Academic literature on the topic 'Apprentissage automatique – Prévision – Utilisation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Apprentissage automatique – Prévision – Utilisation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Apprentissage automatique – Prévision – Utilisation"

1

Loisel, Julie. "Détection des ruptures de la chaîne du froid par une approche d'apprentissage automatique." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASB014.

Full text
Abstract:
La chaîne du froid est indispensable pour assurer la sécurité sanitaire et éviter le gaspillage alimentaire. Pour suivre l'évolution de la température de l'air à travers la chaîne du froid, les capteurs sans fil sont de plus en plus utilisés, mais l'exploitation de ces mesures est encore limitée. Cette thèse explore comment l'apprentissage automatique peut être utilisé pour prédire la température de différents types de produits alimentaires à partir d'une mesure de la température de l'air dans une palette et détecter les ruptures de chaîne du froid. Nous avons d'abord introduit une définition de rupture de la chaîne du froid en fonction de deux grandes catégories de produits : les produits qui doivent être conservés à une température réglementée tels que les viandes et les poissons et les produits pour lesquels une température de conservation est recommandée tels que les fruits et légumes. Pour les premiers, les ruptures de la chaîne du froid peuvent entraîner une intoxication alimentaire et pour les seconds, elles peuvent dégrader les qualités organoleptiques.Pour les produits à température réglementée, il est crucial de prédire la température des produits afin d'assurer qu'ils ne dépassent pas le seuil réglementaire. Bien que plusieurs études aient déjà démontré l'efficacité des réseaux de neurones pour la prédiction de la température des produits, aucune n'a comparé les données synthétiques et expérimentales pour les entraîner. Dans cette thèse, nous avons proposé de comparer ces deux types de données afin de fournir des directives précises pour le développement de réseaux de neurones. En pratique, les produits et les emballages sont très variés, il est donc impossible de faire des expériences à chaque application en raison de la lourdeur de la mise en œuvre.En comparant les données synthétiques et expérimentales, nous avons pu déterminer les meilleures lignes directrices pour développer des réseaux de neurones pour prédire la température des produits et maintenir la chaîne du froid.Pour les produits dont la température est réglementaire, une fois la rupture détectée, ils ne sont plus consommables et doivent être éliminés. Pour les produits dont la température recommandée, nous avons comparé trois approches différentes pour détecter les ruptures et mettre en place une action correctrice : a) méthode basée sur un seuil de température, b) méthode basée sur un classifieur qui détermine si le produit sera livré avec les qualités attendues et c) méthode également basée un classifieur mais qui intègre le coût de l'action correctrice dans la prise de décision. Les performances des trois méthodes sont discutées et des perspectives d'amélioration sont proposées
The cold chain is essential to ensure food safety and avoid food waste. Wireless sensors are increasingly used to monitor the air temperature through the cold chain, however, the exploitation of these measurements is still limited. This thesis explores how machine learning can be used to predict the temperature of different food products types from the measured air temperature in a pallet and detect cold chain breaks. We introduced, firstly, a definition of a cold chain break based on two main product categories: products obligatorily preserved at a regulated temperature such as meat and fish, and products for which a temperature is recommended such as fruits and vegetables. The cold chain break leads to food poisoning for the first product category and organoleptic quality degradation for the second one.For temperature-regulated products, it is crucial to predict the product temperature to ensure that it does not exceed the regulatory temperature. Although several studies demonstrated the effectiveness of neural networks for the prediction, none has compared the synthetic and experimental data to train them. In this thesis, we proposed to compare these two types of data in order to provide guidelines for the development of neural networks. In practice, the products and packaging are diverse; experiments for each application are impossible due to the complexity of implementation. By comparing synthetic and experimental data, we were able to determine best practices for developing neural networks to predict product temperature and maintain cold chain. For temperature-regulated products, once the cold chain break is detected, they are no more consumable and must be eliminated. For temperature-recommended products, we compared three different approaches to detect cold chain breaks and implement corrective actions: a) method based on a temperature threshold, b) method based on a classifier which determines whether the products will be delivered with the expected qualities, and c) method also based on a classifier but which integrates the cost of the corrective measure in the decision-making process. The performances of the three methods are discussed and prospects for improvement are proposed
APA, Harvard, Vancouver, ISO, and other styles
2

De, Carvalho Gomes Fernando. "Utilisation d'algorithmes stochastiques en apprentissage." Montpellier 2, 1992. http://www.theses.fr/1992MON20254.

Full text
Abstract:
Dans le cadre de l'apprentissage inductif, les données sont souvent mal décrites et bruitées. Dans ce cas, la génération de procédures de classification présentant une parfaite adéquation aux données, produit des résultats de taille (ou complexité) importante. Les performances sont excellentes sur les données ayant servi à apprendre, mais mauvaises sur un ensemble test. On cherche alors des procédures présentant un bon compromis complexité adéquation aux données et la tache se rapproche de l'optimisation. Plusieurs approches gloutonnes ont été proposées. L'objet de cette thèse est de proposer une approche plus puissante. L'apport principal est un algorithme d'apprentissage base sur la recherche stochastique d'une liste de décision de faible complexité. Cet algorithme procède en deux phases distinctes: la diversification et l'intensification de la recherche, exécutées respectivement par le recuit simule et par la méthode tabou
APA, Harvard, Vancouver, ISO, and other styles
3

Toqué, Florian. "Prévision et visualisation de l'affluence dans les transports en commun à l'aide de méthodes d'apprentissage automatique." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2029.

Full text
Abstract:
Dans le cadre de la lutte contre le réchauffement climatique, plusieurs pays du monde notamment le Canada et certains pays européens dont la France, ont établi des mesures afin de réduire les nuisances environnementales. L'un des axes majeurs abordés par les états concerne le secteur du transport et plus particulièrement le développement des systèmes de transport en commun en vue de réduire l'utilisation de la voiture personnelle et les émissions de gaz à effet de serre. A cette fin, les collectivités concernées visent à mettre en place des systèmes de transports urbains plus accessibles, propres et durables. Dans ce contexte, cette thèse en codirection entre l'Université Paris-Est, l'Institut français des sciences et technologies des transports, de l'aménagement et des réseaux (IFSTTAR) et Polytechnique Montréal au Canada, s'attache à analyser la mobilité urbaine au travers de recherches menées sur la prévision et la visualisation de l'affluence des passagers dans les transports en commun à l'aide de méthodes d'apprentissage automatique. Les motivations finales concernent l'amélioration des services de transport proposés aux usagers, tels qu'une meilleure planification de l'offre de transport et une amélioration de l'information voyageur (e.g., proposition d'itinéraire en cas d'événement/incident, information concernant le taux de de remplissage des trains à un horaire choisi, etc.). Cette thèse s'inscrit dans un contexte général de valorisation des traces numériques et d'essor du domaine de la science des données (e.g., collecte et stockage des données, développement de méthodes d'apprentissage automatique, etc.). Les travaux comportent trois volets principaux à savoir (i) la prévision long terme de l'affluence des passagers à l'aide de base de données événementielles et de données billettiques, (ii) la prévision court terme de l'affluence des passagers et (iii) la visualisation de l'affluence des passagers dans les transports en commun. Les recherches se basent principalement sur l'utilisation de données billettiques fournies par les opérateurs de transports et ont été menées sur trois cas d'études réels, le réseau de métro et de bus de la ville de Rennes, le réseau ferré et de tramway du quartier d'affaire de la Défense à Paris en France, et le réseau de métro de Montréal, Québec au Canada
As part of the fight against global warming, several countries around the world, including Canada and some European countries, including France, have established measures to reduce greenhouse gas emissions. One of the major areas addressed by the states concerns the transport sector and more particularly the development of public transport to reduce the use of private cars. To this end, the local authorities concerned aim to establish more accessible, clean and sustainable urban transport systems. In this context, this thesis, co-directed by the University of Paris-Est, the french institute of science and technology for transport, development and network (IFSTTAR) and Polytechnique Montréal in Canada, focuses on the analysis of urban mobility through research conducted on the forecasting and visualization of public transport ridership using machine learning methods. The main motivations concern the improvement of transport services offered to passengers such as: better planning of transport supply, improvement of passenger information (e.g., proposed itinerary in the case of an event/incident, information about the crowd in the train at a chosen time, etc.). In order to improve transport operators' knowledge of user travel in urban areas, we are taking advantage of the development of data science (e.g., data collection, development of machine learning methods). This thesis thus focuses on three main parts: (i) long-term forecasting of passenger demand using event databases, (ii) short-term forecasting of passenger demand and (iii) visualization of passenger demand on public transport. The research is mainly based on the use of ticketing data provided by transport operators and was carried out on three real case study, the metro and bus network of the city of Rennes, the rail and tramway network of "La Défense" business district in Paris, France, and the metro network of Montreal, Quebec in Canada
APA, Harvard, Vancouver, ISO, and other styles
4

Kashnikov, Yuriy. "Une approche holistique pour la prédiction des optimisations du compilateur par apprentissage automatique." Versailles-St Quentin en Yvelines, 2013. http://www.theses.fr/2013VERS0047.

Full text
Abstract:
Un choix efficace des optimisations de compilation améliore notablement la performances des applications. En raison du grand nombre de choix possibles une approche exhaustive est irréalisable et l'exploration peut facilement tomber dans un minimum local. Les compilateurs utilisent des heuristiques qui parfois dégradent la performance, ce qui contraint les utilisateurs à des ajustements manuels. Cette thèse propose une approche holistique basée sur l'apprentissage automatique pour améliorer la sélection des optimisations du compilateur. L'analyse statique d'un grand nombre de boucles permet de montrer l'existence d'un potentiel d'optimisation significatif. On applique ensuite Milepost GCC, un compilateur basé sur l'apprentissage automatique, pour optimiser différentes applications. Il utilise les caractéristiques statiques des fonctions et un algorithme de classification, pour prédire une bonne séquence d'optimisations. Milepost apporte une accélération significative qui surpasse les solutions existantes. La contribution majeure de cette thèse est une méthode de méta-optimisation, ULM. Elle exploite des données statiques et dynamiques afin de déterminer les meilleurs jeux d'apprentissage pour différent algorithmes de classification. En mettant plusieurs algorithmes en compétition, ULM construit un prédicteur plus efficace que les solutions existantes. ULM prédit dans 92% des cas étudiés la meilleure combinaison d'optimisations
Effective compiler optimizations can greatly improve applications performance. These optimizations are numerous and can be applied in any order. Compilers select these optimizations using solutions driven by heuristics which may degrade programs performance. Therefore, developers resort to the tedious manual search for the best optimizations. Combinatorial search space makes this effort intractable and one can easily fall into a local minimum and miss the best combination. This thesis develops a holistic approach to improve applications performance with compiler optimizations and machine learning. A combination of static loop analysis and statistical learning is used to analyze a large corpus of loops and reveal good potential for compiler optimizations. Milepost GCC, a machine-learning based compiler, is applied to optimize benchmarks and an industrial database application. It uses function level static features and classification algorithms to predict a good sequence of optimizations. While Milepost GCC can mispredict the best optimizations, in general it obtains considerable speedups and outperforms state-of-the-art compiler heuristics. The culmination of this thesis is the ULM meta-optimization framework. ULM characterizes applications at different levels with static code features and hardware performance counters and finds the most important combination of program features. By selecting among three classification algorithms and tuning their parameters, ULM builds a sophisticated predictor that can outperform existing solutions. As a result, the ULM framework predicted correctly the best sequence of optimizations sequence in 92% of cases
APA, Harvard, Vancouver, ISO, and other styles
5

Dupont, Pierre. "Utilisation et apprentissage de modèles de langage pour la reconnaissance de la parole continue /." Paris : École nationale supérieure des télécommunications, 1996. http://catalogue.bnf.fr/ark:/12148/cb35827695q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melzi, Fateh. "Fouille de données pour l'extraction de profils d'usage et la prévision dans le domaine de l'énergie." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1123/document.

Full text
Abstract:
De nos jours, les pays sont amenés à prendre des mesures visant à une meilleure rationalisation des ressources en électricité dans une optique de développement durable. Des solutions de comptage communicantes (Smart Meters), sont mises en place et autorisent désormais une lecture fine des consommations. Les données spatio-temporelles massives collectées peuvent ainsi aider à mieux connaitre les habitudes de consommation et pouvoir les prévoir de façon précise. Le but est d'être en mesure d'assurer un usage « intelligent » des ressources pour une meilleure consommation : en réduisant par exemple les pointes de consommations ou en ayant recours à des sources d'énergies renouvelables. Les travaux de thèse se situent dans ce contexte et ont pour ambition de développer des outils de fouille de données en vue de mieux comprendre les habitudes de consommation électrique et de prévoir la production d'énergie solaire, permettant ensuite une gestion intelligente de l'énergie.Le premier volet de la thèse s'intéresse à la classification des comportements types de consommation électrique à l'échelle d'un bâtiment puis d'un territoire. Dans le premier cas, une identification des profils types de consommation électrique journalière a été menée en se basant sur l'algorithme des K-moyennes fonctionnel et sur un modèle de mélange gaussien. A l'échelle d'un territoire et en se plaçant dans un contexte non supervisé, le but est d'identifier des profils de consommation électrique types des usagers résidentiels et de relier ces profils à des variables contextuelles et des métadonnées collectées sur les usagers. Une extension du modèle de mélange gaussien classique a été proposée. Celle-ci permet la prise en compte de variables exogènes telles que le type de jour (samedi, dimanche et jour travaillé,…) dans la classification, conduisant ainsi à un modèle parcimonieux. Le modèle proposé a été comparé à des modèles classiques et appliqué sur une base de données irlandaise incluant à la fois des données de consommations électriques et des enquêtes menées auprès des usagers. Une analyse des résultats sur une période mensuelle a permis d'extraire un ensemble réduit de groupes d'usagers homogènes au sens de leurs habitudes de consommation électrique. Nous nous sommes également attachés à quantifier la régularité des usagers en termes de consommation ainsi que l'évolution temporelle de leurs habitudes de consommation au cours de l'année. Ces deux aspects sont en effet nécessaires à l'évaluation du potentiel de changement de comportement de consommation que requiert une politique d'effacement (décalage des pics de consommations par exemple) mise en place par les fournisseurs d'électricité.Le deuxième volet de la thèse porte sur la prévision de l'irradiance solaire sur deux horizons temporels : à court et moyen termes. Pour ce faire, plusieurs méthodes ont été utilisées parmi lesquelles des méthodes statistiques classiques et des méthodes d'apprentissage automatique. En vue de tirer profit des différents modèles, une approche hybride combinant les différents modèles a été proposée. Une évaluation exhaustive des différents approches a été menée sur une large base de données incluant des paramètres météorologiques mesurés et des prévisions issues des modèles NWP (Numerical Weather Predictions). La grande diversité des jeux de données relatifs à quatre localisations aux climats bien distincts (Carpentras, Brasilia, Pampelune et Ile de la Réunion) a permis de démontrer la pertinence du modèle hybride proposé et ce, pour l'ensemble des localisations
Nowadays, countries are called upon to take measures aimed at a better rationalization of electricity resources with a view to sustainable development. Smart Metering solutions have been implemented and now allow a fine reading of consumption. The massive spatio-temporal data collected can thus help to better understand consumption behaviors, be able to forecast them and manage them precisely. The aim is to be able to ensure "intelligent" use of resources to consume less and consume better, for example by reducing consumption peaks or by using renewable energy sources. The thesis work takes place in this context and aims to develop data mining tools in order to better understand electricity consumption behaviors and to predict solar energy production, then enabling intelligent energy management.The first part of the thesis focuses on the classification of typical electrical consumption behaviors at the scale of a building and then a territory. In the first case, an identification of typical daily power consumption profiles was conducted based on the functional K-means algorithm and a Gaussian mixture model. On a territorial scale and in an unsupervised context, the aim is to identify typical electricity consumption profiles of residential users and to link these profiles to contextual variables and metadata collected on users. An extension of the classical Gaussian mixture model has been proposed. This allows exogenous variables such as the type of day (Saturday, Sunday and working day,...) to be taken into account in the classification, thus leading to a parsimonious model. The proposed model was compared with classical models and applied to an Irish database including both electricity consumption data and user surveys. An analysis of the results over a monthly period made it possible to extract a reduced set of homogeneous user groups in terms of their electricity consumption behaviors. We have also endeavoured to quantify the regularity of users in terms of consumption as well as the temporal evolution of their consumption behaviors during the year. These two aspects are indeed necessary to evaluate the potential for changing consumption behavior that requires a demand response policy (shift in peak consumption, for example) set up by electricity suppliers.The second part of the thesis concerns the forecast of solar irradiance over two time horizons: short and medium term. To do this, several approaches have been developed, including autoregressive statistical approaches for modelling time series and machine learning approaches based on neural networks, random forests and support vector machines. In order to take advantage of the different models, a hybrid model combining the different models was proposed. An exhaustive evaluation of the different approaches was conducted on a large database including four locations (Carpentras, Brasilia, Pamplona and Reunion Island), each characterized by a specific climate as well as weather parameters: measured and predicted using NWP models (Numerical Weather Predictions). The results obtained showed that the hybrid model improves the results of photovoltaic production forecasts for all locations
APA, Harvard, Vancouver, ISO, and other styles
7

Thorey, Jean. "Prévision d’ensemble par agrégation séquentielle appliquée à la prévision de production d’énergie photovoltaïque." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066526/document.

Full text
Abstract:
Notre principal objectif est d'améliorer la qualité des prévisions de production d'énergie photovoltaïque (PV). Ces prévisions sont imparfaites à cause des incertitudes météorologiques et de l'imprécision des modèles statistiques convertissant les prévisions météorologiques en prévisions de production d'énergie. Grâce à une ou plusieurs prévisions météorologiques, nous générons de multiples prévisions de production PV et nous construisons une combinaison linéaire de ces prévisions de production. La minimisation du Continuous Ranked Probability Score (CRPS) permet de calibrer statistiquement la combinaison de ces prévisions, et délivre une prévision probabiliste sous la forme d'une fonction de répartition empirique pondérée.Dans ce contexte, nous proposons une étude du biais du CRPS et une étude des propriétés des scores propres pouvant se décomposer en somme de scores pondérés par seuil ou en somme de scores pondérés par quantile. Des techniques d'apprentissage séquentiel sont mises en oeuvre pour réaliser cette minimisation. Ces techniques fournissent des garanties théoriques de robustesse en termes de qualité de prévision, sous des hypothèses minimes. Ces méthodes sont appliquées à la prévision d'ensoleillement et à la prévision de production PV, fondée sur des prévisions météorologiques à haute résolution et sur des ensembles de prévisions classiques
Our main objective is to improve the quality of photovoltaic power forecasts deriving from weather forecasts. Such forecasts are imperfect due to meteorological uncertainties and statistical modeling inaccuracies in the conversion of weather forecasts to power forecasts. First we gather several weather forecasts, secondly we generate multiple photovoltaic power forecasts, and finally we build linear combinations of the power forecasts. The minimization of the Continuous Ranked Probability Score (CRPS) allows to statistically calibrate the combination of these forecasts, and provides probabilistic forecasts under the form of a weighted empirical distribution function. We investigate the CRPS bias in this context and several properties of scoring rules which can be seen as a sum of quantile-weighted losses or a sum of threshold-weighted losses. The minimization procedure is achieved with online learning techniques. Such techniques come with theoretical guarantees of robustness on the predictive power of the combination of the forecasts. Essentially no assumptions are needed for the theoretical guarantees to hold. The proposed methods are applied to the forecast of solar radiation using satellite data, and the forecast of photovoltaic power based on high-resolution weather forecasts and standard ensembles of forecasts
APA, Harvard, Vancouver, ISO, and other styles
8

Nachouki, Mirna. "L'acquisition de connaissances dans les systèmes dynamiques : production et utilisation dans le cadre de l'atelier de génie didacticiel intégré." Toulouse 3, 1995. http://www.theses.fr/1995TOU30001.

Full text
Abstract:
Pour personnaliser l'enseignement, les systemes d'environnement interactif d'apprentissage avec l'ordinateur doivent pouvoir imiter le comportement de l'enseignant qui exerce son activite dans le monde reel. Ainsi, durant leur utilisation, ils doivent acquerir des connaissances et revetir un aspect evolutif et dynamique. Dans le but de garantir l'evolutivite des connaissances, nous soulignons que le processus d'acquisition doit, dans un systeme dynamique, etre complete par un mecanisme d'evaluation des connaissances. Aussi, nous definissons un cycle de vie du processus d'acquisition au cours duquel les connaissances sont raffinees de maniere progressive avant d'etre integrees dans la representation la plus adequate. Nous decrivons alors une representation permettant de formaliser differentes methodes d'acquisition respectant le cycle de vie propose. Pour supporter ce processus, nous proposons une architecture basee sur trois modeles. Le premier est constitue des connaissances necessaires au fonctionnement du systeme. Le second s'articule autour d'une base de taches representant la globalite des operations conceptuelles impliquees dans une methode d'acquisition de connaissances. Pour realiser une tache dans un contexte bien particulier, des agents (concept issu de l'intelligence artificielle distribuee) ont ete formalises. Chacun d'eux represente une methode possible de resolution de cette tache. Le troisieme modele est constitue des metaconnaissances qui assurent le pilotage et le controle des deux autres modeles, grace aux differentes methodes d'acquisition. Nos travaux constituent un pas supplementaire vers le developpement des systemes d'apprentissage reellement dynamiques, donc plus reactifs et mieux adaptes a chaque situation d'enseignement
APA, Harvard, Vancouver, ISO, and other styles
9

Baudin, Paul. "Prévision séquentielle par agrégation d'ensemble : application à des prévisions météorologiques assorties d'incertitudes." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS117/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à des problèmes de prévision tour après tour. L'objectif est d'imaginer et d'appliquer des stratégies automatiques, qui tirent de l'expérience du passé et s'aident éventuellement de prédicteurs élémentaires. Nous souhaitons que ces stratégies obtiennent des garanties mathématiques robustes et soient valables dans des cas de figure très généraux. Cela nous permet en pratique d'appliquer les algorithmes qui en découlent à la prévision concrète de grandeurs météorologiques. Enfin, nous nous intéressons aux déclinaisons théoriques et pratiques dans un cadre de prévision de fonctions de répartition. Nous étudions dans un premier temps la prévision séquentielle de processus bornés stationnaires ergodiques. Dans ce but, nous nous plaçons dans le cadre des suites individuelles et proposons un arbre de régression déterministe dont les prévisions sont asymptotiquement meilleures que le meilleur prédicteur lipschitzien pour une certaine constante L. Puis nous montrons que les bornes de regret obtenues impliquent que les stratégies envisagées sont asymptotiquement optimales par rapport à la classe des processus stationnaire ergodique bornés. Dans un second temps, nous présentons une méthode d'agrégation séquentielle des simulations météorologiques de pression réduite au niveau de la mer. L'objectif est d'obtenir, grâce à l'algorithme ridge, de meilleures performances en prévision qu'une certaine prévision de référence, à préciser. Tout d'abord, nous rappelons le cadre mathématique et les fondamentaux des sciences environnementales. Puis nous décrivons en détail les jeux de données utilisés et les performances pratiques de l'algorithme. Enfin, nous précisons certains aspects du jeu de données et certaines sensibilités aux paramètres l'algorithme ridge. Puis, nous déclinons la méthode précédente à l'étude d'une seconde grandeur physique : la norme de la vitesse du vent à dix mètres au-dessus du sol. Plusieurs remarques d'ordre physique sont faites au passage concernant ce jeu de données. Dans le dernier chapitre, nous présentons les enjeux et les outils de la prévision probabiliste avant de mettre en pratique deux algorithmes sur les jeux de données décrits précédemment. La première partie motive l'utilisation de prévisions probabilistes et expose l'état de l'art dans ce domaine et la seconde partie présente des scores probabilistes historiques et populaires. Les algorithmes utilisés sont ensuite décrits dans la troisième partie avant que ne soient détaillés les résultats empiriques de ceux-ci sur les jeux de données de pression réduite au niveau de la mer et de norme de la vitesse du vent
In this thesis, we study sequential prediction problems. The goal is to devise and apply automatic strategy, learning from the past, with potential help from basis predictors. We desire these strategies to have strong mathematical guarantees and to be valid in the most general cases. This enables us to apply the algorithms deriving from the strategies to meteorological data predictions. Finally, we are interested in theoretical and practical versions of this sequential prediction framework to cumulative density function prediction. Firstly, we study online prediction of bounded stationary ergodic processes. To do so, we consider the setting of prediction of individual sequences and propose a deterministic regression tree that performs asymptotically as well as the best L-Lipschitz predictor. Then, we show why the obtained regret bound entails the asymptotical optimality with respect to the class of bounded stationary ergodic processes. Secondly, we propose a specific sequential aggregation method of meteorological simulation of mean sea level pressure. The aim is to obtain, with a ridge regression algorithm, better prediction performance than a reference prediction, belonging to the constant linear prediction of basis predictors. We begin by recalling the mathematical framework and basic notions of environmental science. Then, the used datasets and practical performance of strategies are studied, as well as the sensitivity of the algorithm to parameter tuning. We then transpose the former method to another meteorological variable: the wind speed 10 meter above ground. This study shows that the wind speed exhibits different behaviors on a macro level. In the last chapter, we present the tools used in a probabilistic prediction framework and underline their merits. First, we explain the relevancy of probabilistic prediction and expose this domain's state of the art. We carry on with an historical approach of popular probabilistic scores. The used algorithms are then thoroughly described before the descriptions of their empirical results on the mean sea level pressure and wind speed
APA, Harvard, Vancouver, ISO, and other styles
10

Desrousseaux, Christophe. "Utilisation d'un critère entropique dans les systèmes de détection." Lille 1, 1998. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1998/50376-1998-229.pdf.

Full text
Abstract:
La theorie classique de la detection repose sur le postulat de centralisation de l'information qui suppose que l'information ainsi que le traitement qui lui est applique soient regroupes en un meme lieu. Une alternative a la structure centralisee a ete developpee sous la forme d'architectures imposees pour lesquelles le traitement est decompose en plusieurs etapes. Par exemple, dans le cas d'une architecture parallele, chaque source elabore un resume de son observation, qui est ensuite transmis a un operateur central de decision. Dans ce travail, nous rappelons les resultats importants de la theorie de la detection en distinguant les differentes architectures rencontrees dans la litterature : la detection centralisee, decentralisee parallele et serie. Lors de l'optimisation de ces systemes, deux criteres sont employes : le critere de bayes et celui de neyman-pearson. Les architectures decentralisees n'ont pour l'instant pu etre optimisees que pour des systemes comportant peu de capteurs et en supposant l'independance des observations. Partant de l'analogie entre les systemes de communication numeriques et les systemes de detection, nous proposons l'introduction d'un critere entropique dans les systemes de detection. Nous demontrons que les differentes architectures de detection peuvent alors etre optimisees en utilisant un critere base sur l'entropie conditionnelle de shannon. L'utilisation de l'entropie ayant ete justifiee, nous proposons d'introduire une phase d'apprentissage dans les problemes de detection. Nous suggerons de limiter le nombre de capteurs a prendre en compte lors de l'optimisation du systeme de detection. Parmi tous les capteurs disponibles, nous ne faisons intervenir que ceux apportant de l'information au processus de decision. D'autre part, nous proposons des methodes d'optimisation rapides des systemes de detection decentralisee parallele. Ces techniques d'optimisation sont ensuite etendues au probleme de la quantification repartie.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Apprentissage automatique – Prévision – Utilisation"

1

Ranka, Sanjay, Chengliang Yang, Chris Delcher, and Elizabeth Shenkman. Data Driven Approaches for Healthcare: Machine Learning for Identifying High Utilizers. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Data Driven Approaches for Health Care: Machine Learning for Identifying High Utilizers. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ranka, Sanjay, Chengliang Yang, Chris Delcher, and Elizabeth Shenkman. Data Driven Approaches for Healthcare: Machine Learning for Identifying High Utilizers. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ranka, Sanjay, Chengliang Yang, Chris Delcher, and Elizabeth Shenkman. Data Driven Approaches for Healthcare: Machine Learning for Identifying High Utilizers. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ranka, Sanjay, Chengliang Yang, Chris Delcher, and Elizabeth Shenkman. Data Driven Approaches for Healthcare: Machine Learning Approaches for Identifying High Utilizers. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arslan, Hüseyin, and Ertuğrul Başar. Flexible and Cognitive Radio Access Technologies for 5G and Beyond. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Flexible and Cognitive Radio Access Technologies for 5G and Beyond. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography