Academic literature on the topic 'Application of quantum computing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Application of quantum computing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Application of quantum computing"
Yang, Hong, Jingjing Wang, and Xu Sun. "Research on Quantum Computing Standard System Architecture and Roadmap." Journal of Physics: Conference Series 2433, no. 1 (February 1, 2023): 012035. http://dx.doi.org/10.1088/1742-6596/2433/1/012035.
Full textHenriet, Loïc, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. "Quantum computing with neutral atoms." Quantum 4 (September 21, 2020): 327. http://dx.doi.org/10.22331/q-2020-09-21-327.
Full textPeleshenko, Vitaly A. "INTEL-QS QUANTUM COMPUTING." SOFT MEASUREMENTS AND COMPUTING 7/1, no. 56 (2022): 58–64. http://dx.doi.org/10.36871/2618-9976.2022.07.006.
Full textMorimae, Tomoyuki. "Quantum randomized encoding, verification of quantum computing, no-cloning, and blind quantum computing." Quantum Information and Computation 21, no. 13&14 (September 2021): 1111–34. http://dx.doi.org/10.26421/qic21.13-14-3.
Full textWilliams, Colin, Pieter Kok, Hwang Lee, and Jonathan P. Dowling. "Quantum lithography: A non-computing application of quantum information." Informatik - Forschung und Entwicklung 21, no. 1-2 (September 26, 2006): 73–82. http://dx.doi.org/10.1007/s00450-006-0017-6.
Full textSibi, Alex. "The Impact of Quantum Computing on Cryptography." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 1762–65. http://dx.doi.org/10.22214/ijraset.2023.49770.
Full textCR, Senise Jr. "The (Present) Age of Quantum Computing." Physical Science & Biophysics Journal 7, no. 1 (January 5, 2023): 1–3. http://dx.doi.org/10.23880/psbj-16000229.
Full textGriol-Barres, Israel, Sergio Milla, Antonio Cebrián, Yashar Mansoori, and José Millet. "Variational Quantum Circuits for Machine Learning. An Application for the Detection of Weak Signals." Applied Sciences 11, no. 14 (July 12, 2021): 6427. http://dx.doi.org/10.3390/app11146427.
Full textMagomadov, V. S. "Exploring the current state and application of quantum computing." Journal of Physics: Conference Series 2373, no. 5 (December 1, 2022): 052011. http://dx.doi.org/10.1088/1742-6596/2373/5/052011.
Full textAmundson, James, and Elizabeth Sexton-Kennedy. "Quantum Computing." EPJ Web of Conferences 214 (2019): 09010. http://dx.doi.org/10.1051/epjconf/201921409010.
Full textDissertations / Theses on the topic "Application of quantum computing"
Lovett, Neil Brian. "Application of quantum walks on graph structures to quantum computing." Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/1689/.
Full textKult, David. "Quantum Holonomies : Concepts and Applications to Quantum Computing and Interferometry." Doctoral thesis, Uppsala University, Quantum Chemistry, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8185.
Full textQuantum holonomies are investigated in different contexts.
A geometric phase is proposed for decomposition dependent evolution, where each component of a given decomposition of a mixed state evolves independently. It is shown that this geometric phase only depends on the path traversed in the space of decompositions.
A holonomy is associated to general paths of subspaces of a Hilbert space, both discrete and continuous. This opens up the possibility of constructing quantum holonomic gates in the open path setting. In the discrete case it is shown that it is possible to associate two distinct holonomies to a given path. Interferometric setups for measuring both holonomies are
provided. It is further shown that there are cases when the holonomy is only partially defined. This has no counterpart in the Abelian setting.
An operational interpretation of amplitudes of density operators is provided. This allows for a direct interferometric realization of Uhlmann's parallelity condition, and the possibility of measuring the Uhlmann holonomy for sequences of density operators.
Off-diagonal geometric phases are generalized to the non-Abelian case. These off-diagonal holonomies are undefined for cyclic evolution, but must contain members of non-zero rank if all standard holonomies are undefined. Experimental setups for measuring the off-diagonal holonomies are proposed.
The concept of nodal free geometric phases is introduced. These are constructed from gauge invariant quantities, but do not share the nodal point structure of geometric phases and off-diagonal geometric phases. An interferometric setup for measuring nodal free geometric phases is provided, and it is shown that these phases could be useful in geometric quantum computation.
A holonomy associated to a sequence of quantum maps is introduced. It is shown that this holonomy is related to the Uhlmann holonomy. Explicit examples are provided to illustrate the general idea.
Estarellas, Pascual. "Spin chain systems for quantum computing and quantum information applications." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/20556/.
Full textVranckx, Stéphane. "Dynamical study of diatomics : applications to astrochemistry, quantum control and quantum computing." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209261.
Full text1) HeH+, a species of great astrochemical importance which is thought to be the first molecular species to have formed in the universe;
2) CO2+, a metastable dication of particular interest in quantum control experiments due to its long-lived lowest vibrational level;
3) 41K87Rb, a polar molecule that can be formed at very low temperature and trapped, making it a good candidate for quantum computing schemes.
First, we use ab initio methods to compute accurate potential energy curves for the lowest singlet and triplet states of HeH+ as well as the potential energy curves, transition dipole moments and nonadiabatic radial couplings of the ground 3Π state of CO2+ and of its 11 lowest 3Σ- states.
In a second step, we use this ab initio data to compute the photodissociation and radiative association cross sections for the a and b 3Σ+ states of HeH+, as well as the values of the corresponding rate constants for astrophysical environments. The photodissociation cross sections from the lowest vibrational level of CO2+ is also determined.
Going one step further, we optimize laser control fields that drive the photodissociation dynamics of HeH+ and CO2+ towards specific channels. We compare two field optimization methods: a Møller operator-based Local Control approach and Optimal Control Theory. In both cases, we add a constraint that minimizes the area of the optimized fields.
Finally, we focus on one of the potential applications of high-fidelity laser control: the use of small molecular systems as quantum computers. We more specifically study the potential implementation of both intra- and intermolecular logic gates on data encoded in hyperfine states of trapped ultracold polar 41K87Rb molecules, opening interesting perspectives in terms of extensibility.
/
Dans cette thèse, nous étudions théoriquement les propriétés de molécules diatomiques, leur dynamique de réaction ainsi que le contrôle de cette dynamique à l'aide de champs laser. Notre travail porte plus spécifiquement sur trois espèces :
1) HeH+, un composé-clé en astrochimie considéré comme la première espèce moléculaire qui s'est formée dans l'univers ;
2) CO2+, un dication métastable qui se prête bien à des expériences de contrôle quantique en raison du relativement long temps de vie de son état vibrationnel le plus bas ;
3) 41K87Rb, une molécule polaire qui présente la particularité de pouvoir être formée à très basse température et piégée, ce qui en fait un bon support physique potentiel pour la réalisation d'un ordinateur quantique moléculaire.
Nous utilisons tout d'abord des méthodes de calcul ab initio afin d'obtenir les courbes d'énergie potentielle des premiers états singulets et triplets de HeH+ avec un haut de degré de précision, ainsi que les courbes d'énergie potentielle, les moments dipolaires de transition et les couplages non-adiabatiques radiaux de l'état fondamental 3Π de CO2+ et de ses 11 premiers états 3Σ-.
Ensuite, nous utilisons ces données ab initio pour calculer les sections efficaces de photodissociation et d'association radiative des états a et b 3Σ+ de HeH+, ainsi que les constantes cinétiques associées à ces processus dans les conditions rencontrées dans des environnements astrophysiques. Les sections efficaces de photodissociation du niveau vibrationnel le plus bas de CO2+ sont également calculées.
Nous allons ensuite un cran plus loin en optimisant des champs laser qui guident la dynamique de photodissociation de HeH+ et CO2+ vers des canaux de dissociation spécifiques. Nous comparons deux méthodes d'optimisation de ces champs: une approche de contrôle local basée sur les opérateurs de Møller et la théorie du contrôle optimal. Dans le deux cas, nous incluons une contrainte qui minimise l'aire des champs.
Enfin, nous nous concentrons sur l'une des applications possibles du contrôle laser à haute fidélité :l'utilisation de petits systèmes moléculaires comme ordinateurs quantiques. Nous étudions plus spécifiquement l'implémentation possible d'opérations logiques intra- et intermoléculaires sur des données encodées dans des états hyperfins de molécules de 41K87Rb piégées, ce qui ouvre des perspectives intéressantes en terme d'extensibilité.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Di, Tiegang. "Entanglement generation and applications in quantum information." Texas A&M University, 2006. http://hdl.handle.net/1969.1/3840.
Full textCIRILLO, GIOVANNI AMEDEO. "Engineering quantum computing technologies: from compact modelling to applications." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2971119.
Full textHolleczek, Annemarie. "Linear optics quantum computing with single photons from an atom-cavity system." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:d655fa1c-3405-413d-8af8-eecf6212ab74.
Full textVenegas-Andraca, Salvador Elías. "Discrete quantum walks and quantum image processing." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427612.
Full textBettonte, Gabriella. "Quantum approaches for Worst-Case Execution-Times analysis of programs." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG026.
Full textQuantum computing is gaining popularity in the computer science community. The awareness of the potential of quantum computing started in 1981, when Richard Feynman first speculated about building a quantum computer. However, until recently, the field has known much skepticism about its long-term practical capabilities to solve problems. In particular, researchers are still facing the challenge of building scalable and reliable quantum computers. Lately, many companies have obtained encouraging results and built quantum machines with enough qubits to start conducting interesting experiments. We chose the worst-case execution-time (WCET) evaluation as the application of our research on quantum computing, as it is crucial for various real-time applications. WCET analysis guarantees that a program's execution time matches all the scheduling and timing constraints. In quantum algorithms history, attention was often given to problems with a particular mathematical structure. The WCETs evaluation, as an opposite, is not a particularly quantum-friendly problem, and it has already proven efficient classical solutions. Hence, it is worth exploring the impact of quantum computing on those kinds of problems, with the spirit of finding new and concrete fields to which quantum computing could bring its potential. If not, research on such specific fields will help to set the boundaries of which applications could benefit from quantum computing. This thesis presents different quantum approaches to perform WCETs evaluations of programs under simplified assumptions
Kissinger, Aleks. "Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:61fb3161-a353-48fc-8da2-6ce220cce6a2.
Full textBooks on the topic "Application of quantum computing"
Vos, Alexis de. Reversible computing: Fundamentals, quantum computing, and applications. Weinheim: Wiley-VCH, 2010.
Find full textTaha, Saleem Mohammed Ridha. Reversible Logic Synthesis Methodologies with Application to Quantum Computing. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23479-3.
Full textAnnalisa, Marzuoli, and SpringerLink (Online service), eds. Quantum Triangulations: Moduli Spaces, Strings, and Quantum Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textAlicki, Robert. Quantum Dynamical Semigroups and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.
Find full textKlaus, Hentschel, Weinert Friedel, and SpringerLink (Online service), eds. Compendium of Quantum Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textKiong, Loo Chu. Biological and quantum computing for human vision: Holonomic models and applications. Hershey, PA: Medical Information Science Reference, 2011.
Find full textPerus, Mitja. Biological and quantum computing for human vision: Holonomic models and applications. Hershey, PA: Medical Information Science Reference, 2011.
Find full textFundamentals of natural computing: Basic concepts, algorithms, and applications. Boca Raton: Chapman & Hall/CRC, 2006.
Find full textFederico, Carminati, Galli Carminati Giuliana, and SpringerLink (Online service), eds. From the Web to the Grid and Beyond: Computing Paradigms Driven by High-Energy Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textNev.) International Conference on Scientific Computing and Applications (8th 2012 Las Vegas. Recent advances in scientific computing and applications: Eigth International Conference on Scientific Computing and Applications, April 1-4, 2012, University of Nevada, Las Vegas, Nevada. Edited by Li, Jichun, editor of compilation, Yang, Hongtao, 1962- editor of compilation, and Machorro, Eric A. (Eric Alexander), 1969- editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textBook chapters on the topic "Application of quantum computing"
Akama, Seiki. "Applications of Quantum Computing." In Elements of Quantum Computing, 91–100. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08284-4_5.
Full textYung, Choi Tim Antony, Laurice Sattouf, William Tam, Andro Younan, Chandler L. Snyder, Shadrach W. Viste, Anthony Nursalim, et al. "Quantum Computing and Its Application in Cryptography." In Proceedings of the Future Technologies Conference (FTC) 2021, Volume 3, 301–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89912-7_23.
Full textCalude, Cristian S. "Dialogues on Quantum Computing." In Formal Languages and Applications, 493–505. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39886-8_26.
Full text(Bo) Ewald, Robert H. "An Introduction to Quantum Computing and Its Application." In Quantum Technology and Optimization Problems, 3–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14082-3_1.
Full textBrooks, Michael. "Applications." In Quantum Computing and Communications, 43–47. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0839-9_6.
Full textLeena, H. U., and R. Lawrance. "Future Perspectives of Quantum Applications Using AI." In Quantum Computing Environments, 193–207. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89746-8_6.
Full textHughes, Ciaran, Joshua Isaacson, Anastasia Perry, Ranbel F. Sun, and Jessica Turner. "Quantum Teleportation." In Quantum Computing for the Quantum Curious, 73–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61601-4_8.
Full textOzhigov, Y. "Quantum Computer Can Not Speed Up Iterated Applications of a Black Box." In Quantum Computing and Quantum Communications, 152–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49208-9_12.
Full textSaakian, D. B., and A. E. Allahverdyan. "Strengthened Lindblad Inequality: Applications in Non-equilibrium Thermodynamics and Quantum Information Theory." In Quantum Computing and Quantum Communications, 296–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49208-9_26.
Full textChuharski, Jake M. "Adiabatic Quantum Computing and Applications to Music." In Quantum Computer Music, 357–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13909-3_14.
Full textConference papers on the topic "Application of quantum computing"
Manykin, E. A., and E. V. Melnichenko. "TRFWM application for quantum computing." In International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1561074.
Full textBarila, Adina. "From classical computing to quantum computing." In 2014 International Conference on Development and Application Systems (DAS). IEEE, 2014. http://dx.doi.org/10.1109/daas.2014.6842455.
Full textZoller, P. "Quantum Computing." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.tutg.
Full textUCHIYAMA, CHIKAKO. "CONTROL OF DECOHERENCE WITH MULTIPULSE APPLICATION." In Quantum Information and Computing. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774491_0029.
Full textTretyakov, D. B., I. I. Beterov, V. M. Entin, and I. I. Ryabtsev. "Application of Rydberg atoms to quantum computing." In SPIE Proceedings, edited by Yuri I. Ozhigov. SPIE, 2006. http://dx.doi.org/10.1117/12.683123.
Full textLi, Meng-liang, Hong Yang, and Xiong Guo. "Research on Quantum Computing Technology and Application." In Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/masta-19.2019.30.
Full textLi, Hongyu, Aaron Chit Siong Lau, Norhanani Jaafar, Rainer Cheow Siong Lee, Calvin Pei Yu Wong, Kuan Eng Johnson Goh, and King-Jien Chui. "3D Cryogenic Interposer for Quantum Computing Application." In 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). IEEE, 2022. http://dx.doi.org/10.1109/ectc51906.2022.00246.
Full textThompson, Mark G. "Photonic Quantum Computing." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.ath1i.1.
Full textWhite, Andrew. "Photonic Quantum Computing." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jw3i.1.
Full textO’Brien, J. L. "Photonic Quantum Computing." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_at.2017.jth1e.1.
Full textReports on the topic "Application of quantum computing"
Steel, Duncan G. Development and Application of Semiconductor Quantum Dots to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada413562.
Full textWachen, John, and Steven McGee. Qubit by Qubit’s Four-Week Quantum Computing Summer School Evaluation Report for 2021. The Learning Partnership, September 2021. http://dx.doi.org/10.51420/report.2021.4.
Full textMou, Chung-Yuan. Applications of Nanotechnology in Biomimetics and Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, October 2007. http://dx.doi.org/10.21236/ada473229.
Full textTracy, Lisa A., John Louis Reno, and Terry W. Hargett. High-mobility 2D hole systems for quantum computing applications. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1055622.
Full textAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Full textSands, Georgia. The synthesis of a covalent-organic framework for applications in quantum computing. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1879346.
Full textHemmer, Philip, and Robert Armstrong. Fractal-Enhancement of Photon Band-Gap Cavities for Quantum Computing and Other Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada444845.
Full textElmgren, Karson, Ashwin Acharya, and Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, November 2021. http://dx.doi.org/10.51593/20210003.
Full textSexton-Kennedy, Elizabeth S., and James Amundson. Quantum Computing. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1477986.
Full textPakin, Scott D. Quantum Computing. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415361.
Full text