To see the other types of publications on this topic, follow the link: AOD acousto-optic deflectors.

Journal articles on the topic 'AOD acousto-optic deflectors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'AOD acousto-optic deflectors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gregoris, D., and V. M. Ristic. "Wide-band transducer for acousto-optic Bragg deflector." Canadian Journal of Physics 63, no. 2 (February 1, 1985): 195–97. http://dx.doi.org/10.1139/p85-030.

Full text
Abstract:
A wide-band transducer for an acousto-optic deflector is described. The transducer is a chirped-frquency interdigital transducer with electrodes tilted to satisfy the isotropic Bragg condition. A simple theoretical model of the device is presented and numerical calculations of the frequency response indicate a wide operational bandwidth. A brief description of a direct optical-projection lithographic system used to fabricate deflectors with minimum electrode widths of ~1 μm is also included.
APA, Harvard, Vancouver, ISO, and other styles
2

Nikitin, Pavel Alekseevich, Vasily Valerievich Gerasimov, and Ildus Shevketovich Khasanov. "Acousto–Optic Modulation and Deflection of Terahertz Radiation." Materials 15, no. 24 (December 10, 2022): 8836. http://dx.doi.org/10.3390/ma15248836.

Full text
Abstract:
It is known that one of the ways to increase the energy efficiency of acousto–optic devices is to use ultrasound beams with a higher power density. It has been established experimentally that the use of a partially electroded ultrasonic transducer significantlyincreases the energy efficiency of the acousto–optic modulator of terahertz radiation. In addition, the operation of an acousto–optic deflector of terahertz radiation with the use of a sectioned ultrasound transducer was theoretically investigated. It showed that a deflector of this kind enables one to achieve higher angular resolution.
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, Joel C. "Acousto‐optic beam deflector." Journal of the Acoustical Society of America 80, no. 4 (October 1986): 1277. http://dx.doi.org/10.1121/1.393798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pichugina, Y. V., S. V. Garnov, and Y. N. Bulkin. "2D scanning system of the acousto-optical deflector with high diffraction efficiency." Journal of Physics: Conference Series 2091, no. 1 (November 1, 2021): 012013. http://dx.doi.org/10.1088/1742-6596/2091/1/012013.

Full text
Abstract:
Abstract The paper considers advantages and special features of an acousto-optic method for the development of a functional device for spatial and temporal control of laser light and reports results of investigations to create a two-directional acousto-optic laser scanner with diffraction efficiency as high as 80 percent or better. An acousto-optic deflector on a paratellurite crystal operating under the Bragg diffraction condition with a lithium niobate piezoelectric acoustic transducer was developed and tested experimentally. The results of this work can serve as a basis for the development of prototype functional acousto-optic devices for spatial and temporal control of laser light and their application to create laser television images.
APA, Harvard, Vancouver, ISO, and other styles
5

Fuss, Ian, and Darryn Smart. "Cryogenic gallium phosphide acousto-optic deflectors." Applied Optics 30, no. 31 (November 1, 1991): 4526. http://dx.doi.org/10.1364/ao.30.004526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adams, Mitchell, Caitlin Bingham, Isaiah Clemons, and Daniel E. Smalley. "Hybrid acousto-optic/electro-optic leaky-mode deflectors." Journal of the Optical Society of America A 39, no. 4 (April 1, 2022): 766. http://dx.doi.org/10.1364/josaa.450732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Antonov S. N., Rezvov Yu. G., Podolsky V. A., and Sivkova O. D. "Acousto-Optic MultiBeam Axial Diffraction in Paratellurite." Technical Physics Letters 48, no. 1 (2022): 33. http://dx.doi.org/10.21883/tpl.2022.01.52465.18860.

Full text
Abstract:
To form a multibeam radiation pattern, it is proposed to use the axial geometry of acousto-optic interaction in paratellurite. In the single frequency mode, the use of this geometry for angular scanning is characterized by a dip in the frequency response. Optimization of a multifrequency radio signal makes it possible to efficiently divide laser radiation into several beams with maintaining the fundamental advantages of axial geometry: minimum crystal size and power consumption. Keywords: acousto-optic diffraction, acousto-optic deflector, axial geometry, multifrequency mode, paratellurite.
APA, Harvard, Vancouver, ISO, and other styles
8

Naciri, Y., A. Perennou, V. Quintard, and J. Le Bihan. "Acousto-optic deflector-based optical packet synchronization." Microwave and Optical Technology Letters 26, no. 4 (2000): 209–11. http://dx.doi.org/10.1002/1098-2760(20000820)26:4<209::aid-mop1>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Naciri, Y., A. Perennou, V. Quintard, and J. Le Bihan. "Acousto-optic deflector-based optical packet synchronization." Microwave and Optical Technology Letters 26, no. 6 (2000): 394–96. http://dx.doi.org/10.1002/1098-2760(20000920)26:6<394::aid-mop13>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miller, Heather M., Thomas M. Spudich, and Jon W. Carnahan. "Development and Application of Acousto-Optic Background Correction for Inductively Coupled Plasma Atomic Emission Spectrometry." Applied Spectroscopy 57, no. 6 (June 2003): 703–10. http://dx.doi.org/10.1366/000370203322005418.

Full text
Abstract:
In two configurations, a solid-state acousto-optic (AO) deflector or modulator is mounted in a 0.5 m monochromator for background correction with inductively coupled plasma atomic emission spectrometry (ICP-AES). A fused silica acousto-optic modulator (AOM) is used in the ultraviolet (UV) spectral region applications while a glass AO deflector (AOD) is used for the visible (VIS) region. The system provides rapid sequential observation of adjacent on- and off-line wavelengths for background correction. Seventeen elements are examined using pneumatic nebulization (PN) and electrothermal vaporization (ETV) sample introduction. Calibration plots were obtained with each sample introduction technique. Potable water and vitamin tablets were analyzed. Flame atomic absorption (FAA) was used to verify the accuracy of the AO background correction system.
APA, Harvard, Vancouver, ISO, and other styles
11

Kucherenko, Oleg K. "DETERMINATION OF THE ACOUSTO-OPTICAL DEFLECTOR PARAMETERS FOR A LASER-RADIATION ROCKET GUIDANCE SYSTEM." Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, no. 62(2) (December 24, 2021): 17–22. http://dx.doi.org/10.20535/1970.62(2).2021.249110.

Full text
Abstract:
The work is devoted to the development of an acousto-optic deflector for a laser-beam guidance system (LLSN) of missiles. LLSN is used in semiautomatic portable missile systems to destroy hostile targets of various types. An analysis of the methods for constructing such systems has shown that the most promising devices with pulse-code modulation using semiconductor pulsed lasers. The article provides a diagram and describes the principle of operation of the LLSN with pulse-code modulation. A problematic issue in the implementation of such a system is the development of a device for deflecting a laser beam, through which the missile is guided to a target. Scanning mechanical devices that are currently in use have a complex design, significant dimensions and weight, and limited performance. The article proposes to use an acousto-optic deflector to deflect the laser beam within the information field of the guidance system, which is devoid of these disadvantages, since it replaces the mechanical scanning device with an electronic one. The purpose of the article is to determine the main parameters of the acousto-optical deflector. The article discusses the principle of operation of an acousto-optic deflector. It is noted that glasses based on germanium chalcogenides, in particular, glass with the composition Ge2.17As39.13S58.70, have especially low values of acoustic losses (α <1 dB / cm). The largest deflection angle of the laser beam will be observed with Bragg diffraction. Relationships are given that can be used to determine the main characteristics of the deflector: the angle of deflection of the laser beam, the modulation frequency of the acoustic wave, resolution, speed, and others. When using the above ratios for the typical parameters of the existing guidance system, the values of the indicated characteristics are calculated.
APA, Harvard, Vancouver, ISO, and other styles
12

Maák, Pál, László Jakab, Attila Barócsi, and Péter Richter. "Improved design method for acousto-optic light deflectors." Optics Communications 172, no. 1-6 (December 1999): 297–324. http://dx.doi.org/10.1016/s0030-4018(99)00459-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Antonov, S. N. "Acousto-optic deflector of depolarized laser radiation." Technical Physics 61, no. 1 (January 2016): 134–37. http://dx.doi.org/10.1134/s1063784216010047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Guessoum, Amir. "Scanning Velocity Measurement of an Acousto-Optic Deflector." Optics and Spectroscopy 126, no. 4 (April 2019): 443–49. http://dx.doi.org/10.1134/s0030400x1904009x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Antonov, S. N., and Yu G. Rezvov. "An Acousto-Optic Polarization-Insensitive Two-Coordinate Deflector." Acoustical Physics 67, no. 2 (March 2021): 128–33. http://dx.doi.org/10.1134/s1063771021020019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zeng, ShaoQun, QingMing Luo, DeRong Li, and XiaoHua Lü. "Femtosecond pulse laser scanning using Acousto-Optic Deflector." Science in China Series G: Physics, Mechanics and Astronomy 52, no. 5 (May 2009): 685–92. http://dx.doi.org/10.1007/s11433-009-0101-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Антонов, С. Н., and Ю. Г. Резвов. "Акустооптическое управление энергетическим 2D-профилем лазерного луча." Журнал технической физики 91, no. 8 (2021): 1269. http://dx.doi.org/10.21883/jtf.2021.08.51104.14-21.

Full text
Abstract:
The acousto-optic control of the energy profile of laser radiation is considered. A highly efficient multibeam Bragg diffraction mode with a combination of beams close in angular space, forming an averaged pattern in the form of a single beam, is used. In this case, the two-dimensional intensity profile is realized as a product of two independent one-dimensional profiles. On the basis of a polarization-independent two-coordinate acousto-optic deflector, several profiles (including a close to uniform one) were experimentally obtained with a total efficiency of no less than 85% and a profile change time of about ten microseconds. This method can be used in systems for processing materials with powerful lasers.
APA, Harvard, Vancouver, ISO, and other styles
18

Dupont, Samuel H., Jean-Claude Kastelik, and Michel Pommeray. "Structured Light Fringe Projection Setup Using Optimized Acousto-Optic Deflectors." IEEE/ASME Transactions on Mechatronics 15, no. 4 (August 2010): 557–60. http://dx.doi.org/10.1109/tmech.2010.2052627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gass, P. A., and J. R. Sambles. "Angle–frequency relationship for a practical acousto-optic deflector." Optics Letters 18, no. 16 (August 15, 1993): 1376. http://dx.doi.org/10.1364/ol.18.001376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Mur, Jaka, Blaž Kavčič, and Igor Poberaj. "Fast and precise Laguerre–Gaussian beam steering with acousto-optic deflectors." Applied Optics 52, no. 26 (September 5, 2013): 6506. http://dx.doi.org/10.1364/ao.52.006506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Semenov, D. V., E. Nippolainen, and A. A. Kamshilin. "Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application." Journal of Optics A: Pure and Applied Optics 9, no. 7 (June 19, 2007): 704–8. http://dx.doi.org/10.1088/1464-4258/9/7/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Piyaket, Ram, Susan Hunter, Joseph E. Ford, and Sadik Esenert. "Programmable ultrashort optical pulse delay using an acousto-optic deflector." Applied Optics 34, no. 8 (March 10, 1995): 1445. http://dx.doi.org/10.1364/ao.34.001445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Qi, Jing, Yonghong Shao, Lixin Liu, Kaige Wang, Tongsheng Chen, Junle Qu, and Hanben Niu. "Fast flexible multiphoton fluorescence lifetime imaging using acousto-optic deflector." Optics Letters 38, no. 10 (May 13, 2013): 1697. http://dx.doi.org/10.1364/ol.38.001697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Speake, C. C., and M. Lawrence. "Dynamical precision angle measurement with an acousto-optic beam deflector." Journal of the Optical Society of America A 5, no. 8 (August 1, 1988): 1254. http://dx.doi.org/10.1364/josaa.5.001254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fukuchi, Tetsuo, and Koshichi Nemoto. "Measurement of Shock Waves Using an Acousto-Optic Laser Deflector." IEEJ Transactions on Electronics, Information and Systems 127, no. 11 (2007): 1853–58. http://dx.doi.org/10.1541/ieejeiss.127.1853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Guessoum, Amir. "Scanning velocity measurement of an acousto-optic deflector-=SUP=-*-=/SUP=-." Журнал технической физики 126, no. 4 (2019): 527. http://dx.doi.org/10.21883/os.2019.04.47524.318-18.

Full text
Abstract:
Beside a demonstrated theoretical formula that describes the variation of diffracted order angle as a function of time, another formula about the scanning velocity of an acousto-optic deflector is successfully demonstrated with experimental results very close to the theoretical formula. This deflector is obtained using laser beam interaction with frequency modulated ultrasonic sinusoidal wave in water. The particular attention that devoted to select the best experiment method of measuring scanning velocity has enabled us to find promising results; the scanning velocity of each diffracted order varies linearly according to modulating signal frequency as well as frequency excursion and sinusoidally as a function of time. Furthermore, the scanning maximum velocity of the pth diffracted order is p times the first diffracted order.
APA, Harvard, Vancouver, ISO, and other styles
27

Kastelik, Jean-Claude, Samuel Dupont, Konstantin B. Yushkov, and Joseph Gazalet. "Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off." Ultrasonics 53, no. 1 (January 2013): 219–24. http://dx.doi.org/10.1016/j.ultras.2012.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Suzuki, Takamasa, Yuzuki Kaneko, Samuel Choi, and Osami Sasaki. "External-cavity laser diode using acousto-optic deflector as tunable grating." Optics Letters 47, no. 7 (March 31, 2022): 1871. http://dx.doi.org/10.1364/ol.454021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Paparao, Palacharla, Simon A. Boothroyd, William M. Robertson, and Jacek Chrostowski. "Generation of reconfigurable interconnections with a two-dimensional acousto-optic deflector." Applied Optics 33, no. 11 (April 10, 1994): 2140. http://dx.doi.org/10.1364/ao.33.002140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wen, Tao, Zhao-wen Zhuang, Ji-bo Wei, and Dong-tang Ma. "A novel method to improve spatial resolution of acousto-optic deflector." Optoelectronics Letters 2, no. 1 (January 2006): 34–36. http://dx.doi.org/10.1007/bf03033588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gavryusev, Vladislav, Giuseppe Sancataldo, Pietro Ricci, Alberto Montalbano, Chiara Fornetto, Lapo Turrini, Annunziatina Laurino, et al. "Dual-beam confocal light-sheet microscopy via flexible acousto-optic deflector." Journal of Biomedical Optics 24, no. 10 (October 31, 2019): 1. http://dx.doi.org/10.1117/1.jbo.24.10.106504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fukuchi, Tetsuo, Koshichi Nemoto, Kouji Matsumoto, and Yoshiki Hosono. "Visualization of high-speed phenomena using an acousto-optic laser deflector." Electrical Engineering in Japan 154, no. 3 (2005): 9–15. http://dx.doi.org/10.1002/eej.20279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fukuchi, Tetsuo, Koshichi Nemoto, Kouji Matsumoto, and Yoshiki Hosono. "Visualization of High-speed Phenomena using an Acousto-optic Laser Deflector." IEEJ Transactions on Fundamentals and Materials 125, no. 2 (2005): 113–18. http://dx.doi.org/10.1541/ieejfms.125.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kinoshita, T., K. Sano, and E. Yoneda. "Tunable 8-channel wavelength demultiplexer using an acousto-optic light deflector." Electronics Letters 22, no. 12 (1986): 669. http://dx.doi.org/10.1049/el:19860458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, P. C., W. E. Stephens, T. C. Banwell, and L. A. Reith. "Performance of 4×4 optical crossbar switch utilising acousto-optic deflector." Electronics Letters 25, no. 4 (1989): 252. http://dx.doi.org/10.1049/el:19890176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

David, Edward H., Otis G. Zehl, and Michael G. Price. "Method and apparatus for improving the efficiency of an acousto‐optic deflector." Journal of the Acoustical Society of America 79, no. 2 (February 1986): 586. http://dx.doi.org/10.1121/1.393522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Antonov, S. N. "Acousto-optic deflector: A new method to increase the efficiency and bandwidth." Technical Physics 61, no. 10 (October 2016): 1597–601. http://dx.doi.org/10.1134/s1063784216100042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Tiansi, Chong Zhang, Aleksandar Aleksov, Islam Salama, and Aravinda Kar. "Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors." Applied Optics 56, no. 3 (January 19, 2017): 688. http://dx.doi.org/10.1364/ao.56.000688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Du, Rui, Kun Bi, Shaoqun Zeng, Derong Li, Songchao Xue, and Qingming Luo. "Analysis of fast axial scanning scheme using temporal focusing with acousto-optic deflectors." Journal of Modern Optics 56, no. 1 (January 10, 2009): 81–84. http://dx.doi.org/10.1080/09500340802499448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aboujeib, Joumane, André Pérennou, Véronique Quintard, and Jean Le Bihan. "Planar phased-array transducers associated with specific electronic command for acousto-optic deflectors." Journal of Optics A: Pure and Applied Optics 9, no. 5 (April 24, 2007): 463–69. http://dx.doi.org/10.1088/1464-4258/9/5/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zeng, Shaoqun, Xiaohua Lv, Kun Bi, Cheng Zhan, Derong Li, Wei R. Chen, Wenhui Xiong, Steven L. Jacques, and Qingming Luo. "Analysis of the dispersion compensation of acousto-optic deflectors used for multiphoton imaging." Journal of Biomedical Optics 12, no. 2 (2007): 024015. http://dx.doi.org/10.1117/1.2714061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

DIZIER, F., J. L. AYRAL, J. MONTEL, and J. P. HUIGNARD. "A PHASE CONJUGATE Nd:YAG LASER WITH BEAM STEERING." Journal of Nonlinear Optical Physics & Materials 02, no. 02 (April 1993): 229–45. http://dx.doi.org/10.1142/s0218199193000140.

Full text
Abstract:
We analyse the competitive effects which alter the stability of SBS phase conjugate mirrors when the laser operates at repetition rates between 10 and 30 Hz. Satisfactory results are obtained with nitrogen gas cell at 180 Atm. We also propose and experimentally demonstrate a SBS phase-conjugate Nd:YAG laser source with a beam steering function. The laser, designed as an oscillator-amplifier configuration, incorporates a TeO 2 acousto-optic deflector on the low energy beam. The high energy beam (100–185 mJ) is thus deflected over 2.7° and 40 resolved beam directions are obtained with 5 µs access time.
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Tiansi, Chong Zhang, Aleksandar Aleksov, Islam A. Salama, and Aravinda Kar. "Dynamic two-dimensional refractive index modulation for high performance acousto-optic deflector." Optics Express 23, no. 26 (December 21, 2015): 33667. http://dx.doi.org/10.1364/oe.23.033667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Otto, Hans-Jürgen, Cesar Jauregui, Fabian Stutzki, Florian Jansen, Jens Limpert, and Andreas Tünnermann. "Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector." Optics Express 21, no. 14 (July 12, 2013): 17285. http://dx.doi.org/10.1364/oe.21.017285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ouail, Nabil, Jean‐Claude Kastelik, Michel Pommeray, and Samuel Dupont. "Short access time acousto‐optic deflector based on two cascaded Paratellurite devices." Journal of the Acoustical Society of America 123, no. 5 (May 2008): 3276. http://dx.doi.org/10.1121/1.2933621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fukuchi, Tetsuo, Takuya Nayuki, Koshichi Nemoto, and Kiichiro Uchino. "Development of a high-speed laser interferometer using an acousto-optic deflector." Electrical Engineering in Japan 148, no. 2 (2004): 76–83. http://dx.doi.org/10.1002/eej.20011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Fukuchi, Tetsuo, Koshichi Nemoto, and Kouji Matsumoto. "High-speed imaging of laser intensity distribution using an acousto-optic deflector." Electrical Engineering in Japan 156, no. 3 (2006): 55–61. http://dx.doi.org/10.1002/eej.20386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fukuchi, Tetsuo, Takuya Nayuki, Koshichi Nemoto, and Kiichiro Uchino. "Development of a High-Speed Laser Interferometer Using an Acousto-Optic Deflector." IEEJ Transactions on Electronics, Information and Systems 123, no. 9 (2003): 1531–36. http://dx.doi.org/10.1541/ieejeiss.123.1531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fukuchi, Tetsuo, Koshichi Nemoto, and Kouji Matsumoto. "High-Speed Imaging of Laser Intensity Distribution Using an Acousto-Optic Deflector." IEEJ Transactions on Electronics, Information and Systems 125, no. 8 (2005): 1260–65. http://dx.doi.org/10.1541/ieejeiss.125.1260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pacheco, Gefeson Mendes, Eugenio Scalise, and Nori Beraldo. "A new acousto-electro-optic improved resolution deflector for high frequency operation." International Journal of Infrared and Millimeter Waves 14, no. 8 (August 1993): 1619–25. http://dx.doi.org/10.1007/bf02096220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography