est qu'elle permet de gérer les occultations et les changements de points de vue de la caméra durant l'étape de localisation des personnes, car celle-ci estime la position du corps entier à chaque frame. La seconde est que notre approche fournit une meilleure grille de référence que les tubes humains standards (c'est-à-dire les tubes qui n'encadrent que les parties visibles) pour extraire de l'information sur l'action. Le coeur de notre méthode est un réseau de neurones convolutionnel qui apprend à générer des propositions de parties du corps humain. Notre algorithme de tracking connecte les détections temporellement pour extraire des tubes encadrant le corps entier. Nous évaluons notre nouvelle méthode d'extraction de tubes sur une base de données difficile, DALY, et atteignons l'état de l'art
With the rapid growth of digital video content, automaticvideo understanding has become an increasingly important task. Video understanding spansseveral applications such as web-video content analysis, autonomous vehicles, human-machine interfaces (eg, Kinect). This thesismakes contributions addressing two major problems in video understanding:webly-supervised action detection and human action localization.Webly-supervised action recognition aims to learn actions from video content on the internet, with no additional supervision. We propose a novel approach in this context, which leverages thesynergy between visual video data and the associated textual metadata, to learnevent classifiers with no manual annotations. Specifically, we first collect avideo dataset with queries constructed automatically from textual descriptionof events, prune irrelevant videos with text and video data, and then learn thecorresponding event classifiers. We show the importance of both the main steps of our method, ie,query generation and data pruning, with quantitative results. We evaluate this approach in the challengingsetting where no manually annotated training set is available, i.e., EK0 in theTrecVid challenge, and show state-of-the-art results on MED 2011 and 2013datasets.In the second part of the thesis, we focus on human action localization, which involves recognizing actions that occur in a video, such as ``drinking'' or ``phoning'', as well as their spatial andtemporal extent. We propose a new person-centric framework for action localization that trackspeople in videos and extracts full-body human tubes, i.e., spatio-temporalregions localizing actions, even in the case of occlusions or truncations.The motivation is two-fold. First, it allows us to handle occlusions and camera viewpoint changes when localizing people, as it infers full-body localization. Second, it provides a better reference grid for extracting action information than standard human tubes, ie, tubes which frame visible parts only.This is achieved by training a novel human part detector that scores visibleparts while regressing full-body bounding boxes, even when they lie outside the frame. The core of our method is aconvolutional neural network which learns part proposals specific to certainbody parts. These are then combined to detect people robustly in each frame.Our tracking algorithm connects the image detections temporally to extractfull-body human tubes. We evaluate our new tube extraction method on a recentchallenging dataset, DALY, showing state-of-the-art results
APA, Harvard, Vancouver, ISO, and other styles
20

Boonkongkird, Chotipan. "Deep learning for Lyman-alpha based cosmology." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS733.pdf.

Full text
Abstract:
Au fur et à mesure que les relevés cosmologiques progressent et deviennent plus sophistiquées, ils fournissent des données de meilleure résolution, et de plus grand volume. La forêt Lyman-α est apparue comme une sonde puissante pour étudier les propriétés du milieu intergalactique (MIG) jusqu’à des redshift très élevés. L’analyse de ces données massives nécessite des simulations hydrodynamiques avancées capables d’atteindre une résolution comparable à celles des observations, ce qui exige des ordinateurs puissants et une quantité considérable de temps de calcul. Les développements récents dans le domaine de l’apprentissage automatique, notamment les réseaux de neurones, offrent de potentielles alternatives. Avec leur capacité à fonctionner comme des mécanismes d’ajustement universels, les réseaux de neurones gagnent du terrain dans diverses disciplines, y compris l’astrophysique et la cosmologie. Dans cette thèse de doctorat, nous explorons un cadre d’apprentissage automatique, plus précisément un réseau de neurones artificiels qui émule des simulations hydrodynamiques à partir de simulations N-corps de matière noire. Le principe fondamental de ce travail est basé sur l’approximation fluctuante de Gunn-Peterson (AFGP), un cadre couramment utilisé pour émuler la forêt Lyman-α à partir de la matière noire. Bien qu’utile pour la compréhension physique, l’AFGP ne parvient pas à prédire correctement l’absorption en négligeant la non-localité dans la construction du MIG. Au lieu de cela, notre méthode prend en compte la diversité du MIG, ce qui ne profite pas exclusivement à la forêt Lyman-α et s’étend à d’autres applications, tout en étant transparente dans son fonctionnement. Elle offre également une solution plus efficace pour générer des simulations, réduisant considérablement le temps de calcul par rapport aux simulations hydrodynamiques standard. Nous testons également la résilience du modèle en l’entraînant sur des données produites avec différentes hypothèses concernant la physique du MIG, via une méthode d’apprentissage par transfert. Nous comparons nos résultats à ceux d’autres méthodes existantes. Enfin, les simulateurs Lyman-α standards construisent généralement le volume d’observation en utilisant une seule époque des simulations cosmologiques. Cela implique un environnement astrophysique identique partout, ce qui ne reflète pas l’univers réel. Nous explorons la possibilité d’aller au-delà de cette limitation en prenant en compte dans notre émulateur des effets baryoniques variables le long de la ligne de visée. Bien que préliminaire, cette méthode pourrait servir à la construction de cônes de lumière cohérents. Afin de fournir des observables simulées plus réalistes, ce qui nous permettrait de mieux comprendre la nature du MIG et de contraindre les paramètres du modèle ΛCDM, nous envisageons d’utiliser des réseaux de neurones pour interpoler la rétroaction astrophysique à travers différentes cellules dans les simulations
As cosmological surveys advance and become more sophisticated, they provide data with increasing resolution and volume. The Lyman-α forest has emerged as a powerful probe to study the intergalactic medium (IGM) properties up to a very high redshift. Analysing this extensive data requires advanced hydrodynamical simulations capable of resolving the observational data, which demands robust hardware and a considerable amount of computational time. Recent developments in machine learning, particularly neural networks, offer potential solutions. With their ability to function as universal fitting mechanisms, neural networks are gaining traction in various disciplines, including astrophysics and cosmology. In this doctoral thesis, we explore a machine learning framework, specifically, an artificial neural network to emulate hydrodynamical simulations from N-body simulations of dark matter. The core principle of this work is based on the fluctuating Gunn-Peterson approximation (FGPA), a framework commonly used to emulate the Lyman-α forest from dark matter. While useful for physical understanding, the FGPA misses to properly predict the absorption by neglecting non-locality in the construction of the IGM. Instead, our method includes the diversity of the IGM while being interpretable, which does not exclusively benefit the Lyman-α forest and extends to other applications. It also provides a more efficient solution to generate simulations, significantly reducing time compared to standard hydrodynamical simulations. We also test its resilience and explore the potential of using this framework to generalise to various astrophysical hypotheses of the IGM physics using a transfer learning method. We discuss how the results relate to other existing methods. Finally, the Lyman-α simulator typically constructs the observational volume using a single timestep of the cosmological simulations. This implies an identical astrophysical environment everywhere, which does not reflect the real universe. We explore and experiment to go beyond this limitation with our emulator, accounting for variable baryonic effects along the line of sight. While this is still preliminary, it could become a framework for constructing consistent light-cones. We apply neural networks to interpolate astrophysical feedback across different cells in simulations to provide mock observables more realistic to the real universe, which would allow us to understand the nature of IGM better and to constrain the ΛCDM model
APA, Harvard, Vancouver, ISO, and other styles
21

Rohé, Marc-Michel. "Représentation réduite de la segmentation et du suivi des images cardiaques pour l’analyse longitudinale de groupe." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4051/document.

Full text
Abstract:
Cette thèse présente des méthodes d’imagerie pour l’analyse du mouvement cardiaque afin de permettre des statistiques groupées, un diagnostic automatique et une étude longitudinale. Ceci est réalisé en combinant des méthodes d’apprentissage et de modélisation statistique. En premier lieu, une méthode automatique de segmentation du myocarde est définie. Pour ce faire, nous développons une méthode de recalage très rapide basée sur des réseaux neuronaux convolutifs qui sont entrainés à apprendre le recalage cardiaque inter-sujet. Ensuite, nous intégrons cette méthode de recalage dans une pipeline de segmentation multi-atlas. Ensuite, nous améliorons des méthodes de suivi du mouvement cardiaque afin de définir des représentations à faible dimension. Deux méthodes différentes sont développées, l’une s’appuyant sur des sous-espaces barycentriques construits sur des frames de référence de la séquence et une autre basée sur une représentation d’ordre réduit du mouvement avec des transformations polyaffine. Enfin, nous appliquons la représentation précédemment définie au problème du diagnostic et de l’analyse longitudinale. Nous montrons que ces représentations en- codent des caractéristiques pertinentes permettant le diagnostic des patients atteint d’infarct et de Tétralogie de Fallot ainsi que l’analyse de l’évolution dans le temps du mouvement cardiaque des patients atteints de cardiomyopathies ou d’obésité. Ces trois axes forment un cadre pour l’étude du mouvement cardiaque de bout en bout de l’acquisition des images médicales jusqu’à leur analyse automatique afin d’améliorer la prise de décision clinique grâce à un traitement personnalisé assisté par ordinateur
This thesis presents image-based methods for the analysis of cardiac motion to enable group-wise statistics, automatic diagnosis and longitudinal study. This is achieved by combining advanced medical image processing with machine learning methods and statistical modelling. The first axis of this work is to define an automatic method for the segmentation of the myocardium. We develop a very-fast registration method based on convolutional neural networks that is trained to learn inter-subject heart registration. Then, we embed this registration method into a multi-atlas segmentation pipeline. The second axis of this work is focused on the improvement of cardiac motion tracking methods in order to define relevant low-dimensional representations. Two different methods are developed, one relying on Barycentric Subspaces built on ref- erences frames of the sequence, and another based on a reduced order representation of the motion from polyaffine transformations. Finally, in the last axis, we apply the previously defined representation to the problem of diagnosis and longitudinal analysis. We show that these representations encode relevant features allowing the diagnosis of infarcted patients and Tetralogy of Fallot versus controls and the analysis of the evolution through time of the cardiac motion of patients with either cardiomyopathies or obesity. These three axes form an end to end framework for the study of cardiac motion starting from the acquisition of the medical images to their automatic analysis. Such a framework could be used for diagonis and therapy planning in order to improve the clinical decision making with a more personalised computer-aided medicine
APA, Harvard, Vancouver, ISO, and other styles
22

Sanchez, Théophile. "Reconstructing our past ˸ deep learning for population genetics." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG032.

Full text
Abstract:
Avec l'explosion des technologies de séquençage, de plus en plus de données génomiques sont disponibles, ouvrant la voie à une connaissance approfondie des forces évolutives en œuvre et en particulier de l'histoire démographique des populations. Toutefois, extraire l'information intéressante de ces données massives de manière efficace reste un problème ouvert. Compte tenu de leurs récents succès en apprentissage statistique, les réseaux de neurones artificiels sont un candidat sérieux pour mener à bien une telle analyse. Ces méthodes ont l'avantage de pouvoir traiter des données ayant une grande dimension, de s'adapter à la plupart des problèmes et d'être facilement mis à l'échelle des moyens de calcul disponibles. Cependant, leur performance dépend fortement de leur architecture qui requiert d'être en adéquation avec les propriétés des données afin d'en tirer le maximum d'information. Dans ce cadre, cette thèse présente de nouvelles approches basées sur l'apprentissage statistique profond, ainsi que les principes permettant de concevoir des architectures adaptées aux caractéristiques des données génomiques. L'utilisation de couches de convolution et de mécanismes d'attention permet aux réseaux présentés d'être invariants aux permutations des haplotypes échantillonnés et de s'adapter à des données de dimensions différentes (nombre d'haplotypes et de sites polymorphes). Les expériences conduites sur des données simulées démontrent l'efficacité de ces approches en les comparant à des architectures de réseaux plus classiques, ainsi qu'à des méthodes issues de l'état de l'art. De plus, la possibilité d'assembler les réseaux de neurones à certaines méthodes déjà éprouvées en génétique des populations, comme l'approximate Bayesian computation, permet d'améliorer les résultats et de combiner leurs avantages. La praticabilité des réseaux de neurones pour l'inférence démographique est testée grâce à leur application à des séquences génomiques complètes provenant de populations réelles de Bos taurus et d'Homo sapiens. Enfin, les scénarios obtenus sont comparés aux connaissances actuelles de l'histoire démographique de ces populations
Constant improvement of DNA sequencing technology that produces large quantities of genetic data should greatly enhance our knowledge of evolution, particularly demographic history. However, the best way to extract information from this large-scale data is still an open problem. Neural networks are a strong candidate to attain this goal, considering their recent success in machine learning. These methods have the advantages of handling high-dimensional data, adapting to most applications and scaling efficiently to available computing resources. However, their performance dependents on their architecture, which should match the data properties to extract the maximum information. In this context, this thesis presents new approaches based on deep learning, as well as the principles for designing architectures adapted to the characteristics of genomic data. The use of convolution layers and attention mechanisms allows the presented networks to be invariant to the sampled haplotypes' permutations and to adapt to data of different dimensions (number of haplotypes and polymorphism sites). Experiments conducted on simulated data demonstrate the efficiency of these approaches by comparing them to more classical network architectures, as well as to state-of-the-art methods. Moreover, coupling neural networks with some methods already proven in population genetics, such as the approximate Bayesian computation, improves the results and combines their advantages. The practicality of neural networks for demographic inference is tested on whole genome sequence data from real populations of Bos taurus and Homo sapiens. Finally, the scenarios obtained are compared with current knowledge of the demographic history of these populations
APA, Harvard, Vancouver, ISO, and other styles
23

Suzano, Massa Francisco Vitor. "Mise en relation d'images et de modèles 3D avec des réseaux de neurones convolutifs." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1198/document.

Full text
Abstract:
La récente mise à disposition de grandes bases de données de modèles 3D permet de nouvelles possibilités pour un raisonnement à un niveau 3D sur les photographies. Cette thèse étudie l'utilisation des réseaux de neurones convolutifs (CNN) pour mettre en relation les modèles 3D et les images.Nous présentons tout d'abord deux contributions qui sont utilisées tout au long de cette thèse : une bibliothèque pour la réduction automatique de la mémoire pour les CNN profonds, et une étude des représentations internes apprises par les CNN pour la mise en correspondance d'images appartenant à des domaines différents. Dans un premier temps, nous présentons une bibliothèque basée sur Torch7 qui réduit automatiquement jusqu'à 91% des besoins en mémoire pour déployer un CNN profond. Dans un second temps, nous étudions l'efficacité des représentations internes des CNN extraites d'un réseau pré-entraîné lorsqu'il est appliqué à des images de modalités différentes (réelles ou synthétiques). Nous montrons que malgré la grande différence entre les images synthétiques et les images naturelles, il est possible d'utiliser certaines des représentations des CNN pour l'identification du modèle de l'objet, avec des applications possibles pour le rendu basé sur l'image.Récemment, les CNNs ont été utilisés pour l'estimation de point de vue des objets dans les images, parfois avec des choix de modélisation très différents. Nous présentons ces approches dans un cadre unifié et nous analysons les facteur clés qui ont une influence sur la performance. Nous proposons une méthode d'apprentissage jointe qui combine à la fois la détection et l'estimation du point de vue, qui fonctionne mieux que de considérer l'estimation de point de vue de manière indépendante.Nous étudions également l'impact de la formulation de l'estimation du point de vue comme une tâche discrète ou continue, nous quantifions les avantages des architectures de CNN plus profondes et nous montrons que l'utilisation des données synthétiques est bénéfique. Avec tous ces éléments combinés, nous améliorons l'état de l'art d'environ 5% pour la précision de point de vue moyenne sur l'ensemble des données Pascal3D+.Dans l'étude de recherche de modèle d'objet 3D dans une base de données, l'image de l'objet est fournie et l'objectif est d'identifier parmi un certain nombre d'objets 3D lequel correspond à l'image. Nous étendons ce travail à la détection d'objet, où cette fois-ci un modèle 3D est donné, et l'objectif consiste à localiser et à aligner le modèle 3D dans image. Nous montrons que l'application directe des représentations obtenues par un CNN ne suffit pas, et nous proposons d'apprendre une transformation qui rapproche les répresentations internes des images réelles vers les représentations des images synthétiques. Nous évaluons notre approche à la fois qualitativement et quantitativement sur deux jeux de données standard: le jeu de données IKEAobject, et le sous-ensemble du jeu de données Pascal VOC 2012 contenant des instances de chaises, et nous montrons des améliorations sur chacun des deux
The recent availability of large catalogs of 3D models enables new possibilities for a 3D reasoning on photographs. This thesis investigates the use of convolutional neural networks (CNNs) for relating 3D objects to 2D images.We first introduce two contributions that are used throughout this thesis: an automatic memory reduction library for deep CNNs, and a study of CNN features for cross-domain matching. In the first one, we develop a library built on top of Torch7 which automatically reduces up to 91% of the memory requirements for deploying a deep CNN. As a second point, we study the effectiveness of various CNN features extracted from a pre-trained network in the case of images from different modalities (real or synthetic images). We show that despite the large cross-domain difference between rendered views and photographs, it is possible to use some of these features for instance retrieval, with possible applications to image-based rendering.There has been a recent use of CNNs for the task of object viewpoint estimation, sometimes with very different design choices. We present these approaches in an unified framework and we analyse the key factors that affect performance. We propose a joint training method that combines both detection and viewpoint estimation, which performs better than considering the viewpoint estimation separately. We also study the impact of the formulation of viewpoint estimation either as a discrete or a continuous task, we quantify the benefits of deeper architectures and we demonstrate that using synthetic data is beneficial. With all these elements combined, we improve over previous state-of-the-art results on the Pascal3D+ dataset by a approximately 5% of mean average viewpoint precision.In the instance retrieval study, the image of the object is given and the goal is to identify among a number of 3D models which object it is. We extend this work to object detection, where instead we are given a 3D model (or a set of 3D models) and we are asked to locate and align the model in the image. We show that simply using CNN features are not enough for this task, and we propose to learn a transformation that brings the features from the real images close to the features from the rendered views. We evaluate our approach both qualitatively and quantitatively on two standard datasets: the IKEAobject dataset, and a subset of the Pascal VOC 2012 dataset of the chair category, and we show state-of-the-art results on both of them
APA, Harvard, Vancouver, ISO, and other styles
24

Kozyrskiy, Bogdan. "Exploring the Intersection of Bayesian Deep Learning and Gaussian Processes." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS064archi.pdf.

Full text
Abstract:
L'apprentissage profond a joué un rôle significatif dans l'établissement de l'apprentissage automatique comme un instrument indispensable dans plusieurs domaines. L'utilisation de l'apprentissage profond pose plusieurs défis. L'apprentissage profond nécessite beaucoup de puissance de calcul pour entraîner et appliquer des modèles. Un autre problème de l'apprentissage profond est son incapacité à estimer l'incertitude des prédictions, ce qui crée des obstacles dans les applications sensibles aux risques. Cette thèse présente quatre projets pour résoudre ces problèmes: Nous proposons une approche faisant appel à des unités de traitement optique pour réduire la consommation d'énergie et accélérer l'inférence des modèles profonds. Nous abordons le problème des estimations d'incertitude pour la classification avec l'inférence bayésienne. Nous introduisons des techniques pour les modèles profonds qui réduisent le coût de l'inférence bayésienne. Nous avons développé un nouveau cadre pour accélérer la régression des processus gaussiens. Nous proposons une technique pour imposer des priorités fonctionnelles significatives pour les modèles profonds à travers des processus gaussiens
Deep learning played a significant role in establishing machine learning as a must-have instrument in multiple areas. The use of deep learning poses several challenges. Deep learning requires a lot of computational power for training and applying models. Another problem with deep learning is its inability to estimate the uncertainty of the predictions, which creates obstacles in risk-sensitive applications. This thesis presents four projects to address these problems: We propose an approach making use of Optical Processing Units to reduce energy consumption and speed up the inference of deep models. We address the problem of uncertainty estimates for classification with Bayesian inference. We introduce techniques for deep models that decreases the cost of Bayesian inference. We developed a novel framework to accelerate Gaussian Process regression. We propose a technique to impose meaningful functional priors for deep models through Gaussian Processes
APA, Harvard, Vancouver, ISO, and other styles
25

Maignant, Elodie. "Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.

Full text
Abstract:
Une image obtenue par IRM, c'est plus de 60 000 pixels. La plus grosse protéine connue chez l'être humain est constituée d'environ 30 000 acides aminés. On parle de données en grande dimension. En réalité, la plupart des données en grande dimension ne le sont qu'en apparence. Par exemple, de toutes les images que l'on pourrait générer aléatoirement en coloriant 256 x 256 pixels, seule une infime proportion ressemblerait à l'image IRM d'un cerveau humain. C'est ce qu'on appelle la dimension intrinsèque des données. En grande dimension, apprentissage rime donc souvent avec réduction de dimension. Il existe de nombreuses méthodes de réduction de dimension, les plus récentes pouvant être classées selon deux approches.Une première approche, connue sous le nom d'apprentissage de variétés (manifold learning) ou réduction de dimension non linéaire, part du constat que certaines lois physiques derrière les données que l'on observe ne sont pas linéaires. Ainsi, espérer expliquer la dimension intrinsèque des données par un modèle linéaire est donc parfois irréaliste. Au lieu de cela, les méthodes qui relèvent du manifold learning supposent un modèle localement linéaire.D'autre part, avec l'émergence du domaine de l'analyse statistique de formes, il y eu une prise de conscience que de nombreuses données sont naturellement invariantes à certaines symétries (rotations, permutations, reparamétrisations...), invariances qui se reflètent directement sur la dimension intrinsèque des données. Ces invariances, la géométrie euclidienne ne peut pas les retranscrire fidèlement. Ainsi, on observe un intérêt croissant pour la modélisation des données par des structures plus fines telles que les variétés riemanniennes. Une deuxième approche en réduction de dimension consiste donc à généraliser les méthodes existantes à des données à valeurs dans des espaces non-euclidiens. On parle alors d'apprentissage géométrique. Jusqu'à présent, la plupart des travaux en apprentissage géométrique se sont focalisés sur l'analyse en composantes principales.Dans la perspective de proposer une approche qui combine à la fois apprentissage géométrique et manifold learning, nous nous sommes intéressés à la méthode appelée locally linear embedding, qui a la particularité de reposer sur la notion de barycentre, notion a priori définie dans les espaces euclidiens mais qui se généralise aux variétés riemanniennes. C'est d'ailleurs sur cette même notion que repose une autre méthode appelée barycentric subspace analysis, et qui fait justement partie des méthodes qui généralisent l'analyse en composantes principales aux variétés riemanniennes. Ici, nous introduisons la notion nouvelle de plongement barycentrique, qui regroupe les deux méthodes. Essentiellement, cette notion englobe un ensemble de méthodes dont la structure rappelle celle des méthodes de réduction de dimension linéaires et non linéaires, mais où le modèle (localement) linéaire est remplacé par un modèle barycentrique -- affine.Le cœur de notre travail consiste en l'analyse de ces méthodes, tant sur le plan théorique que pratique. Du côté des applications, nous nous intéressons à deux exemples importants en apprentissage géométrique : les formes et les graphes. En particulier, on démontre que par rapport aux méthodes standard de réduction de dimension en analyse statistique des graphes, les plongements barycentriques se distinguent par leur meilleure interprétabilité. En plus des questions pratiques liées à l'implémentation, chacun de ces exemples soulève ses propres questions théoriques, principalement autour de la géométrie des espaces quotients. Parallèlement, nous nous attachons à caractériser géométriquement les plongements localement barycentriques, qui généralisent la projection calculée par locally linear embedding. Enfin, de nouveaux algorithmes d'apprentissage géométrique, novateurs dans leur approche, complètent ce travail
An MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches.A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model.Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning.In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one.The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work
APA, Harvard, Vancouver, ISO, and other styles
26

Beghini, Federica. "À la recherche de la « pépite d'or » : Étude textométrique de l'œuvre de Milan Kundera." Electronic Thesis or Diss., Université Côte d'Azur, 2023. https://intranet-theses.unice.fr/2023COAZ2020.

Full text
Abstract:
Cette étude consiste en une analyse linguistique intégrée de l'œuvre de Milan Kundera, écrivain tchèque naturalisé français. Par analyse intégrée, nous entendons une étude linguistique menée à l'aide des méthodes qualitatives et quantitatives. Plus précisément, les méthodes utilisées appartiennent au domaine de la textométrie, discipline dont l'objectif est d'analyser les corpus textuels par le biais d'un traitement informatisé (Guiraud, 1960 ; Lebart, Salem, 1994 ; Pincemin, 2020). Plus généralement, ces travaux pourraient donc être inclus dans le domaine de la stylométrie, puisque cette analyse textométrique est fonctionnelle à la « caractérisation d'une écriture » (Magri, 2010). En effet, l'objectif principal de cette recherche est de détecter par contraste les éléments qui définissent la prose de Kundera. Pour ce faire, deux corpus ont été composés : un corpus d'étude et un corpus de référence (Rastier, 2011). Le premier correspond à la quasi-totalité des textes de l'Œuvre I, II de Kundera (Éd. Gallimard, Pléiade). Le second est représentatif du paysage littéraire français de la période d'activité de Kundera (1968-2013).Ces corpus ont été d'abord numérisés et ensuite examinés à l'aide du logiciel de textométrie Hyperbase (version web et standard), qui emploie à la fois les méthodes classiques d'exploration statistique et le deep learning ou apprentissage profond. Ce logiciel permet diverses analyses aux différents niveaux lexical, morphosyntaxique et sémantique. En particulier, les éléments suivants ont fait l'objet de l'étude : la structure du vocabulaire (la distribution des fréquences, des hapax, la richesse lexicale, la diversité du vocabulaire et l'accroissement lexical) ; les aspects morphologiques et syntaxiques qui peuvent être examinés grâce aux versions lemmatisées et étiquetées des corpus ; les motifs morpho-syntaxiques et multidimensionnels ; les thèmes (les spécificités lexicales, les isotopies et les thèmes récurrents). Ces éléments ont été examinés lors d'une analyse endogène du corpus d'étude et d'une série d'analyses exogènes avec le corpus de référence. En effet, les études comparatives avec le second corpus permettent de neutraliser les caractéristiques linguistiques conformes à la langue littéraire de l'époque dans le genre du roman, de l'essai et de la nouvelle, afin de faire ressortir les éléments de la prose de Kundera qui se distinguent de ce modèle linguistique représentatif de la langue littéraire contemporaine. En outre, les analyses endogènes de l'œuvre de Kundera, possibles grâce à la compilation de sous-corpus, peuvent rendre compte à la fois des constantes stylistiques qui ne varient pas selon le genre, la période ou la langue et des variantes linguistiques qui dépendent des variables diachroniques, génériques et linguistiques. En conclusion, cette étude emploie une méthodologie intégrée (linguistique, statistique, informatique) dans le but de faire ressortir les caractéristiques prototypiques de l'idiolecte de Kundera, à savoir les éléments les plus significatifs de son écriture qui la distinguent de celle d'un échantillon représentatif d'auteurs français à lui contemporains
This study consists of an integrated linguistic analysis of the work of Milan Kundera. By integrated analysis, we mean a linguistic study carried out through qualitative and quanti-tative methods. These methods belong to the field of textometry, a discipline whose objective is to analyse textual corpora through computer processing (Guiraud, 1960; Lebart, Salem, 1994; Pincemin, 2020). More generally, this work could therefore be included in the field of stylometry, since this textometric analysis is functional to the characterization of a style of writing (Magri, 2010). Indeed, the main objective of this research is to detect by contrast the elements that define Kundera's prose. To this end, two corpora were composed : a corpus of study and a reference corpus (Rastier, 2011). The first comprehends almost all the texts of Kundera's Œuvre I, II (Gallimard, Pléiade). The second is representative of the French literary landscape of the period in which Kundera published his texts (1968-2013).The corpora were first digitised and then examined using the textometry software Hyperbase (web and standard version), which employs both classical statistical methods and deep learning techniques (CNN, Convolutional neural network).This software allows various analyses on lexical, morphosyntactic and semantic levels. In particular, the following elements have been investigated : the vocabulary structure, morphological and syntactic aspects, morphosyntactic and multidimensional patterns, and finally the thematic structure.These elements were examined in an endogenous analysis of the corpus of study and in a series of exogenous analyses between the corpus of study and the reference corpus. Indeed, comparative studies between Kundera's work and the contrastive norm represented by the reference corpus aim to isolate the linguistic characteristics of the literary language of the time in novels, essays and short stories, in order to detect the distinguishing elements of Kundera's prose that differ from the linguistic model of his contemporaries' literary language. In addition, endogenous analyses of Kundera's work - made possible by the compilation of subcorpora - can account for linguistic constants that are independent of genre, period and/or language, as well as for linguistic variants determined by literary genre, diachronic and/or linguistic variability. In conclusion, this study employs an integrated methodology (linguistics, literature, statistics, deep learning) with the aim of defining the prototypical features of Kundera's idiolect, that is, the most significant elements that distinguish his writing from that of a representative sample of his contemporary French authors
APA, Harvard, Vancouver, ISO, and other styles
27

Pajot, Arthur. "Incorporating physical knowledge into deep neural network." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS290.

Full text
Abstract:
Un processus physique est un phénomène marqué par des changements graduels à travers une série d'états successifs se produisant dans le monde physique. Les physiciens et les climatologues tentent de modéliser ces processus d'une manière fondée sur le principe de descriptions analytiques des connaissances a priori des processus sous-jacents. Malgré le succès indéniable de l'apprentissage profond, une approche entièrement axée sur les données n'est pas non plus encore prête à remettre en question l'approche classique de modélisation des systèmes dynamiques. Nous tenterons de démontrer dans cette thèse que les connaissances et les techniques accumulées pour modéliser des processus de systèmes dynamiques dans des domaines bien développés comme les mathématiques ou la physique, pourraient servir de guide pour concevoir des systèmes d'apprentissage automatique efficaces et, inversement, que l'apprentissage machine pourrait ouvrir de nouvelles directions pour la modélisation de phénomènes très complexes. Nous décrivons trois tâches pertinentes à l'étude et à la modélisation du lien entre l'apprentissage profond et les systèmes dynamiques : la prévision, la découverte d'états cachés et la reconstruction de signal non supervisé
A physical process is a sustained phenomenon marked by gradual changes through a series of states occurring in the physical world. Physicists and environmental scientists attempt to model these processes in a principled way through analytic descriptions of the scientist’s prior knowledge of the underlying processes. Despite the undeniable Deep Learning success, a fully data-driven approach is not yet ready to challenge the classical approach for modeling dynamical systems. We will try to demonstrate in this thesis that knowledge and techniques accumulated for modeling dynamical systems processes in well-developed fields such as maths or physics could be useful as a guideline to design efficient learning systems and conversely, that the ML paradigm could open new directions for modeling such complex phenomena. We describe three tasks that are relevant to the study and modeling of Deep Learning and Dynamical System : Forecasting, hidden state discovery and unsupervised signal recovery
APA, Harvard, Vancouver, ISO, and other styles
28

Resmerita, Diana. "Compression pour l'apprentissage en profondeur." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4043.

Full text
Abstract:
Les voitures autonomes sont des applications complexes qui nécessitent des machines puissantes pour pouvoir fonctionner correctement. Des tâches telles que rester entre les lignes blanches, lire les panneaux ou éviter les obstacles sont résolues en utilisant plusieurs réseaux neuronaux convolutifs (CNN) pour classer ou détecter les objets. Il est très important que tous les réseaux fonctionnent en parallèle afin de transmettre toutes les informations nécessaires et de prendre une décision commune. Aujourd'hui, à force de s'améliorer, les réseaux sont devenus plus gros et plus coûteux en termes de calcul. Le déploiement d'un seul réseau devient un défi. La compression des réseaux peut résoudre ce problème. Par conséquent, le premier objectif de cette thèse est de trouver des méthodes de compression profonde afin de faire face aux limitations de mémoire et de puissance de calcul présentes sur les systèmes embarqués. Les méthodes de compression doivent être adaptées à un processeur spécifique, le MPPA de Kalray, pour des implémentations à court terme. Nos contributions se concentrent principalement sur la compression du réseau après l'entraînement pour le stockage, ce qui signifie compresser des paramètres du réseau sans réentraîner ou changer l'architecture originale et le type de calculs. Dans le contexte de notre travail, nous avons décidé de nous concentrer sur la quantification. Notre première contribution consiste à comparer les performances de la quantification uniforme et de la quantification non-uniforme, afin d'identifier laquelle des deux présente un meilleur compromis taux-distorsion et pourrait être rapidement prise en charge par l'entreprise. L'intérêt de l'entreprise est également orienté vers la recherche de nouvelles méthodes innovantes pour les futures générations de MPPA. Par conséquent, notre deuxième contribution se concentre sur la comparaison des représentations en virgule flottante (FP32, FP16) aux représentations arithmétiques alternatives telles que BFloat16, msfp8, Posit8. Les résultats de cette analyse étaient en faveur de Posit8. Ceci a motivé la société Kalray à concevoir un décompresseur de FP16 vers Posit8. Enfin, de nombreuses méthodes de compression existent déjà, nous avons décidé de passer à un sujet adjacent qui vise à quantifier théoriquement les effets de l'erreur de quantification sur la précision du réseau. Il s'agit du deuxième objectif de la thèse. Nous remarquons que les mesures de distorsion bien connues ne sont pas adaptées pour prédire la dégradation de la précision dans le cas de l'inférence pour les réseaux de neurones compressés. Nous définissons une nouvelle mesure de distorsion avec une expression analytique qui s’apparente à un rapport signal/bruit. Un ensemble d'expériences a été réalisé en utilisant des données simulées et de petits réseaux qui montrent le potentiel de cette mesure de distorsion
Autonomous cars are complex applications that need powerful hardware machines to be able to function properly. Tasks such as staying between the white lines, reading signs, or avoiding obstacles are solved by using convolutional neural networks (CNNs) to classify or detect objects. It is highly important that all the networks work in parallel in order to transmit all the necessary information and take a common decision. Nowadays, as the networks improve, they also have become bigger and more computational expensive. Deploying even one network becomes challenging. Compressing the networks can solve this issue. Therefore, the first objective of this thesis is to find deep compression methods in order to cope with the memory and computational power limitations present on embedded systems. The compression methods need to be adapted to a specific processor, Kalray's MPPA, for short term implementations. Our contributions mainly focus on compressing the network post-training for storage purposes, which means compressing the parameters of the network without retraining or changing the original architecture and the type of the computations. In the context of our work, we decided to focus on quantization. Our first contribution consists in comparing the performances of uniform quantization and non-uniform quantization, in order to identify which of the two has a better rate-distortion trade-off and could be quickly supported in the company. The company's interest is also directed towards finding new innovative methods for future MPPA generations. Therefore, our second contribution focuses on comparing standard floating-point representations (FP32, FP16) to recently proposed alternative arithmetical representations such as BFloat16, msfp8, Posit8. The results of this analysis were in favor for Posit8. This motivated the company Kalray to conceive a decompressor from FP16 to Posit8. Finally, since many compression methods already exist, we decided to move to an adjacent topic which aims to quantify theoretically the effects of quantization error on the network's accuracy. This is the second objective of the thesis. We notice that well-known distortion measures are not adapted to predict accuracy degradation in the case of inference for compressed neural networks. We define a new distortion measure with a closed form which looks like a signal-to-noise ratio. A set of experiments were done using simulated data and small networks, which show the potential of this distortion measure
APA, Harvard, Vancouver, ISO, and other styles
29

Kodi, Ramanah Doogesh. "Bayesian statistical inference and deep learning for primordial cosmology and cosmic acceleration." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS169.

Full text
Abstract:
Cette thèse a pour vocation le développement et l’application de nouvelles techniques d’inférence statistique bayésienne et d’apprentissage profond pour relever les défis statistiques imposés par les gros volumes de données complexes des missions du fond diffus cosmologique (CMB) ou des relevés profonds de galaxies de la prochaine génération, dans le but d'optimiser l’exploitation des données scientifiques afin d’améliorer, à terme, notre compréhension de l’Univers. La première partie de cette thèse concerne l'extraction des modes E et B du signal de polarisation du CMB à partir des données. Nous avons développé une méthode hiérarchique à haute performance, nommée algorithme du dual messenger, pour la reconstruction du champ de spin sur la sphère et nous avons démontré les capacités de cet algorithme à reconstruire des cartes E et B pures, tout en tenant compte des modèles de bruit réalistes. La seconde partie porte sur le développement d’un cadre d'inférence bayésienne pour contraindre les paramètres cosmologiques en s’appuyant sur une nouvelle implémentation du test géométrique d'Alcock-Paczyński et nous avons présenté nos contraintes cosmologiques sur la densité de matière et l'équation d'état de l'énergie sombre. Etant donné que le contrôle des effets systématiques est un facteur crucial, nous avons également présenté une fonction de vraisemblance robuste, qui résiste aux contaminations inconnues liées aux avant-plans. Finalement, dans le but de construire des émulateurs de dynamiques complexes dans notre modèle, nous avons conçu un nouveau réseau de neurones qui apprend à peindre des distributions de halo sur des champs approximatifs de matière noire en 3D
The essence of this doctoral research constitutes the development and application of novel Bayesian statistical inference and deep learning techniques to meet statistical challenges of massive and complex data sets from next-generation cosmic microwave background (CMB) missions or galaxy surveys and optimize their scientific returns to ultimately improve our understanding of the Universe. The first theme deals with the extraction of the E and B modes of the CMB polarization signal from the data. We have developed a high-performance hierarchical method, known as the dual messenger algorithm, for spin field reconstruction on the sphere and demonstrated its capabilities in reconstructing pure E and B maps, while accounting for complex and realistic noise models. The second theme lies in the development of various aspects of Bayesian forward modelling machinery for optimal exploitation of state-of-the-art galaxy redshift surveys. We have developed a large-scale Bayesian inference framework to constrain cosmological parameters via a novel implementation of the Alcock-Paczyński test and showcased our cosmological constraints on the matter density and dark energy equation of state. With the control of systematic effects being a crucial limiting factor for modern galaxy redshift surveys, we also presented an augmented likelihood which is robust to unknown foreground and target contaminations. Finally, with a view to building fast complex dynamics emulators in our above Bayesian hierarchical model, we have designed a novel halo painting network that learns to map approximate 3D dark matter fields to realistic halo distributions
APA, Harvard, Vancouver, ISO, and other styles
30

Schmitt, Thomas. "Appariements collaboratifs des offres et demandes d’emploi." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS210/document.

Full text
Abstract:
Notre recherche porte sur la recommandation de nouvelles offres d'emploi venant d'être postées et n'ayant pas d'historique d'interactions (démarrage à froid). Nous adaptons les systèmes de recommandations bien connus dans le domaine du commerce électronique à cet objectif, en exploitant les traces d'usage de l'ensemble des demandeurs d'emploi sur les offres antérieures. Une des spécificités du travail présenté est d'avoir considéré des données réelles, et de s'être attaqué aux défis de l'hétérogénéité et du bruit des documents textuels. La contribution présentée intègre l'information des données collaboratives pour apprendre une nouvelle représentation des documents textes, requise pour effectuer la recommandation dite à froid d'une offre nouvelle. Cette représentation dite latente vise essentiellement à construire une bonne métrique. L'espace de recherche considéré est celui des réseaux neuronaux. Les réseaux neuronaux sont entraînés en définissant deux fonctions de perte. La première cherche à préserver la structure locale des informations collaboratives, en s'inspirant des approches de réduction de dimension non linéaires. La seconde s'inspire des réseaux siamois pour reproduire les similarités issues de la matrice collaborative. Le passage à l'échelle de l'approche et ses performances reposent sur l'échantillonnage des paires d'offres considérées comme similaires. L'intérêt de l'approche proposée est démontrée empiriquement sur les données réelles et propriétaires ainsi que sur le benchmark publique CiteULike. Enfin, l'intérêt de la démarche suivie est attesté par notre participation dans un bon rang au challenge international RecSys 2017 (15/100; un million d'utilisateurs pour un million d'offres)
Our research focuses on the recommendation of new job offers that have just been posted and have no interaction history (cold start). To this objective, we adapt well-knowns recommendations systems in the field of e-commerce by exploiting the record of use of all job seekers on previous offers. One of the specificities of the work presented is to have considered real data, and to have tackled the challenges of heterogeneity and noise of textual documents. The presented contribution integrates the information of the collaborative data to learn a new representation of text documents, which is required to make the so-called cold start recommendation of a new offer. The new representation essentially aims to build a good metric. The search space considered is that of neural networks. Neural networks are trained by defining two loss functions. The first seeks to preserve the local structure of collaborative information, drawing on non-linear dimension reduction approaches. The second is inspired by Siamese networks to reproduce the similarities from the collaborative matrix. The scaling up of the approach and its performance are based on the sampling of pairs of offers considered similar. The interest of the proposed approach is demonstrated empirically on the real and proprietary data as well as on the CiteULike public benchmark. Finally, the interest of the approach followed is attested by our participation in a good rank in the international challenge RecSys 2017 (15/100, with millions of users and millions of offers)
APA, Harvard, Vancouver, ISO, and other styles
31

Martineau, Maxime. "Deep learning onto graph space : application to image-based insect recognition." Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4024.

Full text
Abstract:
Le but de cette thèse est d'étudier la reconnaissance d'insectes comme un problème de reconnaissance des formes basé images. Bien que ce problème ait été étudié en profondeur au long des trois dernières décennies, un aspect reste selon nous toujours à expérimenter à ce jour : les approches profondes (deep learning). À cet effet, la première contribution de cette thèse consiste à déterminer la faisabilité de l'application des réseaux de neurones convolutifs profonds (CNN) au problème de reconnaissance d'images d'insectes. Les limitations majeures ont les suivantes: les images sont très rares et les cardinalités de classes sont hautement déséquilibrées. Pour atténuer ces limitations, le transfer learning et la pondération de la fonction de coûts ont été employés. Des méthodes basées graphes sont également proposées et testées. La première consiste en la conception d'un classificateur de graphes de type perceptron. Le second travail basé sur les graphes de cette thèse est la définition d'un opérateur de convolution pour construire un modèle de réseaux de neurones convolutifs s'appliquant sur les graphes (GCNN.) Le dernier chapitre de la thèse s'applique à utiliser les méthodes mentionnées précédemment à des problèmes de reconnaissance d'images d'insectes. Deux bases d'images sont ici proposées. Là première est constituée d'images prises en laboratoire sur arrière-plan constant. La seconde base est issue de la base ImageNet. Cette base est composée d'images prises en contexte naturel. Les CNN entrainés avec transfer learning sont les plus performants sur ces bases d'images
The goal of this thesis is to investigate insect recognition as an image-based pattern recognition problem. Although this problem has been extensively studied along the previous three decades, an element is to the best of our knowledge still to be experimented as of 2017: deep approaches. Therefore, a contribution is about determining to what extent deep convolutional neural networks (CNNs) can be applied to image-based insect recognition. Graph-based representations and methods have also been tested. Two attempts are presented: The former consists in designing a graph-perceptron classifier and the latter graph-based work in this thesis is on defining convolution on graphs to build graph convolutional neural networks. The last chapter of the thesis deals with applying most of the aforementioned methods to insect image recognition problems. Two datasets are proposed. The first one consists of lab-based images with constant background. The second one is generated by taking a ImageNet subset. This set is composed of field-based images. CNNs with transfer learning are the most successful method applied on these datasets
APA, Harvard, Vancouver, ISO, and other styles
32

Tran, Gia-Lac. "Advances in Deep Gaussian Processes : calibration and sparsification." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS410.pdf.

Full text
Abstract:
L'intégration des Convolutional Neural Networks (CNNs) et des GPs est une solution prometteuse pour améliorer le pouvoir de représentation des méthodes contemporaines. Dans notre première étude, nous utilisons des diagrammes de fiabilité pour montrer que les combinaisons actuelles de cnns et GPs sont mal calibrées, ce qui donne lieu à des prédictions trop confiantes. En utilisant des Random Feature et la technique d'inférence variationnelle, nous proposons une nouvelle solution correctement calibrée pour combinaisons des CNNs et des GPs. Nous proposons également une extension intuitive de cette solution, utilisant des Structured Random Features afin d'améliorer la précision du modèle et réduire la complexité des calculs. En termes de coût de calcul, la complexité du GPs exact est cubique en la taille de l'ensemble d'entrainement, ce qui le rend inutilisable lorsque celle-ci dépasse quelques milliers d'éléments. Afin de faciliter l'extension des GPs à des quantités massives de données, nous sélectionnons un petit ensemble de points actifs ou points d'induction par une distillation globale à partir de toutes les observations. Nous utilisons ensuite ces points actifs pour faire des prédictions. Plusieurs travaux similaires se basent sur l'étude Titsias et al en 2009 [5] and Hensman et al en 2015 [6]. Cependant, il est encore difficile de traiter le cas général, et il est toujours possible que le nombre de points actifs requis dépasse un budget de calcul donné. Dans notre deuxième étude, nous proposons Sparse-within-Sparse Gaussian Processes (SWSGP) qui permet l'approximation avec un grand nombre de points inducteurs sans cout de calcul prohibitif
Gaussian Processes (GPs) are an attractive specific way of doing non-parametric Bayesian modeling in a supervised learning problem. It is well-known that GPs are able to make inferences as well as predictive uncertainties with a firm mathematical background. However, GPs are often unfavorable by the practitioners due to their kernel's expressiveness and the computational requirements. Integration of (convolutional) neural networks and GPs are a promising solution to enhance the representational power. As our first contribution, we empirically show that these combinations are miscalibrated, which leads to over-confident predictions. We also propose a novel well-calibrated solution to merge neural structures and GPs by using random features and variational inference techniques. In addition, these frameworks can be intuitively extended to reduce the computational cost by using structural random features. In terms of computational cost, the exact Gaussian Processes require the cubic complexity to training size. Inducing point-based Gaussian Processes are a common choice to mitigate the bottleneck by selecting a small set of active points through a global distillation from available observations. However, the general case remains elusive and it is still possible that the required number of active points may exceed a certain computational budget. In our second study, we propose Sparse-within-Sparse Gaussian Processes which enable the approximation with a large number of inducing points without suffering a prohibitive computational cost
APA, Harvard, Vancouver, ISO, and other styles
33

Desir, Chesner. "Classification Automatique d'Images, Application à l'Imagerie du Poumon Profond." Phd thesis, Université de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00879356.

Full text
Abstract:
Cette thèse porte sur la classification automatique d'images, appliquée aux images acquises par alvéoscopie, une nouvelle technique d'imagerie du poumon profond. L'objectif est la conception et le développement d'un système d'aide au diagnostic permettant d'aider le praticien à analyser ces images jamais vues auparavant. Nous avons élaboré, au travers de deux contributions, des méthodes performantes, génériques et robustes permettant de classer de façon satisfaisante les images de patients sains et pathologiques. Nous avons proposé un premier système complet de classification basé à la fois sur une caractérisation locale et riche du contenu des images, une approche de classification par méthodes d'ensemble d'arbres aléatoires et un mécanisme de pilotage du rejet de décision, fournissant à l'expert médical un moyen de renforcer la fiabilité du système. Face à la complexité des images alvéoscopiques et la difficulté de caractériser les cas pathologiques, contrairement aux cas sains, nous nous sommes orientés vers la classification one-class qui permet d'apprendre à partir des seules données des cas sains. Nous avons alors proposé une approche one-class tirant partie des mécanismes de combinaison et d'injection d'aléatoire des méthodes d'ensemble d'arbres de décision pour répondre aux difficultés rencontrées dans les approches standards, notamment la malédiction de la dimension. Les résultats obtenus montrent que notre méthode est performante, robuste à la dimension, compétitive et même meilleure comparée aux méthodes de l'état de l'art sur une grande variété de bases publiques. Elle s'est notamment avérée pertinente pour notre problématique médicale.
APA, Harvard, Vancouver, ISO, and other styles
34

Desir, Chesner. "Classification automatique d'images, application à l'imagerie du poumon profond." Phd thesis, Rouen, 2013. http://www.theses.fr/2013ROUES053.

Full text
Abstract:
Cette thèse porte sur la classification automatique d’images, appliquée aux images acquises par alvéoscopie, une nouvelle technique d’imagerie du poumon profond. L’objectif est la conception et le développement d’un système d’aide au diagnostic permettant d’aider le praticien à analyser ces images jamais vues auparavant. Nous avons élaboré, au travers de deux contributions, des méthodes performantes, génériques et robustes permettant de classer de façon satisfaisante les images de patients sains et pathologiques. Nous avons proposé un premier système complet de classification basé à la fois sur une caractérisation locale et riche du contenu des images, une approche de classification par méthodes d’ensemble d’arbres aléatoires et un mécanisme de pilotage du rejet de décision, fournissant à l’expert médical un moyen de renforcer la fiabilité du système. Face à la complexité des images alvéoscopiques et la difficulté de caractériser les cas pathologiques, contrairement aux cas sains, nous nous sommes orientés vers la classification oneclass qui permet d’apprendre à partir des seules données des cas sains. Nous avons alors proposé une approche one-class tirant partie des mécanismes de combinaison et d’injection d’aléatoire des méthodes d’ensemble d’arbres de décision pour répondre aux difficultés rencontrées dans les approches standards, notamment la malédiction de la dimension. Les résultats obtenus montrent que notre méthode est performante, robuste à la dimension, compétitive et même meilleure comparée aux méthodes de l’état de l’art sur une grande variété de bases publiques. Elle s’est notamment avérée pertinente pour notre problématique médicale
This thesis deals with automated image classification, applied to images acquired with alveoscopy, a new imaging technique of the distal lung. The aim is to propose and develop a computer aided-diagnosis system, so as to help the clinician analyze these images never seen before. Our contributions lie in the development of effective, robust and generic methods to classify images of healthy and pathological patients. Our first classification system is based on a rich and local characterization of the images, an ensemble of random trees approach for classification and a rejection mechanism, providing the medical expert with tools to enhance the reliability of the system. Due to the complexity of alveoscopy images and to the lack of expertize on the pathological cases (unlike healthy cases), we adopt the one-class learning paradigm which allows to learn a classifier from healthy data only. We propose a one-class approach taking advantage of combining and randomization mechanisms of ensemble methods to respond to common issues such as the curse of dimensionality. Our method is shown to be effective, robust to the dimension, competitive and even better than state-of-the-art methods on various public datasets. It has proved to be particularly relevant to our medical problem
APA, Harvard, Vancouver, ISO, and other styles
35

Fissore, Giancarlo. "Generative modeling : statistical physics of Restricted Boltzmann Machines, learning with missing information and scalable training of Linear Flows." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG028.

Full text
Abstract:
Les modèles de réseaux neuronaux capables d'approximer et d'échantillonner des distributions de probabilité à haute dimension sont connus sous le nom de modèles génératifs. Ces dernières années, cette classe de modèles a fait l'objet d'une attention particulière en raison de son potentiel à apprendre automatiquement des représentations significatives de la grande quantité de données que nous produisons et consommons quotidiennement. Cette thèse présente des résultats théoriques et algorithmiques relatifs aux modèles génératifs et elle est divisée en deux parties. Dans la première partie, nous concentrons notre attention sur la Machine de Boltzmann Restreinte (RBM) et sa formulation en physique statistique. Historiquement, la physique statistique a joué un rôle central dans l'étude des fondements théoriques et dans le développement de modèles de réseaux neuronaux. La première implémentation neuronale d'une mémoire associative (Hopfield, 1982) est un travail séminal dans ce contexte. La RBM peut être considérée comme un développement du modèle de Hopfield, et elle est particulièrement intéressante en raison de son rôle à l'avant-garde de la révolution de l'apprentissage profond (Hinton et al. 2006). En exploitant sa formulation de physique statistique, nous dérivons une théorie de champ moyen de la RBM qui nous permet de caractériser à la fois son fonctionnement en tant que modèle génératif et la dynamique de sa procédure d'apprentissage. Cette analyse s'avère utile pour dériver une stratégie d'imputation robuste de type champ moyen qui permet d'utiliser la RBM pour apprendre des distributions empiriques dans le cas difficile où l'ensemble de données à modéliser n'est que partiellement observé et présente des pourcentages élevés d'informations manquantes. Dans la deuxième partie, nous considérons une classe de modèles génératifs connus sous le nom de Normalizing Flows (NF), dont la caractéristique distinctive est la capacité de modéliser des distributions complexes à haute dimension en employant des transformations inversibles d'une distribution simple et traitable. L'inversibilité de la transformation permet d'exprimer la densité de probabilité par un changement de variables dont l'optimisation par Maximum de Vraisemblance (ML) est assez simple mais coûteuse en calcul. La pratique courante est d'imposer des contraintes architecturales sur la classe de transformations utilisées pour les NF, afin de rendre l'optimisation par ML efficace. En partant de considérations géométriques, nous proposons un algorithme d'optimisation stochastique par descente de gradient qui exploite la structure matricielle des réseaux de neurones entièrement connectés sans imposer de contraintes sur leur structure autre que la dimensionnalité fixe requise par l'inversibilité. Cet algorithme est efficace en termes de calcul et peut s'adapter à des ensembles de données de très haute dimension. Nous démontrons son efficacité dans l'apprentissage d'une architecture non linéaire multicouche utilisant des couches entièrement connectées
Neural network models able to approximate and sample high-dimensional probability distributions are known as generative models. In recent years this class of models has received tremendous attention due to their potential in automatically learning meaningful representations of the vast amount of data that we produce and consume daily. This thesis presents theoretical and algorithmic results pertaining to generative models and it is divided in two parts. In the first part, we focus our attention on the Restricted Boltzmann Machine (RBM) and its statistical physics formulation. Historically, statistical physics has played a central role in studying the theoretical foundations and providing inspiration for neural network models. The first neural implementation of an associative memory (Hopfield, 1982) is a seminal work in this context. The RBM can be regarded to as a development of the Hopfield model, and it is of particular interest due to its role at the forefront of the deep learning revolution (Hinton et al. 2006).Exploiting its statistical physics formulation, we derive a mean-field theory of the RBM that let us characterize both its functioning as a generative model and the dynamics of its training procedure. This analysis proves useful in deriving a robust mean-field imputation strategy that makes it possible to use the RBM to learn empirical distributions in the challenging case in which the dataset to model is only partially observed and presents high percentages of missing information. In the second part we consider a class of generative models known as Normalizing Flows (NF), whose distinguishing feature is the ability to model complex high-dimensional distributions by employing invertible transformations of a simple tractable distribution. The invertibility of the transformation allows to express the probability density through a change of variables whose optimization by Maximum Likelihood (ML) is rather straightforward but computationally expensive. The common practice is to impose architectural constraints on the class of transformations used for NF, in order to make the ML optimization efficient. Proceeding from geometrical considerations, we propose a stochastic gradient descent optimization algorithm that exploits the matrix structure of fully connected neural networks without imposing any constraints on their structure other then the fixed dimensionality required by invertibility. This algorithm is computationally efficient and can scale to very high dimensional datasets. We demonstrate its effectiveness in training a multylayer nonlinear architecture employing fully connected layers
APA, Harvard, Vancouver, ISO, and other styles
36

Dancette, Corentin. "Shortcut Learning in Visual Question Answering." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS073.

Full text
Abstract:
Cette thèse se concentre sur la tâche de VQA, c'est à dire les systèmes questions-réponses visuelles. Nous étudions l'apprentissage des biais dans cette tâche. Les modèles ont tendance à apprendre des corrélations superficielles les conduisant à des réponses correctes dans la plupart des cas, mais qui peuvent échouer lorsqu'ils rencontrent des données d'entrée inhabituelles. Nous proposons deux méthodes pour réduire l'apprentissage par raccourci sur le VQA. La première, RUBi, consiste à encourager le modèle à apprendre à partir des exemples les plus difficiles et les moins biaisés grâce à une loss spécifique. Nous proposons ensuite SCN, un modèle pour la tâche de comptage visuel, avec une architecture conçue pour être robuste aux changements de distribution. Nous étudions ensuite les raccourcis multimodaux dans le VQA. Nous montrons qu'ils ne sont pas seulement basés sur des corrélations entre la question et la réponse, mais qu'ils peuvent aussi impliquer des informations sur l'image. Nous concevons un benchmark d'évaluation pour mesurer la robustesse des modèles aux raccourcis multimodaux. L'apprentissage de ces raccourcis est particulièrement problématique lorsque les modèles sont testés dans un contexte de changement de distribution. C'est pourquoi il est important de pouvoir évaluer la fiabilité des modèles VQA. Nous proposons une méthode pour leur permettre de s'abstenir de répondre lorsque leur confiance est trop faible. Cette méthode consiste à entraîner un modèle externe, dit "sélecteur", pour prédire la confiance du modèle VQA. Nous montrons que notre méthode peut améliorer la fiabilité des modèles VQA existants
This thesis is focused on the task of VQA: it consists in answering textual questions about images. We investigate Shortcut Learning in this task: the literature reports the tendency of models to learn superficial correlations leading them to correct answers in most cases, but which can fail when encountering unusual input data. We first propose two methods to reduce shortcut learning on VQA. The first, which we call RUBi, consists of an additional loss to encourage the model to learn from the most difficult and less biased examples -- those which cannot be answered solely from the question. We then propose SCN, a model for the more specific task of visual counting, which incorporates architectural priors designed to make it more robust to distribution shifts. We then study the existence of multimodal shortcuts in the VQA dataset. We show that shortcuts are not only based on correlations between the question and the answer but can also involve image information. We design an evaluation benchmark to measure the robustness of models to multimodal shortcuts. We show that existing models are vulnerable to multimodal shortcut learning. The learning of those shortcuts is particularly harmful when models are evaluated in an out-of-distribution context. Therefore, it is important to evaluate the reliability of VQA models, i.e. We propose a method to improve their ability to abstain from answering when their confidence is too low. It consists of training an external ``selector'' model to predict the confidence of the VQA model. This selector is trained using a cross-validation-like scheme in order to avoid overfitting on the training set
APA, Harvard, Vancouver, ISO, and other styles
37

Rosar, Kós Lassance Carlos Eduardo. "Graphs for deep learning representations." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0204.

Full text
Abstract:
Ces dernières années, les méthodes d'apprentissage profond ont atteint l'état de l'art dans une vaste gamme de tâches d'apprentissage automatique, y compris la classification d'images et la traduction automatique. Ces architectures sont assemblées pour résoudre des tâches d'apprentissage automatique de bout en bout. Afin d'atteindre des performances de haut niveau, ces architectures nécessitent souvent d'un très grand nombre de paramètres. Les conséquences indésirables sont multiples, et pour y remédier, il est souhaitable de pouvoir comprendre ce qui se passe à l'intérieur des architectures d'apprentissage profond. Il est difficile de le faire en raison de: i) la dimension élevée des représentations ; et ii) la stochasticité du processus de formation. Dans cette thèse, nous étudions ces architectures en introduisant un formalisme à base de graphes, s'appuyant notamment sur les récents progrès du traitement de signaux sur graphe (TSG). À savoir, nous utilisons des graphes pour représenter les espaces latents des réseaux neuronaux profonds. Nous montrons que ce formalisme des graphes nous permet de répondre à diverses questions, notamment: i) mesurer des capacités de généralisation ;ii) réduire la quantité de des choix arbitraires dans la conception du processus d'apprentissage ; iii)améliorer la robustesse aux petites perturbations ajoutées sur les entrées ; et iv) réduire la complexité des calculs
In recent years, Deep Learning methods have achieved state of the art performance in a vast range of machine learning tasks, including image classification and multilingual automatic text translation. These architectures are trained to solve machine learning tasks in an end-to-end fashion. In order to reach top-tier performance, these architectures often require a very large number of trainable parameters. There are multiple undesirable consequences, and in order to tackle these issues, it is desired to be able to open the black boxes of deep learning architectures. Problematically, doing so is difficult due to the high dimensionality of representations and the stochasticity of the training process. In this thesis, we investigate these architectures by introducing a graph formalism based on the recent advances in Graph Signal Processing (GSP). Namely, we use graphs to represent the latent spaces of deep neural networks. We showcase that this graph formalism allows us to answer various questions including: ensuring generalization abilities, reducing the amount of arbitrary choices in the design of the learning process, improving robustness to small perturbations added to the inputs, and reducing computational complexity
APA, Harvard, Vancouver, ISO, and other styles
38

Martens, Corentin. "Patient-Derived Tumour Growth Modelling from Multi-Parametric Analysis of Combined Dynamic PET/MR Data." Doctoral thesis, Universite Libre de Bruxelles, 2021. https://dipot.ulb.ac.be/dspace/bitstream/2013/320127/5/contratCM.pdf.

Full text
Abstract:
Gliomas are the most common primary brain tumours and are associated with poor prognosis. Among them, diffuse gliomas – which include their most aggressive form glioblastoma (GBM) – are known to be highly infiltrative. The diagnosis and follow-up of gliomas rely on positron emission tomography (PET) and magnetic resonance imaging (MRI). However, these imaging techniques do not currently allow to assess the whole extent of such infiltrative tumours nor to anticipate their preferred invasion patterns, leading to sub-optimal treatment planning. Mathematical tumour growth modelling has been proposed to address this problem. Reaction-diffusion tumour growth models, which are probably the most commonly used for diffuse gliomas growth modelling, propose to capture the proliferation and migration of glioma cells by means of a partial differential equation. Although the potential of such models has been shown in many works for patient follow-up and therapy planning, only few limited clinical applications have seemed to emerge from these works. This thesis aims at revisiting reaction-diffusion tumour growth models using state-of-the-art medical imaging and data processing technologies, with the objective of integrating multi-parametric PET/MRI data to further personalise the model. Brain tissue segmentation on MR images is first addressed with the aim of defining a patient-specific domain to solve the model. A previously proposed method to derive a tumour cell diffusion tensor from the water diffusion tensor assessed by diffusion-tensor imaging (DTI) is then implemented to guide the anisotropic migration of tumour cells along white matter tracts. The use of dynamic [S-methyl-11C]methionine ([11C]MET) PET is also investigated to derive patient-specific proliferation potential maps for the model. These investigations lead to the development of a microscopic compartmental model for amino acid PET tracer transport in gliomas. Based on the compartmental model results, a novel methodology is proposed to extract parametric maps from dynamic [11C]MET PET data using principal component analysis (PCA). The problem of estimating the initial conditions of the model from MR images is then addressed by means of a translational MRI/histology study in a case of non-operated GBM. Numerical solving strategies based on the widely used finite difference and finite element methods are finally implemented and compared. All these developments are embedded within a common framework allowing to study glioma growth in silico and providing a solid basis for further research in this field. However, commonly accepted hypothesis relating the outlines of abnormalities visible on MRI to tumour cell density iso-contours have been invalidated by the translational study carried out, leaving opened the questions of the initialisation and the validation of the model. Furthermore, the analysis of the temporal evolution of real multi-treated glioma patients demonstrates the limitations of the formulated model. These latter statements highlight current obstacles to the clinical application of reaction-diffusion tumour growth models and pave the way to further improvements.
Les gliomes sont les tumeurs cérébrales primitives les plus communes et sont associés à un mauvais pronostic. Parmi ces derniers, les gliomes diffus – qui incluent la forme la plus agressive, le glioblastome (GBM) – sont connus pour être hautement infiltrants. Le diagnostic et le suivi des gliomes s'appuient sur la tomographie par émission de positons (TEP) ainsi que l'imagerie par résonance magnétique (IRM). Cependant, ces techniques d'imagerie ne permettent actuellement pas d'évaluer l'étendue totale de tumeurs aussi infiltrantes ni d'anticiper leurs schémas d'invasion préférentiels, conduisant à une planification sous-optimale du traitement. La modélisation mathématique de la croissance tumorale a été proposée pour répondre à ce problème. Les modèles de croissance tumorale de type réaction-diffusion, qui sont probablement les plus communément utilisés pour la modélisation de la croissance des gliomes diffus, proposent de capturer la prolifération et la migration des cellules tumorales au moyen d'une équation aux dérivées partielles. Bien que le potentiel de tels modèles ait été démontré dans de nombreux travaux pour le suivi des patients et la planification de thérapies, seules quelques applications cliniques restreintes semblent avoir émergé de ces derniers. Ce travail de thèse a pour but de revisiter les modèles de croissance tumorale de type réaction-diffusion en utilisant des technologies de pointe en imagerie médicale et traitement de données, avec pour objectif d'y intégrer des données TEP/IRM multi-paramétriques pour personnaliser davantage le modèle. Le problème de la segmentation des tissus cérébraux dans les images IRM est d'abord adressé, avec pour but de définir un domaine propre au patient pour la résolution du modèle. Une méthode proposée précédemment permettant de dériver un tenseur de diffusion tumoral à partir du tenseur de diffusion de l'eau évalué par imagerie DTI a ensuite été implémentée afin de guider la migration anisotrope des cellules tumorales le long des fibres de matière blanche. L'utilisation de l'imagerie TEP dynamique à la [S-méthyl-11C]méthionine ([11C]MET) est également investiguée pour la génération de cartes de potentiel prolifératif propre au patient afin de nourrir le modèle. Ces investigations ont mené au développement d'un modèle compartimental pour le transport des traceurs TEP dérivés des acides aminés dans les gliomes. Sur base des résultats du modèle compartimental, une nouvelle méthodologie est proposée utilisant l'analyse en composantes principales pour extraire des cartes paramétriques à partir de données TEP dynamiques à la [11C]MET. Le problème de l'estimation des conditions initiales du modèle à partir d'images IRM est ensuite adressé par le biais d'une étude translationelle combinant IRM et histologie menée sur un cas de GBM non-opéré. Différentes stratégies de résolution numérique basées sur les méthodes des différences et éléments finis sont finalement implémentées et comparées. Tous ces développements sont embarqués dans un framework commun permettant d'étudier in silico la croissance des gliomes et fournissant une base solide pour de futures recherches dans le domaine. Cependant, certaines hypothèses communément admises reliant les délimitations des anormalités visibles en IRM à des iso-contours de densité de cellules tumorales ont été invalidée par l'étude translationelle menée, laissant ouverte les questions de l'initialisation et de la validation du modèle. Par ailleurs, l'analyse de l'évolution temporelle de cas réels de gliomes multi-traités démontre les limitations du modèle. Ces dernières affirmations mettent en évidence les obstacles actuels à l'application clinique de tels modèles et ouvrent la voie à de nouvelles possibilités d'amélioration.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
39

Matcha, Wyao. "Identification des composants prioritaires pour les tests unitaires dans les systèmes OO : une approche basée sur l'apprentissage profond." Thèse, 2020. http://depot-e.uqtr.ca/id/eprint/9420/1/eprint9420.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography