Journal articles on the topic 'Antimicrobial peptid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antimicrobial peptid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Burgettiné Böszörményi, Erzsébet, István Barcs, Gyula Domján, Katalin Bélafiné Bakó, András Fodor, László Makrai, and Dávid Vozik. "A Xenorhabdus budapestensis entomopatogén baktérium sejtmentes fermentlevének és tisztítottfehérje-frakciójának antimikrobiális hatása néhány zoonoticus baktériumra." Orvosi Hetilap 156, no. 44 (November 2015): 1782–86. http://dx.doi.org/10.1556/650.2015.30274.
Full textAlmsned, Fahad. "Designing Antimicrobial Peptide: Current Status." Journal of Medical Science And clinical Research 05, no. 03 (March 26, 2016): 19282–94. http://dx.doi.org/10.18535/jmscr/v5i3.153.
Full textBrowne, Katrina, Sudip Chakraborty, Renxun Chen, Mark DP Willcox, David StClair Black, William R. Walsh, and Naresh Kumar. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (September 24, 2020): 7047. http://dx.doi.org/10.3390/ijms21197047.
Full textArtuković Nadinić, Irena, Vladimir Mrljak, Marija Lipar, Marina Pavlak, Ljiljana Bedrica, and Renata Barić Rafaj. "The peptide hormone hepcidin." Veterinarska stanica 51, no. 2 (March 27, 2020): 187–98. http://dx.doi.org/10.46419/vs.51.2.9.
Full textChongsiriwatana, Nathaniel P., Tyler M. Miller, Modi Wetzler, Sergei Vakulenko, Amy J. Karlsson, Sean P. Palecek, Shahriar Mobashery, and Annelise E. Barron. "Short Alkylated Peptoid Mimics of Antimicrobial Lipopeptides." Antimicrobial Agents and Chemotherapy 55, no. 1 (October 18, 2010): 417–20. http://dx.doi.org/10.1128/aac.01080-10.
Full textHaney, Evan F., Leonard T. Nguyen, David J. Schibli, and Hans J. Vogel. "Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41." Beilstein Journal of Organic Chemistry 8 (July 24, 2012): 1172–84. http://dx.doi.org/10.3762/bjoc.8.130.
Full textNava Lara, Rodrigo, Longendri Aguilera-Mendoza, Carlos Brizuela, Antonio Peña, and Gabriel Del Rio. "Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs." Molecules 24, no. 7 (March 31, 2019): 1258. http://dx.doi.org/10.3390/molecules24071258.
Full textZhang, Yong-lian, and Hsiao-Chang Chan. "S1h1-4 An epididymis-specific antimicrobial peptide has dual functions in sperm maturation(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S113. http://dx.doi.org/10.2142/biophys.46.s113_2.
Full textSutyak Noll, Katia, Mark N. Prichard, Arkady Khaykin, Patrick J. Sinko, and Michael L. Chikindas. "The Natural Antimicrobial Peptide Subtilosin Acts Synergistically with Glycerol Monolaurate, Lauric Arginate, and ε-Poly-l-Lysine against Bacterial Vaginosis-Associated Pathogens but Not Human Lactobacilli." Antimicrobial Agents and Chemotherapy 56, no. 4 (January 17, 2012): 1756–61. http://dx.doi.org/10.1128/aac.05861-11.
Full textС., Саха, Ратрей П., and Мишра А. "ВЗАИМОДЕЙСТВИЕ АНТИМИКРОБНОГО ПЕПТИДА ЛАЗИОГЛОССИНА III С МОДЕЛЬНЫМИ ЛИПИДНЫМИ БИСЛОЯМИ." Биофизика 67, no. 2 (2022): 250–63. http://dx.doi.org/10.31857/s0006302922020077.
Full textKraszewska, Joanna, Michael C. Beckett, Tharappel C. James, and Ursula Bond. "Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria." Applied and Environmental Microbiology 82, no. 14 (May 6, 2016): 4288–98. http://dx.doi.org/10.1128/aem.00558-16.
Full textMatsuzaki, Katsumi. "S1h1-1 Interaction of the Archetypical Antimicrobial Peptide Magainin with Membranes : From Classics to Cutting Edge(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S112. http://dx.doi.org/10.2142/biophys.46.s112_3.
Full textFleeman, Renee M., Luis A. Macias, Jennifer S. Brodbelt, and Bryan W. Davies. "Defining principles that influence antimicrobial peptide activity against capsulatedKlebsiella pneumoniae." Proceedings of the National Academy of Sciences 117, no. 44 (October 21, 2020): 27620–26. http://dx.doi.org/10.1073/pnas.2007036117.
Full textGauri, Samiran Sona, Chandan Kumar Bera, Rabindranath Bhattacharyya, and Santi Mohan Mandal. "Identification of an antimicrobial peptide from large freshwater snail (Lymnaea stagnalis): activity against antibiotics resistant Staphylococcus epidermidis." INTERNATIONAL JOURNAL OF EXPERIMENTAL RESEARCH AND REVIEW 2 (January 30, 2016): 5–9. http://dx.doi.org/10.52756/ijerr.2016.v2.002.
Full textHe, Zengguo, Duygu Kisla, Liwen Zhang, Chunhua Yuan, Kari B. Green-Church, and Ahmed E. Yousef. "Isolation and Identification of a Paenibacillus polymyxa Strain That Coproduces a Novel Lantibiotic and Polymyxin." Applied and Environmental Microbiology 73, no. 1 (October 27, 2006): 168–78. http://dx.doi.org/10.1128/aem.02023-06.
Full textMénard, Sandrine, Valentina Förster, Michael Lotz, Dominique Gütle, Claudia U. Duerr, Richard L. Gallo, Birgitta Henriques-Normark, et al. "Developmental switch of intestinal antimicrobial peptide expression." Journal of Experimental Medicine 205, no. 1 (January 7, 2008): 183–93. http://dx.doi.org/10.1084/jem.20071022.
Full textGreen, R. Madison, and Kevin L. Bicker. "Evaluation of peptoid mimics of short, lipophilic peptide antimicrobials." International Journal of Antimicrobial Agents 56, no. 2 (August 2020): 106048. http://dx.doi.org/10.1016/j.ijantimicag.2020.106048.
Full textDas, Bharati, and Maneesh Jain. "A New and Promising Avenue In Selective Antimicrobial Treatment For Particularly Targeted Antimicrobial Peptides." Journal of Advances and Scholarly Researches in Allied Education 15, no. 7 (September 1, 2018): 69–75. http://dx.doi.org/10.29070/15/57667.
Full textEpand, Raquel F., Guangshun Wang, Bob Berno, and Richard M. Epand. "Lipid Segregation Explains Selective Toxicity of a Series of Fragments Derived from the Human Cathelicidin LL-37." Antimicrobial Agents and Chemotherapy 53, no. 9 (July 6, 2009): 3705–14. http://dx.doi.org/10.1128/aac.00321-09.
Full textSilva, Osmar N., Marcelo D. T. Torres, Jicong Cao, Elaine S. F. Alves, Leticia V. Rodrigues, Jarbas M. Resende, Luciano M. Lião, et al. "Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties." Proceedings of the National Academy of Sciences 117, no. 43 (October 12, 2020): 26936–45. http://dx.doi.org/10.1073/pnas.2012379117.
Full textBoparai, Jaspreet Kaur, and Pushpender Kumar Sharma. "Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications." Protein & Peptide Letters 27, no. 1 (December 10, 2019): 4–16. http://dx.doi.org/10.2174/0929866526666190822165812.
Full textEckert, Randal, Fengxia Qi, Daniel K. Yarbrough, Jian He, Maxwell H. Anderson, and Wenyuan Shi. "Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp." Antimicrobial Agents and Chemotherapy 50, no. 4 (April 2006): 1480–88. http://dx.doi.org/10.1128/aac.50.4.1480-1488.2006.
Full textKopeykin, P. M., M. S. Sukhareva, N. V. Lugovkina, and O. V. Shamova. "CHEMICAL SYNTHESIS AND ANALYSIS OF ANTIMICROBIAL AND HEMOLYTIC ACTIVITY OF STRUCTURAL ANALOGOUS OF A PEPTIDE PROTEGRIN 1." Medical academic journal 19, no. 1S (December 15, 2019): 169–70. http://dx.doi.org/10.17816/maj191s1169-170.
Full textAlkatheri, Asma Hussain, Polly Soo-Xi Yap, Aisha Abushelaibi, Kok-Song Lai, Wan-Hee Cheng, and Swee-Hua Erin Lim. "Host–Bacterial Interactions: Outcomes of Antimicrobial Peptide Applications." Membranes 12, no. 7 (July 19, 2022): 715. http://dx.doi.org/10.3390/membranes12070715.
Full textHu, Alvin. "Conjugation of Silver Nanoparticles With De Novo–Engineered Cationic Antimicrobial Peptides: Exploratory Proposal." JMIR Research Protocols 10, no. 12 (December 8, 2021): e28307. http://dx.doi.org/10.2196/28307.
Full textCesaro, Angela, Rosa Gaglione, Marco Chino, Maria De Luca, Rocco Di Girolamo, Angelina Lombardi, Rosanna Filosa, and Angela Arciello. "Novel Retro-Inverso Peptide Antibiotic Efficiently Released by a Responsive Hydrogel-Based System." Biomedicines 10, no. 6 (June 2, 2022): 1301. http://dx.doi.org/10.3390/biomedicines10061301.
Full textCiura, Krzesimir, Natalia Ptaszyńska, Hanna Kapica, Monika Pastewska, Anna Łęgowska, Krzysztof Rolka, Wojciech Kamysz, Wiesław Sawicki, and Katarzyna E. Greber. "Can Immobilized Artificial Membrane Chromatography Support the Characterization of Antimicrobial Peptide Origin Derivatives?" Antibiotics 10, no. 10 (October 12, 2021): 1237. http://dx.doi.org/10.3390/antibiotics10101237.
Full textRaj, Periathamby Antony, Latha Rajkumar, and Andrew R. Dentino. "Novel molecules for intra-oral delivery of antimicrobials to prevent and treat oral infectious diseases." Biochemical Journal 409, no. 2 (December 21, 2007): 601–9. http://dx.doi.org/10.1042/bj20070810.
Full textSalillas, Sandra, Juan José Galano-Frutos, Alejandro Mahía, Ritwik Maity, María Conde-Giménez, Ernesto Anoz-Carbonell, Helena Berlamont, et al. "Selective Targeting of Human and Animal Pathogens of the Helicobacter Genus by Flavodoxin Inhibitors: Efficacy, Synergy, Resistance and Mechanistic Studies." International Journal of Molecular Sciences 22, no. 18 (September 20, 2021): 10137. http://dx.doi.org/10.3390/ijms221810137.
Full textNan, Yong, Ka Park, Young Jeon, Yoonkyung Park, Il-Seon Park, Kyung-Soo Hahm, and Song Shin. "Antimicrobial and Anti-Inflammatory Activities of a Leu/Lys-Rich Antimicrobial Peptide with Phe-Peptoid Residues." Protein & Peptide Letters 14, no. 10 (October 1, 2007): 1003–7. http://dx.doi.org/10.2174/092986607782541042.
Full textFernández, Lucía, W. James Gooderham, Manjeet Bains, Joseph B. McPhee, Irith Wiegand, and Robert E. W. Hancock. "Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS." Antimicrobial Agents and Chemotherapy 54, no. 8 (June 14, 2010): 3372–82. http://dx.doi.org/10.1128/aac.00242-10.
Full textSarangi, Tamalika, S. Ramakrishnan, and S. Nakkeeran. "Antimicrobial Peptide Genes Present in Indigenous Isolates of Bacillus spp. Exhibiting Antimicrobical Properties." International Journal of Current Microbiology and Applied Sciences 6, no. 8 (August 10, 2017): 1361–69. http://dx.doi.org/10.20546/ijcmas.2017.608.166.
Full textPatrzykat, Aleksander, Jeffrey W. Gallant, Jung-Kil Seo, Jennifer Pytyck, and Susan E. Douglas. "Novel Antimicrobial Peptides Derived from Flatfish Genes." Antimicrobial Agents and Chemotherapy 47, no. 8 (August 2003): 2464–70. http://dx.doi.org/10.1128/aac.47.8.2464-2470.2003.
Full textJenssen, Håvard, Pamela Hamill, and Robert E. W. Hancock. "Peptide Antimicrobial Agents." Clinical Microbiology Reviews 19, no. 3 (July 2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.
Full textEl-Sayed Amr, Abd El-Galil, Mohamed Abo-Ghalia, and Mohamed M. Abdalah. "Synthesis of Novel Macrocyclic Peptido-calix[4]arenes and Peptidopyridines as Precursors for Potential Molecular Metallacages, Chemosensors and Biologically Active Candidates." Zeitschrift für Naturforschung B 61, no. 11 (November 1, 2006): 1335–45. http://dx.doi.org/10.1515/znb-2006-1104.
Full textRighetto, Gabriela Marinho, José Luiz de Souza Lopes, Paulo José Martins Bispo, Camille André, Julia Medeiros Souza, Adriano Defini Andricopulo, Leila Maria Beltramini, and Ilana Lopes Baratella da Cunha Camargo. "Antimicrobial Activity of an Fmoc-Plantaricin 149 Derivative Peptide against Multidrug-Resistant Bacteria." Antibiotics 12, no. 2 (February 15, 2023): 391. http://dx.doi.org/10.3390/antibiotics12020391.
Full textGreco, Ines, Johannes Hansen, Bimal Jana, Natalia Molchanova, Alberto Oddo, Peter Thulstrup, Peter Damborg, Luca Guardabassi, and Paul Hansen. "Structure–Activity Study, Characterization, and Mechanism of Action of an Antimicrobial Peptoid D2 and Its d- and l-Peptide Analogues." Molecules 24, no. 6 (March 21, 2019): 1121. http://dx.doi.org/10.3390/molecules24061121.
Full textRuijne, Fleur, and Oscar P. Kuipers. "Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials." Biochemical Society Transactions 49, no. 1 (January 13, 2021): 203–15. http://dx.doi.org/10.1042/bst20200425.
Full textNava Lara, Rodrigo A., Jesús A. Beltrán, Carlos A. Brizuela, and Gabriel Del Rio. "Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques." Pharmaceuticals 13, no. 9 (August 21, 2020): 204. http://dx.doi.org/10.3390/ph13090204.
Full textJaniszewska, Jolanta. "Natural antimicrobial peptides in biomedical applications." Polimery 59, no. 10 (October 2014): 699–707. http://dx.doi.org/10.14314/polimery.2014.699.
Full textToole, Jamie, Hannah L. Bolt, John J. Marley, Sheila Patrick, Steven L. Cobb, and Fionnuala T. Lundy. "Peptoids with Antibiofilm Activity against the Gram Negative Obligate Anaerobe, Fusobacterium nucleatum." Molecules 26, no. 16 (August 5, 2021): 4741. http://dx.doi.org/10.3390/molecules26164741.
Full textNüsslein, Klaus, Lachelle Arnt, Jason Rennie, Cullen Owens, and Gregory N. Tew. "Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic." Microbiology 152, no. 7 (July 1, 2006): 1913–18. http://dx.doi.org/10.1099/mic.0.28812-0.
Full textFindlay, Brandon, George G. Zhanel, and Frank Schweizer. "Cationic Amphiphiles, a New Generation of Antimicrobials Inspired by the Natural Antimicrobial Peptide Scaffold." Antimicrobial Agents and Chemotherapy 54, no. 10 (August 9, 2010): 4049–58. http://dx.doi.org/10.1128/aac.00530-10.
Full textWang, Guangshun, Raquel F. Epand, Biswajit Mishra, Tamara Lushnikova, Vinai Chittezham Thomas, Kenneth W. Bayles, and Richard M. Epand. "Decoding the Functional Roles of Cationic Side Chains of the Major Antimicrobial Region of Human Cathelicidin LL-37." Antimicrobial Agents and Chemotherapy 56, no. 2 (November 14, 2011): 845–56. http://dx.doi.org/10.1128/aac.05637-11.
Full textVakhrusheva, Tatyana V., Alexey V. Sokolov, Grigoriy D. Moroz, Valeria A. Kostevich, Nikolay P. Gorbunov, Igor P. Smirnov, Ekaterina N. Grafskaia, Ivan A. Latsis, Oleg M. Panasenko, and Vassili N. Lazarev. "Effects of Synthetic Short Cationic Antimicrobial Peptides on the Catalytic Activity of Myeloperoxidase, Reducing Its Oxidative Capacity." Antioxidants 11, no. 12 (December 7, 2022): 2419. http://dx.doi.org/10.3390/antiox11122419.
Full textVázquez, Roberto, Mateo Seoane-Blanco, Virginia Rivero-Buceta, Susana Ruiz, Mark J. van Raaij, and Pedro García. "Monomodular Pseudomonas aeruginosa phage JG004 lysozyme (Pae87) contains a bacterial surface-active antimicrobial peptide-like region and a possible substrate-binding subdomain." Acta Crystallographica Section D Structural Biology 78, no. 4 (March 4, 2022): 435–54. http://dx.doi.org/10.1107/s2059798322000936.
Full textBaek, Mihwa, Masakatsu Kamiya, Taichi Nakazumi, Satoshi Tomisawa, Yasuhiro Kumaki, Takashi Kikukawa, Makoto Demura, Keiichi Kawano, and Tomoyasu Aizawa. "3P011 Structural analysis of antimicrobial peptide CP1 with LPS by NMR(01A. Protein: Structure,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S213. http://dx.doi.org/10.2142/biophys.53.s213_5.
Full textFrimodt-Møller, Jakob, Christopher Campion, Peter E. Nielsen, and Anders Løbner-Olesen. "Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope." Current Genetics 68, no. 1 (November 8, 2021): 83–90. http://dx.doi.org/10.1007/s00294-021-01217-9.
Full textHayashi, Katsuhiko, Takashi Misawa, Chihiro Goto, Yosuke Demizu, Yukiko Hara-Kudo, and Yutaka Kikuchi. "The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae." PLOS ONE 17, no. 1 (January 24, 2022): e0261893. http://dx.doi.org/10.1371/journal.pone.0261893.
Full textNeubauer, Damian, Maciej Jaśkiewicz, Marta Bauer, Agata Olejniczak-Kęder, Emilia Sikorska, Karol Sikora, and Wojciech Kamysz. "Biological and Physico-Chemical Characteristics of Arginine-Rich Peptide Gemini Surfactants with Lysine and Cystine Spacers." International Journal of Molecular Sciences 22, no. 7 (March 24, 2021): 3299. http://dx.doi.org/10.3390/ijms22073299.
Full text