Academic literature on the topic 'APETALA2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'APETALA2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "APETALA2"

1

Liu, Z., and E. M. Meyerowitz. "LEUNIG regulates AGAMOUS expression in Arabidopsis flowers." Development 121, no. 4 (1995): 975–91. http://dx.doi.org/10.1242/dev.121.4.975.

Full text
Abstract:
LEUNIG was identified in a genetic screen designed to isolate second-site enhancer mutations of the floral homeotic mutant apetala2-1. leunig mutations not only enhance apetala2, but by themselves cause a similar but less-pronounced homeotic transformation than apetala2 mutations. leunig flowers have sepals that are transformed toward stamens and carpels, and petals that are either staminoid or absent. In situ hybridization experiments with leunig mutants revealed altered expression pattern of the floral homeotic genes APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Double mutants of leunig and agamous exhibited a phenotype similar to agamous single mutants, indicating that agamous is epistatic to leunig. Our analysis suggests that a key role of LEUNIG is to negatively regulate AGAMOUS expression in the first two whorls of the Arabidopsis flower.
APA, Harvard, Vancouver, ISO, and other styles
2

Schultz, E. A., and G. W. Haughn. "Genetic analysis of the floral initiation process (FLIP) in Arabidopsis." Development 119, no. 3 (1993): 745–65. http://dx.doi.org/10.1242/dev.119.3.745.

Full text
Abstract:
Within the Arabidopsis inflorescence, two distinct developmental phases exist. The early inflorescence phase is characterized by nodes bearing coflorescences and leaves, and the late inflorescence phase by nodes bearing flowers. Four genes, TERMINAL FLOWER 1, LEAFY, APETALA1 and APETALA2 are necessary to initiate the switch from formation of early to formation of late inflorescence nodes at the appropriate time. We have investigated the relative roles of these genes in development by isolating and characterizing new alleles of TERMINAL FLOWER 1, LEAFY and APETALA1, and by constructing double mutants to test gene interactions. We suggest that the TERMINAL FLOWER 1 gene product is part of a mechanism that controls the timing of phase- switching in Arabidopsis. We propose that this mechanism involves factor(s) whose activity changes in response to shoot development and environmental variation. TERMINAL FLOWER 1 influences phase transitions in Arabidopsis, and appears to regulate the timing of expression of LEAFY, APETALA1 and APETALA2. LEAFY, APETALA1 and APETALA2 have partially redundant functions in initiating the floral program. In the absence of any one of the three genes, there is a gradual transition from coflorescence to flower-like lateral shoots. This suggests that (1) LEAFY, APETALA1 and APETALA2 are required in combination to ensure that the floral program is initiated rapidly and completely and (2) in the absence of one of the three genes, the others are activated slowly in response to the mechanism controlling timing of phase switching. Besides their role in establishing the floral program, phenotypes of flower-like lateral shoots in mutant inflorescences suggest that all three, LEAFY, APETALA1 and APETALA2, influence expression of whorl identity genes. Loss of LEAFY results in decreased Class B gene expression, as well as altered expression patterns of Class A and Class C genes. In the absence of either APETALA2 or APETALA1, reproductive organs develop in the perianth whorls, suggesting that both genes should be considered Class A organ identity genes, restricting Class C gene expression to inner whorls.
APA, Harvard, Vancouver, ISO, and other styles
3

Clark, S. E., M. P. Running, and E. M. Meyerowitz. "CLAVATA1, a regulator of meristem and flower development in Arabidopsis." Development 119, no. 2 (1993): 397–418. http://dx.doi.org/10.1242/dev.119.2.397.

Full text
Abstract:
We have investigated the effects on plant development of mutations in the Arabidopsis thaliana CLAVATA1 gene. In clavata1 plants, vegetative, inflorescence and floral meristems are all enlarged relative to wild type. The apical meristem can fasciate in the more severe mutant alleles, and this fasciation can occur prior to the transition to flowering. Flowers of clavata1 plants can have increased numbers of organs in all four whorls, and can also have additional whorls not present in wild-type flowers. Double mutant combinations of clavata1 with agamous, apetala2, apetala3 and pistillata indicate that CLAVATA1 controls the underlying floral meristem structure upon which these homeotic genes act. Double mutant combinations of clavata1 with apetala1 and leafy indicate CLAVATA1 plays a role in establishing and maintaining floral meristem identity, in addition to its role in controlling meristem size. In support of this, RNA expression patterns of AGAMOUS and APETALA1 are altered in clavata1 flowers.
APA, Harvard, Vancouver, ISO, and other styles
4

Bowman, J. L., J. Alvarez, D. Weigel, E. M. Meyerowitz, and D. R. Smyth. "Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes." Development 119, no. 3 (1993): 721–43. http://dx.doi.org/10.1242/dev.119.3.721.

Full text
Abstract:
Mutations in the APETALA1 gene disturb two phases of flower development, flower meristem specification and floral organ specification. These effects become manifest as a partial conversion of flowers into inflorescence shoots and a disruption of sepal and petal development. We describe the changes in an allelic series of nine apetala1 mutants and show that the two functions of APETALA1 are separable. We have also studied the interaction between APETALA1 and other floral genes by examining the phenotypes of multiply mutant plants and by in situ hybridization using probes for several floral control genes. The results suggest that the products of APETALA1 and another gene, LEAFY, are required to ensure that primordia arising on the flanks of the inflorescence apex adopt a floral fate, as opposed to becoming an inflorescence shoot. APETALA1 and LEAFY have distinct as well as overlapping functions and they appear to reinforce each other's action. CAULIFLOWER is a newly discovered gene which positively regulates both APETALA1 and LEAFY expression. All functions of CAULIFLOWER are redundant with those of APETALA1. APETALA2 also has an early function in reinforcing the action of APETALA1 and LEAFY, especially if the activity of either is compromised by mutation. After the identity of a flower primordium is specified, APETALA1 interacts with APETALA2 in controlling the development of the outer two whorls of floral organs.
APA, Harvard, Vancouver, ISO, and other styles
5

Bowman, J. L., D. R. Smyth, and E. M. Meyerowitz. "Genetic interactions among floral homeotic genes of Arabidopsis." Development 112, no. 1 (1991): 1–20. http://dx.doi.org/10.1242/dev.112.1.1.

Full text
Abstract:
We describe allelic series for three loci, mutations in which result in homeotic conversions in two adjacent whorls in the Arabidopsis thaliana flower. Both the structure of the mature flower and its development from the initial primordium are described by scanning electron microscopy. New mutations at the APETALA2 locus, ap2-2, ap2-8 and ap2-9, cause homeotic conversions in the outer two whorls: sepals to carpels (or leaves) and petals to stamens. Two new mutations of PISTILLATA, pi-2 and pi-3, cause second and third whorl organs to differentiate incorrectly. Homeotic conversions are petals to sepals and stamens to carpels, a pattern similar to that previously described for the apetala3-1 mutation. The AGAMOUS mutations, ag-2 and ag-3, affect the third and fourth whorls and cause petals to develop instead of stamens and another flower to arise in place of the gynoecium. In addition to homeotic changes, mutations at the APETALA2, APETALA3 and PISTILLATA loci may lead to reduced numbers of organs, or even their absence, in specific whorls. The bud and flower phenotypes of doubly and triply mutant strains, constructed with these and previously described alleles, are also described. Based on these results, a model is proposed that suggests that the products of these homeotic genes are each active in fields occupying two adjacent whorls, AP2 in the two outer whorls, PI and AP3 in whorls two and three, and AG in the two inner whorls. In combination, therefore, the gene products in these three concentric, overlapping fields specify the four types of organs in the wild-type flower. Further, the phenotypes of multiple mutant lines indicate that the wild-type products of the AGAMOUS and APETALA2 genes interact antagonistically. AP2 seems to keep the AG gene inactive in the two outer whorls while the converse is likely in the two inner whorls. This field model successfully predicts the phenotypes of all the singly, doubly and triply mutant flowers described.
APA, Harvard, Vancouver, ISO, and other styles
6

H D D Bandupriya. "Expression of Aintegumenta-like Gene Related to Embryogenic Competence in Coconut Confirmed by 454-pyrosequencing Transcriptome Analysis." CORD 31, no. 2 (2015): 11. http://dx.doi.org/10.37833/cord.v31i2.58.

Full text
Abstract:
A member of the Aintegumenta sub-family of Apetala gene family encoding two APETALA2 (AP2) domains was isolated and termed as Cocos nucifera Aintegumenta like gene (CnANT). The deduced amino acid sequence of the conserved domains shared a high similarity with Aintegumenta-Like (ANT like) genes in Arabidopsis thaliana, Elaeis guineensis, Oryza sativa. Comparison of transcriptomes in different tissues revealed that CnANT transcripts were high in mature zygotic embryo (12 months after pollination; 12ME). Quantitative RT-PCR results confirmed the higher CnANT transcript accumulation in mature zygotic embryos while transcripts were rarely detected in vegetative tissues such as leaf. The expression data and global transcriptome data were therefore consistent across the embryo maturity stage and showed that CnANT could play a role in embryogenesis.
APA, Harvard, Vancouver, ISO, and other styles
7

Okamuro, Jack K., Wayne Szeto, Cynthia Lotys-Prass, and K. Diane Jofuku. "Photo and Hormonal Control of Meristem Identity in the Arabidopsis Flower Mutants apetala2 and apetala1." Plant Cell 9, no. 1 (1997): 37. http://dx.doi.org/10.2307/3870369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Widiyanto, Srinanan M., Eri Mustari, Diky Setya Diningrat, and Rina Ratnasih. "APETALA2 and APETALA3 Genes Expression Profiling on Floral Development of Teak (Tectona grandis Linn f.)." Journal of Plant Sciences 11, no. 4 (2016): 61–68. http://dx.doi.org/10.3923/jps.2016.61.68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Okamuro, J. K., W. Szeto, C. Lotys-Prass, and K. D. Jofuku. "Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1." Plant Cell 9, no. 1 (1997): 37–47. http://dx.doi.org/10.1105/tpc.9.1.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bowman, J. L., H. Sakai, T. Jack, D. Weigel, U. Mayer, and E. M. Meyerowitz. "SUPERMAN, a regulator of floral homeotic genes in Arabidopsis." Development 114, no. 3 (1992): 599–615. http://dx.doi.org/10.1242/dev.114.3.599.

Full text
Abstract:
We describe a locus, SUPERMAN, mutations in which result in extra stamens developing at the expense of the central carpels in the Arabidopsis thaliana flower. The development of superman flowers, from initial primordium to mature flower, is described by scanning electron microscopy. The development of doubly and triply mutant strains, constructed with superman alleles and previously identified homeotic mutations that cause alterations in floral organ identity, is also described. Essentially additive phenotypes are observed in superman agamous and superman apetala2 double mutants. The epistatic relationships observed between either apetala3 or pistillata and superman alleles suggest that the SUPERMAN gene product could be a regulator of these floral homeotic genes. To test this, the expression patterns of AGAMOUS and APETALA3 were examined in superman flowers. In wild-type flowers, APETALA3 expression is restricted to the second and third whorls where it is required for the specification of petals and stamens. In contrast, in superman flowers, APETALA3 expression expands to include most of the cells that would normally constitute the fourth whorl. This ectopic APETALA3 expression is proposed to be one of the causes of the development of the extra stamens in superman flowers. The spatial pattern of AGAMOUS expression remains unaltered in superman flowers as compared to wild-type flowers. Taken together these data indicate that one of the functions of the wild-type SUPERMAN gene product is to negatively regulate APETALA3 in the fourth whorl of the flower. In addition, superman mutants exhibit a loss of determinacy of the floral meristem, an effect that appears to be mediated by the APETALA3 and PISTILLATA gene products.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography