Academic literature on the topic 'Antiviral inhibitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiviral inhibitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antiviral inhibitors"
Frederickson, Robert. "Antiviral protease inhibitors." Nature Biotechnology 17, no. 12 (December 1999): 1150. http://dx.doi.org/10.1038/70677.
Full textWang, Q. May, Robert B. Johnson, Louis N. Jungheim, Jeffrey D. Cohen, and Elcira C. Villarreal. "Dual Inhibition of Human Rhinovirus 2A and 3C Proteases by Homophthalimides." Antimicrobial Agents and Chemotherapy 42, no. 4 (April 1, 1998): 916–20. http://dx.doi.org/10.1128/aac.42.4.916.
Full textMello, Chris, Esmeralda Aguayo, Madeleine Rodriguez, Gary Lee, Robert Jordan, Tomas Cihlar, and Gabriel Birkus. "Multiple Classes of Antiviral Agents ExhibitIn VitroActivity against Human Rhinovirus Type C." Antimicrobial Agents and Chemotherapy 58, no. 3 (December 23, 2013): 1546–55. http://dx.doi.org/10.1128/aac.01746-13.
Full textVinson, Valda. "Promising antiviral protease inhibitors." Science 368, no. 6497 (June 18, 2020): 1324.2–1324. http://dx.doi.org/10.1126/science.368.6497.1324-b.
Full textMorales Vasquez, Desarey, Jun-Gyu Park, Ginés Ávila-Pérez, Aitor Nogales, Juan Carlos de la Torre, Fernando Almazan, and Luis Martinez-Sobrido. "Identification of Inhibitors of ZIKV Replication." Viruses 12, no. 9 (September 18, 2020): 1041. http://dx.doi.org/10.3390/v12091041.
Full textSepúlveda, Claudia Soledad, Cybele Carina García, and Elsa Beatriz Damonte. "Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy." Microorganisms 10, no. 8 (August 12, 2022): 1631. http://dx.doi.org/10.3390/microorganisms10081631.
Full textDe Nicolò, Amedeo, Marco Simiele, Andrea Calcagno, Adnan Mohamed Abdi, Stefano Bonora, Giovanni Di Perri, and Antonio D'Avolio. "Intracellular Antiviral Activity of Low-Dose Ritonavir in Boosted Protease Inhibitor Regimens." Antimicrobial Agents and Chemotherapy 58, no. 7 (May 5, 2014): 4042–47. http://dx.doi.org/10.1128/aac.00104-14.
Full textHolý, Antonín, Ivan Votruba, and Erik De Clercq. "Structure-activity studies on open-chain analogues of nucleosides: Inhibition of S-adenosyl-L-homocysteine hydrolase and antiviral activity 1. Neutral open-chain analogues." Collection of Czechoslovak Chemical Communications 50, no. 1 (1985): 245–61. http://dx.doi.org/10.1135/cccc19850245.
Full textHewajuli, Dyah Ayu, and NLPI Dharmayanti. "Efficacy, Mechanism and Antiviral Resistance of Neuraminidase Inhibitors and Adamantane against Avian Influenza." Indonesian Bulletin of Animal and Veterinary Sciences 29, no. 2 (December 4, 2019): 61. http://dx.doi.org/10.14334/wartazoa.v29i2.1951.
Full textHayden, Frederick G. "Perspectives on antiviral use during pandemic influenza." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356, no. 1416 (December 29, 2001): 1877–84. http://dx.doi.org/10.1098/rstb.2001.1007.
Full textDissertations / Theses on the topic "Antiviral inhibitors"
Li, Weikuan Schneller Stewart W. "Seeking mRNA methylation inhibitors as antiviral agents." Auburn, Ala, 2008. http://hdl.handle.net/10415/1540.
Full textourahmane, amine. "Discovery and Characterization of Cytomegalovirus Inhibitors using Reporter-based Antiviral Assays." VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/5013.
Full textNevers, Quentin. "Développement d'une nouvelle famille d'inhibiteurs de cyclophilines à large spectre antiviral et étude de leurs mécanismes d'action dans les infections par le Virus de l'Hépatite C et les Coronavirus." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC0013/document.
Full textOver the past decades, an increasing number of viruses has emerged or re-emerged in humans. Unfortunately, currently approved antiviral drugs target a small set of viruses. Thus, there is an urgent need for the development of broad-spectrum antiviral drugs.Cyclophilins are cellular proteins involved in a large number of biological processes, and in different viral lifecycles from unrelated families. They appear as a potential target for the development of broad-spectrum antiviral approaches. However, currently available cyclophilin inhibitors have drawbacks which limit their clinical use.By means of "fragment-based drug design", we generated a new class of small-molecule cyclophilin inhibitors (SMCypI), unrelated with those already available. Cristallographic studies revealed that the SMCypIs bind to two close pockets of the active site and inhibit cyclophilin PPIase activity. These compounds do not bear immunosuppressive properties and inhibit the replication of HIV, HCV and coronaviruses in vitro.We characterized the anti-HCV activity of C31, the most potent inhibitor of cyclophilin PPIase activity. C31 had pan-genotypic HCV inhibitor properties, with a high barrier to resistance and additive effects with currently approved anti-HCV agents. C31 blocked HCV replication by disrupting the interaction between the nonstructural viral protein NS5A and cyclophilin A in a PPIase-dependent manner. Finally, C31 was active on zika, yellow fever, dengue and West-Nile virus infections.The antiviral activity of the SMCypIs has then been characterized on HCoV-229E infection. Interestingly, PPIase inhibition was necessary, but not sufficient for antiviral effect. A structure-activity relationship study identified a key moiety in the SMCypIs at the interface between the two cyclophilin pockets. F836 has been identified as the most potent compound which inhibited both the cytopathic effect and the intracellular RNA of HCoV-229E without associated cytotoxicity and as potently as alisporivir. This compound targeted HCoV-229E entry at a post-attachment step and was also active on HCoV-OC43 and MERS-CoV strains. We then demonstrated that cyclophilin A was associated with viral particles. By means of CRISPR-Cas9, cell lines depleted for cyclophilin A were generated. Cyclophilin A was identified as a proviral factor for HCoV-229E and was partially involved in F836 antiviral effect. Cyclophilin A expression level was drastically decreased by infection.SMCypIs represent a unique tool to decipher the cellular and molecular mechanisms by which cyclophilins interfere with viral lifecycles, as well as drugable compounds that could find an indication as broad-spectrum antiviral drugs
González-Ortega, Emmanuel. "Resistance to HIV entry inhibitors: signature mutations as tool guide for the identification of new antiviral agents." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/84059.
Full textADS‐J1 ha estat seleccionat per unir‐se a gp41 i inhibir la fusió de les membranes. A través de diversos assajos, incloent la generació de soques resistents a ADS‐J1, el nostre laboratori va demostrar que ADS‐J1 interactua amb gp120 i no amb gp41. Una publicació posterior va suggerir que ADS‐J1 s’uneix a la ‘pocket‐region’ de gp41, prevenint l’infecció pel virus. En el present treball, nosaltres confirmem que ADSJ1 interactua amb gp120 i no amb gp41 i que la recombinació de gp120 en un VIH silvestre restitueix el fenotip resistent. Assajos de temps de addició van demostrar clarament que ADS‐J1 no interactua amb gp41. VIRIP va ser identificat com un pèptid natural present en el hemofiltrat humà capaç d’inhibir la fusió de membranes operada per gp41 del VIH. Es va suggerir que VIRIP interactua amb el pèptid de fusió de gp41, bloquejant la fusió de les membranes. Nosaltres hem generat un virus resistent a VIR‐353, un anàleg de VIRIP. Addicionalment, hem determinat la combinació de mutacions que generen el fenotip resistent. Estudis recents van mostrar l'efectivitat de VIR‐576, un pèptid amb alta similitud a VIRIP i VIR‐353 en un assaig clínic fase I/II. La resistència a VIRIP/VIR‐353 va requerir un període de temps llarg per emergir, la qual cosa suggereix una elevada barrera genètica a la resistència. Les mutacions responsables del fenotip resistent van afectar en greument la capacitat replicativa del virus, no obstant això, diverses mutacions compensatòries van restaurar‐ne la capacitat replicativa, mantenint intacta la resistència a VIR‐353. L’activitat antiviral de T20 no sembla afectada per VIR‐353, la combinació dels dos inhibidors de fusió van mostrar un efecte additiu en la inhibició de la replicació. En general, els nostres resultats evidencien la plasticitat de les glicoproteïnes de l'embolcall del VIH. Aquesta plasticitat es realça quan el virus replica sota la pressió selectiva imposada per fàrmacs que inhibeixen la replicació viral, la qual cosa afegeix una barrera genètica addicional a ser superada pel virus.
Howe, Jonathon David. "Antiviral mechanisms of small molecules targeting the endoplasmic reticulum and Golgi apparatus." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:04368b4b-2fd3-4fc7-8f89-ec39cd87e37d.
Full textHoyte, Ashley Christopher. "Molecular Mechanisms for Antiviral Activities and HIV-1 Resistance to Allosteric Integrase Inhibitors." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543436136541123.
Full textSwaminathan, Kavya. "Novel anthocyanin inhibitors to influenza neuraminidase and monitioring antiviral resistance by mass spectrometry." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10220.
Full textLUCIA, FALSITTA. "DDX3, a new frontier in broad-spectrum antiviral therapy: synthesis of potential inhibitors." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1095615.
Full textGerace, Martina. "In search of new antiviral targets: Design and synthesis of new inhibitors of ZIKV Mtase and potential inhibitors of IMPDH." Doctoral thesis, Università di Siena, 2023. https://hdl.handle.net/11365/1227194.
Full textBiswas, S. "Study of antiviral resistance to helicase-primase inhibitors of herpes simplex virus type 1." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596674.
Full textBooks on the topic "Antiviral inhibitors"
March, Darren. Designing new antiviral drugs for AIDS: HIV-1 protease and its inhibitors. Austin: R.G. Landes, 1996.
Find full textAmerican Society for Microbiology. Eastern Pennsylvania Branch and Eastern Pennsylvania Branch of the American Society for Microbiology Symposium of Innovations in Antiviral Development and the Detection of Virus Infections (1990 : Philadelphia, Pa.), eds. Innovations in antiviral development and the detection of virus infections. New York: Plenum Press, 1992.
Find full textHIV-1 integrase: Mechanism and inhibitor design. Hoboken, N.J: Wiley, 2011.
Find full textEsté, José Andrés. Mode of action and development of resistance to human immunodeficiency virus inhibitors that are targeted at early stages of infection. Leuven, Belgium: Leuven University Press, 1999.
Find full textRNA interference and viruses: Current innovations and future trends. Norfolk, UK: Caister Academic Press, 2010.
Find full textMartínez, Miguel Angel. RNA interference and viruses: Current innovations and future trends. Norfolk, UK: Caister Academic Press, 2010.
Find full textHans-Georg, Kräusslich, Oroszlan Stephen, Wimmer Eckard, and Cold Spring Harbor Laboratory, eds. Viral proteinases as targets for chemotherapy. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 1989.
Find full textBilimoria, Darius M. Studies involving measles virus receptor interaction and inhibitors of virus mediated membrane fusion (a prelude to a small animal model and antiviral agents directed). Ottawa: National Library of Canada, 1998.
Find full textLendeckel, Uwe, and Nigel M. Hooper, eds. Viral Proteases and Antiviral Protease Inhibitor Therapy. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2348-3.
Full textH, Wagman Gerald, and Cooper Raymond, eds. Natural products isolation: Separation methods for antimicrobials, antivirals, and enzyme inhibitors. Amsterdam: Elsevier, 1989.
Find full textBook chapters on the topic "Antiviral inhibitors"
Anderson, Jeffrey, Celia Schiffer, Sook-Kyung Lee, and Ronald Swanstrom. "Viral Protease Inhibitors." In Antiviral Strategies, 85–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79086-0_4.
Full textVuagniaux, Grégoire, Arnaud Hamel, Rafael Crabbé, Hervé C. Porchet, and Jean-Maurice Dumont. "Cyclophilin Inhibitors." In Antiviral Drug Strategies, 147–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635955.ch7.
Full textWong-Staal, Flossie, Guohong Liu, and Jeffrey McKelvy. "HCV Viral Entry Inhibitors." In Antiviral Drugs, 329–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929353.ch23.
Full textCoen, Donald M. "Antiherpesviral DNA Polymerase Inhibitors." In Antiviral Research, 1–18. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815493.ch1.
Full textRoberts, Noel A. "Anti-influenza drugs and neuraminidase inhibitors." In Antiviral Agents, 35–77. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-7784-8_2.
Full textBaba, Masanori. "Entry Inhibitors of Human Immunodeficiency Virus." In Antiviral Research, 19–32. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815493.ch2.
Full textCrowe, Suzanne. "New Reverse Transcriptase Inhibitors." In Antiviral Chemotherapy 5, 183–97. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4743-3_18.
Full textRen, Shijun, and Eric J. Lien. "Development of HIV protease inhibitors: A survey." In Antiviral Agents, 1–34. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-7784-8_1.
Full textMartinez-Cajas, Jorge L., and Mark A. Wainberg. "Inhibitors of the Human Immunodeficiency Virus Protease." In Antiviral Research, 113–35. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815493.ch7.
Full textZimmermann, H., G. Hewlett, and H. Rübsamen-Waigmann. "Other Inhibitors of Viral Enzymes and Functions." In Antiviral Strategies, 155–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-79086-0_6.
Full textConference papers on the topic "Antiviral inhibitors"
"Application of 3D image analysis to facilitate the identification of antiviral inhibitors." In Microscience Microscopy Congress 2023 incorporating EMAG 2023. Royal Microscopical Society, 2023. http://dx.doi.org/10.22443/rms.mmc2023.189.
Full textFernández, C., A. Cunha, and M. Alves. "NARMA-L2-based Antiviral Therapy for Infected CD4+ T Cells in a Nonlinear Model for HIV Dynamics: Protease Inhibitors-based Approach." In 12th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008980606750683.
Full textPEÑA, CESAR, Amanda Briena Batista Flores da Cunha, and Maise Araujo Alves. "NARMA-L2-based nonlinear model for HIV dynamics: behavior of infected/uninfected CD4+ T cells for antiviral therapy based on protease inhibitors." In ANAIS DO 14º SIMPóSIO BRASILEIRO DE AUTOMAçãO INTELIGENTE. Galoa, 2019. http://dx.doi.org/10.17648/sbai-2019-112481.
Full textSolis-Calero, C., PA Morais, FF Maia Jr, VN Freire, and HF Carvalho. "Explaining SARS-CoV-2 3CL Mpro binding to peptidyl Michael acceptor and a ketone-based inhibitors using Molecular fractionation with conjugate caps method." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020185.
Full textGriego, Anastacia M., Pamela Barraza, Chelin Hu, Agnieszka Dziduszko, Brianna K. Crowley, Helen J. Hathaway, Julie E. Bauman, and Michelle A. Ozbun. "Abstract 3176: The EGFR pathway as the Achilles’ heel for human papillomavirus-induced tumors: EGFR/MAPK pathway inhibitors exhibit antiviral activities and limit tumor growthin vivo." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3176.
Full textAy, Emrah, and Nizami Duran. "Synergistic Efficacy of Eucalyptol with Acyclovir against HSV-2." In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.iii.3.
Full textShahab, S. N., and E. N. Vasyukevich. "TRIAZAVIRIN AS A POTENTIAL PROTEASE M INHIBITOR OF CORONOVIRUS 2019-nCoV." In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-371-374.
Full textBartlett, Nathan W., Louise Slater, Gaetano Caramori, Simon Message, Sebastian L. Johnston, and Michael R. Edwards. "Reduced NF-ºB P65 Expression Inhibits Rhinovirus-Induced Inflammation Without Compromising Antiviral Immunity." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a3875.
Full textXu, F., W. Ouyang, J. Xia, L. Yang, and H. Zhou. "NMI Inhibits Antiviral Immunity by Polyubiquitination and Degradation of IRF3 and IRF7 Through TRIM21." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a3975.
Full textNedeljković, Nikola V., Vladimir D. Dobričić, Marina Ž. Mijajlović, Gordana P. Radić, Miloš V. Nikolić, Ana S. Stanković, and Zorica B. Vujić. "„IN SILICO“ PREDICTION OF PHARMACOKINETIC PROPERTIES AND DRUGLIKENESS OF NOVEL THIOUREA DERIVATIVES OF NAPROXEN." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.371n.
Full textReports on the topic "Antiviral inhibitors"
Edmundson, Scott, Michael Huesemann, Sherry Cady, Li-Jung Kuo, Brady Anderson, and Daman Reynolds. VITAL- Viral InhibiTors from ALgae: Generating Extracts for Antiviral Activity Assays. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1776864.
Full textLoebenstein, Gad, M. Chessin, and Abed Gera. Resistance Mechanisms to Viruses in Plants Associated with Antiviral Substances (Inhibitors of Virus Replication). United States Department of Agriculture, March 1987. http://dx.doi.org/10.32747/1987.7695597.bard.
Full textChejanovsky, Nor, and Bruce A. Webb. Potentiation of Pest Control by Insect Immunosuppression. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592113.bard.
Full textLapidot, Moshe, and Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604274.bard.
Full textGafni, Yedidya, Moshe Lapidot, and Vitaly Citovsky. Dual role of the TYLCV protein V2 in suppressing the host plant defense. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597935.bard.
Full text