Academic literature on the topic 'Aphanizomenon and Cylindrospermopsis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aphanizomenon and Cylindrospermopsis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aphanizomenon and Cylindrospermopsis"

1

Costa, I. A. S., S. M. F. O. Azevedo, P. A. C. Senna, R. R. Bernardo, S. M. Costa, and N. T. Chellappa. "Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir." Brazilian Journal of Biology 66, no. 1b (February 2006): 211–19. http://dx.doi.org/10.1590/s1519-69842006000200005.

Full text
Abstract:
We report the occurrence of cyanobacterial blooms and the presence of cyanotoxins in water samples from the Armando Ribeiro Gonçalves reservoir (06° 08’ S and 37° 07’ W), located in the state of Rio Grande do Norte, in the semiarid region of northeastern Brazil. The cyanobacterial species were identified and quantified during the rainy and dry seasons in the year 2000. Cyanotoxins such as microcystins, saxitoxins and cylindrospermopsins were analyzed and quantified using HPLC and ELISA methods. The mixed toxic blooms of Cylindrospermopsis raciborskii, Microcystis spp (M. panniformis, M. protocystis, M. novacekii) and Aphanizomenon spp (Aphanizomenon gracile, A. cf. manguinii, A. cf. issastschenkoi) were persistent and represented 90-100% of the total phytoplankton species. Toxic cyanobacterial blooms from the Armando Ribeiro Gonçalves reservoir were analyzed and found to have three phases in relation to the annual cycle. During the rainy season, an intense toxic bloom of Cylindrospermopsis raciborskii was recorded along with saxitoxins (3.14 µg.L-1). During the transition period, between the rainy and dry seasons, different species of Microscytis occurred and microcystin as high as 8.8 µg.L-1 was recorded. In the dry season, co-dominance of Cylindrospermopsis raciborskii, Microcystis spp and Aphanizomenon spp occurred and the concentrations of saxitoxin remained very low. Our results indicate the presence of microcystins (8.8 µg.L-1) and saxitoxins (3.14 µg.L-1) into the crude water, with increasing concentrations from the second fortnight of April to late May 2000. The occurrence of toxic blooms in this reservoir points to a permanent risk of cyanotoxins in supply waters, indicating the need for the implementation of bloom control measures to improve the water quality. Exposure of the local population to cyanotoxins through their potential accumulation in fish muscle must also be considered.
APA, Harvard, Vancouver, ISO, and other styles
2

Stüken, Anke, and Kjetill S. Jakobsen. "The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination." Microbiology 156, no. 8 (August 1, 2010): 2438–51. http://dx.doi.org/10.1099/mic.0.036988-0.

Full text
Abstract:
Cylindrospermopsin (CYN), a potent hepatoxin, occurs in freshwaters worldwide. Several cyanobacterial species produce the toxin, but the producing species vary between geographical regions. Aphanizomenon flos-aquae, a common algae species in temperate fresh and brackish waters, is one of the three well-documented CYN producers in European waters. So far, no genetic information on the CYN genes of this species has been available. Here, we describe the complete CYN gene cluster, including flanking regions from the German Aphanizomenon sp. strain 10E6 using a full genome sequencing approach by 454 pyrosequencing and bioinformatic identification of the gene cluster. In addition, we have sequenced a ∼7 kb fragment covering the genes cyrC (partially), cyrA and cyrB (partially) of the same gene cluster in the CYN-producing Aphanizomenon sp. strains 10E9 and 22D11. Comparisons with the orthologous gene clusters of the Australian Cylindrospermopsis raciborskii strains AWT205 and CS505 and the partial gene cluster of the Israeli Aphanizomenon ovalisporum strain ILC-146 revealed a high gene sequence similarity, but also extensive rearrangements of gene order. The high sequence similarity (generally higher than that of 16S rRNA gene fragments from the same strains), atypical GC-content and signs of transposase activities support the suggestion that the CYN genes have been horizontally transferred.
APA, Harvard, Vancouver, ISO, and other styles
3

Yılmaz, Mete, Edward J. Phlips, Nancy J. Szabo, and Susan Badylak. "A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production." Toxicon 51, no. 1 (January 2008): 130–39. http://dx.doi.org/10.1016/j.toxicon.2007.08.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ballot, Andreas, Jutta Fastner, and Claudia Wiedner. "Paralytic Shellfish Poisoning Toxin-Producing Cyanobacterium Aphanizomenon gracile in Northeast Germany." Applied and Environmental Microbiology 76, no. 4 (January 4, 2010): 1173–80. http://dx.doi.org/10.1128/aem.02285-09.

Full text
Abstract:
ABSTRACT Neurotoxic paralytic shellfish poisoning (PSP) toxins, anatoxin-a (ATX), and hepatotoxic cylindrospermopsin (CYN) have been detected in several lakes in northeast Germany during the last 2 decades. They are produced worldwide by members of the nostocalean genera Anabaena, Cylindrospermopsis, and Aphanizomenon. Although no additional sources of PSP toxins and ATX have been identified in German water bodies to date, the observed CYN concentrations cannot be produced solely by Aphanizomenon flos-aquae, the only known CYN producer in Germany. Therefore, we attempted to identify PSP toxin, ATX, and CYN producers by isolating and characterizing 92 Anabaena, Aphanizomenon, and Anabaenopsis strains from five lakes in northeast Germany. In a polyphasic approach, all strains were morphologically and phylogenetically classified and then tested for PSP toxins, ATX, and CYN by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) and screened for the presence of PSP toxin- and CYN-encoding gene fragments. As demonstrated by ELISA and LC-MS, 14 Aphanizomenon gracile strains from Lakes Melang and Scharmützel produced four PSP toxin variants (gonyautoxin 5 [GTX5], decarbamoylsaxitoxin [dcSTX], saxitoxin [STX], and neosaxitoxin [NEO]). GTX5 was the most prevalent PSP toxin variant among the seven strains from Lake Scharmützel, and NEO was the most prevalent among the seven strains from Lake Melang. The sxtA gene, which is part of the saxitoxin gene cluster, was found in the 14 PSP toxin-producing A. gracile strains and in 11 non-PSP toxin-producing Aphanizomenon issatschenkoi, A. flos-aquae, Anabaena planktonica, and Anabaenopsis elenkinii strains. ATX and CYN were not detected in any of the isolated strains. This study is the first confirming the role of A. gracile as a PSP toxin producer in German water bodies.
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Yong-Jin, Hae-Kyung Park, and In-Soo Kim. "Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea." Toxins 14, no. 5 (April 21, 2022): 294. http://dx.doi.org/10.3390/toxins14050294.

Full text
Abstract:
Invasive nostocalean cyanobacteria (INC) were first reported in tropical regions and are now globally spreading rapidly due to climate change, appearing in temperate regions. INC require continuous monitoring for water resource management because of their high toxin production potential. However, it is difficult to analyze INC under a microscope because of their morphological similarity to nostocalean cyanobacteria such as the genus Aphanizomenon. This study calculates the gene copy number per cell for each target gene through quantitative gene analysis on the basis of genus-specific primers of genera Cylindrospermopsis, Sphaerospermopsis, and Cuspidothrix, and the toxin primers of anatoxin-a, saxitoxin, and cylindrospermopsin. In addition, quantitative gene analysis was performed at eight sites in the Nakdong River to assess the appearance of INC and their toxin production potential. Genera Cylindrospermopsis and Sphaerospermopsis did not exceed 100 cells mL−1 at the maximum, with a low likelihood of related toxin occurrence. The genus Cuspidothrix showed the highest cell density (1759 cells mL−1) among the INC. Nakdong River has potential for the occurrence of anatoxin-a through biosynthesis by genus Cuspidothrix because the appearance of this genus coincided with that of the anatoxin-a synthesis gene (anaF) and the detection of the toxin by ELISA.
APA, Harvard, Vancouver, ISO, and other styles
6

Cirés, Samuel, Lars Wörmer, Andreas Ballot, Ramsy Agha, Claudia Wiedner, David Velázquez, María Cristina Casero, and Antonio Quesada. "Phylogeography of Cylindrospermopsin and Paralytic Shellfish Toxin-Producing Nostocales Cyanobacteria from Mediterranean Europe (Spain)." Applied and Environmental Microbiology 80, no. 4 (December 13, 2013): 1359–70. http://dx.doi.org/10.1128/aem.03002-13.

Full text
Abstract:
ABSTRACTPlanktonicNostocalescyanobacteria represent a challenge for microbiological research because of the wide range of cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxicNostocalesfrom Mediterranean Europe, 31 strains ofAnabaena(Anabaena crassa,A. lemmermannii,A. mendotae, andA. planctonica),Aphanizomenon(Aphanizomenon gracile,A. ovalisporum), andCylindrospermopsis raciborskiiwere isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6Aphanizomenon ovalisporumstrains at high levels (5.7 to 9.1 μg CYN mg−1[dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2Aphanizomenon gracilestrains, both containing thesxtAgene. This gene was also amplified in non-PSP toxin-producingAphanizomenon gracileandAphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of SpanishAnabaenaandAphanizomenonstrains with other European strains. In contrast,Cylindrospermopsis raciborskiifrom Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes ofC. raciborskii. The present study confirms that the nostocalean genusAphanizomenonis a major source of CYN and PSP toxins in Europe and demonstrates the presence of thesxtAgene in CYN-producingAphanizomenon ovalisporum.
APA, Harvard, Vancouver, ISO, and other styles
7

Everson, Sally, Larelle Fabbro, Susan Kinnear, Geoff Eaglesham, and Paul Wright. "Distribution of the cyanobacterial toxins cylindrospermopsin and deoxycylindrospermopsin in a stratified lake in north-eastern New South Wales, Australia." Marine and Freshwater Research 60, no. 1 (2009): 25. http://dx.doi.org/10.1071/mf08115.

Full text
Abstract:
This paper describes the vertical water column distribution of the cyanobacterial toxins cylindrospermopsin and deoxycylindrospermopsin in a water body containing the cyanobacteria Aphanizomenon ovalisporum and Cylindrospermopsis raciborskii. The study site was Cobaki Village Lake, a small stratified anthropogenic lake in north-eastern New South Wales, Australia. Water quality analysis indicated that stratification and oxygenation of the water column were significant in both the distribution of the cyanobacterial populations and their associated toxin concentrations. Toxin was distributed throughout the entire water column, but the highest concentrations were recorded in the hypolimnion. Maximum toxin concentrations were detected in February 2007 (38.2 μg L–1 cylindrospermopsin (CYN) and 42.2 μg L–1 deoxy-CYN). The relative distribution of CYN and deoxy-CYN paralleled the distribution of NH3H and NOX within the water column, with oxygenated chemical species dominating above 15 m and de-oxygenated chemical species dominating below 15 m. Cyanobacterial cell concentrations were highest in the oxic, warm and low conductivity waters of the epilimnion and cyanobacterial species succession was associated with nutrient and trace-metal depletion in this surface layer. These research findings are directly relevant to the management of water supplies affected by toxic blue-green algal blooms, particularly with respect to the considered placement of off-take devices to avoid layers of cyanobacterial cell and toxin concentrations.
APA, Harvard, Vancouver, ISO, and other styles
8

Rzymski, Piotr, Barbara Poniedziałek, Joanna Mankiewicz-Boczek, Elisabeth J. Faassen, Tomasz Jurczak, Ilona Gągała-Borowska, Andreas Ballot, Miquel Lürling, and Mikołaj Kokociński. "Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland." Algal Research 24 (June 2017): 72–80. http://dx.doi.org/10.1016/j.algal.2017.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berry, John P., Patrick D. L. Gibbs, Michael C. Schmale, and Martin L. Saker. "Toxicity of cylindrospermopsin, and other apparent metabolites from Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum, to the zebrafish (Danio rerio) embryo." Toxicon 53, no. 2 (February 2009): 289–99. http://dx.doi.org/10.1016/j.toxicon.2008.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yılmaz, Mete, Edward J. Phlips, Nancy J. Szabo, and Susan Badylak. "Erratum to “A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production” [Toxicon 51 (2008) 130–139]." Toxicon 52, no. 4 (September 2008): 594–95. http://dx.doi.org/10.1016/j.toxicon.2008.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Aphanizomenon and Cylindrospermopsis"

1

Jaja-Chimedza, Asha D. "Contribution of Lipophilic Secondary Metabolites to the Toxicity of Strains of Freshwater Cyanobacterial Harmful Algal Blooms, Identified Using the Zebrafish (Danio rerio) Embyo as a Model for Vertebrate Development." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1535.

Full text
Abstract:
Cyanobacteria (“blue-green algae”) are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called “harmful algal blooms”, particularly in freshwater systems, a number of these metabolites have been associated - as “toxins”, or commonly “cyanotoxins” - with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.
APA, Harvard, Vancouver, ISO, and other styles
2

(9725532), Acquire Admin. "Phytoplankton ecology in the Fitzroy River at Rockhampton, Central Queensland, Australia." Thesis, 1999. https://figshare.com/articles/thesis/Phytoplankton_ecology_in_the_Fitzroy_River_at_Rockhampton_Central_Queensland_Australia/21397656.

Full text
Abstract:

The seasonal periodicity of hydrology, physical and chemical water quality parameters and phytoplanktonic assemblages was studied at two sites in a large tropical Australian riverine impoundment. This study, the first in the lower Fitzroy River at Rockhampton, occurred between August 1990 and November 1993. It covered extremes in riverine flow conditions including major flooding and drought.

The annual flow regime was characterized by major flows in the "wet" season (summer and autumn) and greatly reduced or no flow in the "dry" season of winter, spring and sometimes early summer. Consequently, the thermal regime at both of the study sites was divided into two phases. The first was a phase of water column heating in the late winter to early summer. Features of this heating phase were long term stratification with progressive epilimnetic deepening, high pH, regular occurrence of epilimnetic oxygen supersaturation and decreased or undetectable levels of oxidized nitrogen in the surface layer. Hypolimnetic anoxia was recorded late in this phase. The second, between substantial wet season inflows and late winter was characterized by nutrient rich inflows and water column cooling and mixing.

Distinct interannual differences occurred in the volume, source and timing of inflows and subsequent water chemistry. In 1991, conductivity, water clarity, filterable reactive phosphorus (FRP) and pH increased markedly following major flooding from northern tributaries, while oxidized nitrogen decreased. This was in marked contrast to the drier years of 1992 and 1993 where turbidity and oxidized nitrogen were higher during the initial post-flood period and conductivity and FRP were lower. Extremes of mostly abiogenic turbidity (range 1.6 to 159 NTU) were a feature of the light climate. Ratios of euphotic depth/mixing depth below 0.3 occurred in early 1992 and 1993.

Steep gradients in the physical and chemical environment were paralleled by variations in the phytoplankton. Algal biomass (as chlorophyll a) at Site 1, midstream opposite the water intake for the city of Rockhampton, ranged from 1.5 to 56.6 ug L-1. The vertical water column distribution of chlorophyll was variable with assemblages normally dominated by phytoflagellates and various species of cyanoprokaryotes. There was also higher relative abundance of chlorophyll a (reflecting increasing dominance of cyanoprokaryotes) in the latter half of the year and at the lower end of light availability. The specific vertical water column positioning with respect to light and temperature is shown for assemblages dominated by the genera Anabaena, Aphanizomenon and Cylindrospermopsis.

The most striking aspect of the phytoplankton was the long term dominance of cyanoprokaryotes and the species richness (particularly that of cyanoprokaryotes) when compared with the dearth of information to date on other tropical rivers. Seasonal successions were varied. Regularly occurring assemblages were cyanoprokaryotes (Oscillatoriales), euglenophytes or non-flagellated chlorophytes during flows followed by flagellated chlorophytes and then cyanoprokaryotes (Nostocales) during the dry season. Genera present indicated highly eutrophic conditions. Hierarchical agglomerative clustering of phytoplankton data and comparison with a principal components analysis of corresponding environmental data were used to demonstrate the linkage between steep environmental gradients and variation in the phytoplankton assemblage. The specific environmental conditions associated with the success of various species were also analysed and presented. Using the above information, a two-part model was proposed which predicts the most likely genera of phytoplankton with respect to multidimensional environmental gradients. This model covers a wide gamut of conditions varying from highly variable lotic to lentic environments.

As Cylindrospermopsis raciborskii was considered a most important species in relation to the quality of the water supply for Rockhampton, the physical, chemical and biotic conditions prior to and during a bloom of this species are described. A number of possible grazers of C. raciborskii were identified with a view to future biomanipulation. One of these, the large ciliate, Paramecium cf. caudatum was found to be an effective grazer of toxic straight C. raciborskii in the laboratory.

This study is unique in that it analyses the impact of episodic events (eg. major flooding) on the subsequent phytoplankton in the lower Fitzroy River. The model relating phytoplankton to multidimensional environmental gradients provides great information for use in management, particularly in relation to the prediction of toxic algal blooms.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography