To see the other types of publications on this topic, follow the link: Antimicrobial peptid.

Dissertations / Theses on the topic 'Antimicrobial peptid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Antimicrobial peptid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Dannehl, Claudia. "Fragments of the human antimicrobial LL-37 and their interaction with model membranes." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6814/.

Full text
Abstract:
A detailed description of the characteristics of antimicrobial peptides (AMPs) is highly demanded, since the resistance against traditional antibiotics is an emerging problem in medicine. They are part of the innate immune system in every organism, and they are very efficient in the protection against bacteria, viruses, fungi and even cancer cells. Their advantage is that their target is the cell membrane, in contrast to antibiotics which disturb the metabolism of the respective cell type. This allows AMPs to be more active and faster. The lack of an efficient therapy for some cancer types and the evolvement of resistance against existing antitumor agents make AMPs promising in cancer therapy besides being an alternative to traditional antibiotics. The aim of this work was the physical-chemical characterization of two fragments of LL-37, a human antimicrobial peptide from the cathelicidin family. The fragments LL-32 and LL-20 exhibited contrary behavior in biological experiments concerning their activity against bacterial cells, human cells and human cancer cells. LL-32 had even a higher activity than LL-37, while LL-20 had almost no effect. The interaction of the two fragments with model membranes was systematically studied in this work to understand their mode of action. Planar lipid films were mainly applied as model systems in combination with IR-spectroscopy and X-ray scattering methods. Circular Dichroism spectroscopy in bulk systems completed the results. In the first approach, the structure of the peptides was determined in aqueous solution and compared to the structure of the peptides at the air/water interface. In bulk, both peptides are in an unstructured conformation. Adsorbed and confined to at the air-water interface, the peptides differ drastically in their surface activity as well as in the secondary structure. While LL-32 transforms into an α-helix lying flat at the water surface, LL-20 stays partly unstructured. This is in good agreement with the high antimicrobial activity of LL-32. In the second approach, experiments with lipid monolayers as biomimetic models for the cell membrane were performed. It could be shown that the peptides fluidize condensed monolayers of negatively charged DPPG which can be related to the thinning of a bacterial cell membrane. An interaction of the peptides with zwitterionic PCs, as models for mammalian cells, was not clearly observed, even though LL-32 is haemolytic. In the third approach, the lipid monolayers were more adapted to the composition of human erythrocyte membranes by incorporating sphingomyelin (SM) into the PC monolayers. Physical-chemical properties of the lipid films were determined and the influence of the peptides on them was studied. It could be shown that the interaction of the more active LL-32 is strongly increased for heterogeneous lipid films containing both gel and fluid phases, while the interaction of LL-20 with the monolayers was unaffected. The results indicate an interaction of LL-32 with the membrane in a detergent-like way. Additionally, the modelling of the peptide interaction with cancer cells was performed by incorporating some negatively charged lipids into the PC/SM monolayers, but the increased charge had no effect on the interaction of LL-32. It was concluded, that the high anti-cancer activity of the peptide originates from the changed fluidity of cell membrane rather than from the increased surface charge. Furthermore, similarities to the physical-chemical properties of melittin, an AMP from the bee venom, were demonstrated.
Aufgrund der steigenden Resistenzen von Zellstämmen gegen traditionelle Therapeutika sind alternative medizinische Behandlungsmöglichkeiten für bakterielle Infektionen und Krebs stark gefragt. Antimikrobielle Peptide (AMPs) sind Bestandteil der unspezifischen Immunabwehr und kommen in jedem Organismus vor. AMPs lagern sich von außen an die Zellmembran an und zerstören ihre Integrität. Das macht sie effizient und vor allem schnell in der Wirkung gegen Bakterien, Viren, Pilzen und sogar Krebszellen. Das Ziel dieser Arbeit lag in der physikalisch-chemischen Charakterisierung zweier Peptidfragmente die unterschiedliche biologische Aktivität aufweisen. Die Peptide LL-32 und LL-20 waren Teile des humanen LL-37 aus der Kathelizidin-Familie. LL-32 wies eine stärke Aktivität als das Mutterpeptid auf, während LL-20 kaum aktiv gegen die verschiedenen Zelltypen war. In dieser Arbeit wurde die Wechselwirkung der Peptide mit Zellmembranen systematisch anhand von zweidimensionalen Modellmembranen in dieser Arbeit untersucht. Dafür wurden Filmwaagenmessungen mit IR-spektroskopischen und Röntgenstreumethoden gekoppelt. Circulardichroismus-Spektroskopie im Volumen komplementierte die Ergebnisse. In der ersten Näherung wurde die Struktur der Peptide in Lösung mit der Struktur an der Wasser/Luft-Grenzfläche verglichen. In wässriger Lösung sind beide Peptidfragmente unstrukturiert, nehmen jedoch eine α-helikale Sekundärstruktur an, wenn sie an die Wasser/Luft-Grenzfläche adsorbiert sind. Das biologisch unwirksamere LL-20 bleibt dabei teilweise ungeordnet. Das steht im Zusammenhang mit einer geringeren Grenzflächenaktivität des Peptids. In der Zweiten Näherung wurden Versuche mit Lipidmonoschichten als biomimetisches Modell für die Wechselwirkung mit der Zellmembran durchgeführt. Es konnte gezeigt werden, dass sich die Peptide fluidisierend auf negativ geladene Dipalmitylphosphatidylglycerol (DPPG) Monoschichten auswirken, was einer Membranverdünnung an Bakterienzellen entspricht. Eine Interaktion der Peptide mit zwitterionischem Phosphatidylcholin (PC), das als Modell für Säugetierzellen verwendet wurde, konnte nicht klar beobachtet werden, obwohl biologische Experimente das hämolytische Verhalten zumindest von LL-32 zeigten. In der dritten Näherung wurde das Membranmodell näher an die Membran von humanen Erythrozyten angepasst, indem gemischte Monoschichten aus Sphingomyelin (SM) und PC hergestellt wurden. Die physikalisch-chemischen Eigenschaften der Lipidfilme wurden zunächst ausgearbeitet und anschließend der Einfluss der Peptide untersucht. Es konnte anhand verschiedener Versuche gezeigt werden, dass die Wechselwirkung von LL-32 mit der Modellmembran verstärkt ist, wenn eine Koexistenz von fluiden und Gelphasen auftritt. Zusätzlich wurde die Wechselwirkung der Peptide mit der Membran von Krebszellen imitiert, indem ein geringer Anteil negativ geladener Lipide in die Monoschicht eingebaut wurde. Das hatte allerdings keinen nachweislichen Effekt, so dass geschlussfolgert werden konnte, dass die hohe Aktivität von LL-32 gegen Krebszellen ihren Grund in der veränderten Fluidität der Membran hat und nicht in der veränderten Oberflächenladung. Darüber hinaus wurden Ähnlichkeiten zu Melittin, einem AMP aus dem Bienengift, dargelegt. Die Ergebnisse dieser Arbeit sprechen für einen Detergenzien-artigen Wirkmechanismus des Peptids LL-32 an der Zellmembran.
APA, Harvard, Vancouver, ISO, and other styles
2

Das, Sanjit. "Methodological development in peptide chemistry for synthesis of antimicrobial and antifungal derivatives of marine natural peptides." Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0054.

Full text
Abstract:
La chimie de clic est devenue indispensable dans les nombreux domaines de chimie associée à la conception de médicament. Dans ce contexte, comme nous savons(connaissons) l'étude concernant l'impact d'insertion triazole sur la conformation de peptaibol est limitée, nous avons conduit l'étude pour examiner l'impact et l'adaptabilité de 1, 1 4-disubstituted, 2, l'insertion 3-triazole dans peptaibols différent. Selon le résultat de cette expérience touchant à l'activité réduite et la conformation perturbée de l'analogue peptaibol, le substitut dipeptide décoré du fragment triazole portant substituents hydrophobe divers a été inséré à très N-ter la partie du peptaibol. L'amélioration du bioactivity et de la restauration de la conformation pour les analogues peptaibol a été observée et le fait a été aussi soutenu par les résultats obtenus de l'étude biophysique des analogues choisis d'ALM F50/5. Nous avons plus loin prolongé notre étude pour employer notre stratégie à être appliqué sur le peptide P42 thérapeutique qui souffre de la limitation de manque de perméabilité et de stabilité. Le peptide P42 est impliqué dans le pathophysiology de la maladie d'Huntington neurodégénératif. Un total de 12 analogues de peptide de P42-camelote a été synthétisé par SPPS par notre protocole optimize. Dans la deuxième partie, nous avons développé une stratégie pour synthétiser lipopeptide cyclique produit de l'espèce cynaobacterial marine. Notre objectif principal était de synthétiser Hormothamnin A, undecapeptide cyclique consistant de plusieurs acides aminés artificiels incluant dehydroamino acide (Dhaa) qui fait la synthèse de ce peptide compliqué. En raison de cette raison, premièrement, nous avons voulu appliquer notre stratégie de synthétiser Trichormamide A, une sorte relativement plus simple de cylic lipopeptide. Après l'accomplissement de cette tâche, une première tentative a été faite pour synthétiser Hormothamnin A. Le résultat préliminaire de ceci est présenté dans cette section. Enfin, nous avons essayé de développer une méthodologie robuste pour synthétiser Fmoc-Dhaa dans la phase de solution et son insertion dans l'ordre peptaibol par une norme(un standard) SPPS le protocole. Les résultats préliminaires que nous avons concernant la synthèse Dhaa et son insertion dans peptaibol sont aussi discutés ici de plus avec la synthèse de phase solide de Bergofungin naturel D
The click chemistry has become indispensible in the many areas of chemistry associated with drug design. In this context, as we know the study concerning the impact of triazole insertion on the conformation of peptaibol is limited, we have conducted the study to investigate the impact and adaptability of the 1, 4-disubstituted 1, 2, 3-triazole insertion into different peptaibols. Depending on the outcome of this experiment relating to reduced activity and perturbed conformation of the peptaibol analogue, the dipeptide surrogate decorated with the triazole moiety bearing various hydrophobic substituents was inserted at the very N-ter part of the peptaibol. The improvement of the bioactivity and restoration of the conformation for the peptaibol analogues was observed and the fact was also supported by the results obtained from the biophysical study of the selected analogues of ALM F50/5. We have further extended our study to employ our strategy to be applied on the therapeutic P42 peptide which suffers from the limitation of lack of permeability and stability. P42 peptide is involved in the pathophysiology of neurodegenerative Huntington’s disease. A total of 12 analogues of P42-TAT peptide were synthesized through SPPS by our optimized protocol. In the second part, we have developed a strategy for synthesizing the cyclic lipopeptide originated from marine cynaobacterial species. Our main objective was to synthesize Hormothamnin A, a cyclic undecapeptide consisting of several unnatural amino acids including dehydroamino acid (Dhaa) which makes the synthesis of this peptide complicated. Due to this reason, firstly, we have chosen to apply our strategy to synthesize Trichormamide A, a relatively simpler kind of cylic lipopeptide. After accomplishing this task, a first attempt was made to synthesize Hormothamnin A. The preliminary result of this is presented in this section. At last, we have tried to develop a robust methodology to synthesize Fmoc-Dhaa in solution phase and its insertion into the peptaibol sequence through a standard SPPS protocol. The preliminary results we have got concerning the Dhaa synthesis and its insertion into peptaibol are also discussed here in addition with the solid phase synthesis of natural Bergofungin D
APA, Harvard, Vancouver, ISO, and other styles
3

Weichbrodt, Conrad. "Elektrophysiologische Charakterisierung des mitochondrialen Porins VDAC1 und des antimikrobiellen Peptids Dermcidin in lösungsmittelfreien Modellmembranen." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://hdl.handle.net/11858/00-1735-0000-0001-BAA4-C.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shyam, Radhe. "Cationic amphipathic peptoid oligomers as antimicrobial peptide mimics." Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC048/document.

Full text
Abstract:
Les organismes vivants produisent des peptides antimicrobiens (PAMs) pour se protéger contre les microbes. La résistance croissante aux antibiotiques nécessite le développement de nouvelles stratégies thérapeutiques et les PAMs sont des candidats prometteurs pour résoudre ce problème. Ils possèdent une activité à large spectre et leur principal mécanisme d'action par perméation de la membrane engendre peu de phénomènes de résistance. Néanmoins, leur faible biodisponibilité empêche leur utilisation. Certaines limitations peuvent être surmontées en développant des mîmes de PAMs qui conservent leur activité mais avec un potentiel thérapeutique accru. Les peptoïdes (oligomères de N-alkylglycine) structurés en hélice cationique amphiphile sont de bons mimes de PAMs. Les peptoïdes sont plus flexibles que les peptides en raison de l'isomérie cis/trans des amides N,N-disubstitués ; cependant la conformation des amides peut être contrôlée par un choix judicieux des chaînes latérales. Le but de cette thèse est d'étudier l'influence de chaînes latérales(hydrophobes ou cationiques) bloquant la conformation des amides en cis et induisant une structure hélicoïdale de type PolyProline I (PPI) robuste, sur l’activité antibactérienne et la sélectivité de peptoïdes. La conception, la synthèse et l’étude conformationnelle de nouveaux oligomères peptoïdes cationiques portant des chaînes latérales de type tert-butyle et/ou triazolium ont été réalisées. Dans un premier temps, la synthèse en solution d'oligomères à base de tert-butyle a été développée puis une stratégie de synthèse en phase solide a été mise en place pour accéder aux oligomères à base de 1,2,3-triazolium. Ensuite, ces nouveaux oligomères ont été évalués pour leur activité vis à vis d’un panel de bactéries Gram-positive et Gram-négative, leur l'activité antibiofilm et leur sélectivité cellulaire. Enfin, pour visualiser les effets des peptoïdes amphiphiles sur les bactéries, une étude de microscopie a été réalisée
Living organisms produce antimicrobial peptides (AMPs) to protect themselves against microbes.The growing problem of antimicrobial resistance calls for new therapeutic strategies and the natural AMPs have shown ground-breaking potential to address that issue. They show broad-spectrum activity and their main mechanism of action by bacterial cell membrane disruption implies low emergence of resistance which makes them potent candidates for replacing conventional antibiotics. Nevertheless, few hurdles are impeding their use, notably poor bioavailability profile. Some of these limitations can be overcome by developing peptidomimetics of AMPs which exhibit antibacterial activities together with enhanced therapeutic potential. Peptoids (i.e. N-alkyl glycine oligomers) adopting cationic amphipathic helical structures are mostly competent AMP mimetics. From a conformational point of view, peptoids are fundamentally more flexible than peptides primarily due to the cis/trans isomerism of N,N-disubstituted amides but studies in this area have shown that cis amide conformation can be controlled by careful choice of side-chain to set a PolyProline I-type helical structure of peptoids. In this thesis, the genesis of novel amphipathic cationic peptoids carrying cis-directing tert-butyl and/or triazolium-type side-chains and their untapped potential to act against bacteria will be discussed comprehensively. First, the solutionphase synthesis of tert-butyl-based oligomers was developed. Second, novel method of solid-phase submonomer synthesis was optimised to access 1,2,3-triazolium-based oligomers. Then, the synthesised cationic oligomers were evaluated for their antibacterial potential, followed by antibiofilm activity and cell selectivity assays. In the end, to have insights on the mode of action of amphipathic peptoids, microscopy was carried out
APA, Harvard, Vancouver, ISO, and other styles
5

Rolland, Jean-Luc. "Aspects moléculaires et biochimiques des stylicines, peptides multifonctionnels identifiés chez la crevette bleue du Pacifique Litopenaeus stylirostris (Crustacea, Decapoda)." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20049.

Full text
Abstract:
Les travaux présentés dans ce mémoire ont été motivés par l'importance économique de l'élevage de la crevette bleue du pacifique Litopenaeus stylirostris dont les fortes mortalités sont principalement dues au développement de maladies bactériennes et virales. Ils ont consisté en la caractérisation des deux premiers membres d'une famille originale de peptides multifonctionnels présents chez les crevettes pénéides, les stylicines. Ces peptides, nommés stylicines 1 et 2, sont des peptides anioniques (pI < 6.0), formés d'une région amino-terminale riche en résidus de type proline et d'une région carboxy-terminale riche de treize résidus cystéines. Ces molécules sont synthétisées et stockées dans de petits granules présents dans le cytoplasme des hémocytes. Pour mieux appréhender leurs rôles dans la réponse immunitaire des crevettes à une infection par des Vibrio, leurs formes recombinantes ont été produites dans E. coli BL21 (DE3) plysS, purifiées et caractérisées. Les deux rstylicines présentent des activités antiproliférative et anticoagulante. Seule la rstylicine1 présente des activités antimicrobiennes : antifongique sur Fusarium oxysporum (CMI<2.5 µM), et antibactérienne (bactériostatique) sur Vibrio sp (CMI<80 µM). Ce peptide est également capable de se lier aux LPS des bactéries à Gram (-) (Kd= 9.6x10-8 M) et d'agglutiner V. penaeicida "in vitro". Enfin, l'existence de gènes codant des formes modifiées de la stylicine1, chez certaines crevettes, pourrait être en relation avec une diminution de la résistante des individus aux infections
The work reported here was motivated by the economical importance of the pacific blue shrimp Litopenaeus stylirostris farming where high mortality rates are due to bacterial and viral diseases. It consists in the characterisation of two original peptides, the first members of a new multifunctional family of peptides from peneide shrimps, the stylicines. Those two peptides, named stylicines 1 and 2, are negatively charged (pI < 6.0), and characterised by a proline-rich N-terminal region and a C-terminal region containing 13 cysteine residues. Stylicines are synthesized by heamocytes where they are stored within small cytoplasmic granules. To understand the role of these peptides in the immune response of shrimps to a vibrio infection, their recombinant forms were produced in E. coli BL21 (DE3) plysS, purified and characterised. The two rstylicines display biological anti-proliferative and blood clotting activities. Only rstylicine 1 displays antimicrobial activities: antifungal against Fusarium oxysporum (MIC<2.5µM) and bacteriostatic against Gram (−) bacteria, Vibrio sp. (MIC<80µM). Moreover this peptide displays an LPS-binding activity (dissociation constant (Kd) of 9.6×10−8 M) and agglutinate Vibrio. penaeicida "in vitro". Finally, the presence of sequences coding for modified forms of stylicine 1 in some shrimp's genome may be in relation with their lower ability to survive infections
APA, Harvard, Vancouver, ISO, and other styles
6

FASOLI, Anna. "Biophysical mechanisms of membrane perturbation and signal transduction produced by proteins and peptides." Doctoral thesis, Università degli studi di Ferrara, 2015. http://hdl.handle.net/11392/2388995.

Full text
Abstract:
My primary research interest is focused on the field of cellular electrical activity, ranging from the ion channels that generates it, up to the study of intracellular processes regulating it, and new generation of drugs. For this purpose, during my Ph.D. I have learnt and improved different cutting-edge techniques, i.e. the patch-clamp technique, the fluorescence imaging, and the synthesis and use of model membranes. Moreover, to explore particular aspects of these molecular mechanisms and to overcome the issues raised during the investigations, non-conventional strategies were employed, even requiring the development of specific devices not commercially available. In summary, my Ph.D. thesis is focused on two projects: the biophysical characterization of a particular class of membrane active peptides, and the modulation of visual phototransduction in vertebrate cones. In the first project, I investigated the mechanism of membrane perturbation of cell-penetrating and antimicrobial peptides using the patch-clamp technique. Cell-penetrating peptides (CPPs) are short peptides that are able to cross the cell membrane via energy-dependent and/or independent mechanisms, with low toxicity and without the use of specific receptors. This ability is preserved even when CPPs are conjugated with a large cargo, thus representing an innovative pharmacological tool for the diffusion of large and hydrophilic drugs into the cells. Despite the mechanism of cellular uptake is still debated in literature, it has been proved that it can occur by either direct translocation or endocytosis. In the latter case, though, the cargo-peptide complex often remains trapped inside the endocytic vesicles and is not able to reach its therapeutic target. A possible solution to this problem could be found in another class of small peptides, similar to CPPs, i.e. the antimicrobial peptides (AMPs). AMPs are 12-50 amino acids long peptides, which represent an essential part in the innate immune system in most organisms. Indeed, they are among the first defensive molecules released during infections and their activity is direct thorough the membrane of bacteria, causing its destruction and consequently the death of the pathogen. Therefore, the ability of AMPs to disrupt biological membranes could be exploited to improve the CPPs escape from the endocytic vesicles in addition to, of course, their application as a novel class of antibiotics. The idea is to conjugate the CPP with a molecule that possess an antimicrobial activity, which can destroy the vesicle membrane, and help the complex to reach its target once it has been internalized in the cell. On this ground, the first project I carried out regards the study of a novel chimeric peptide, CM18-Tat11, composed of the antimicrobial peptide CM18 (a cecropin-mellitin hybrid peptide) linked to the cell-penetrating peptide Tat11 (derived from the basic domain of HIV-1 Tat protein). In particular, I investigated the membrane perturbing activity of this peptide (and of its elements) using the patch-clamp technique and operating under strictly physiological conditions. This study has been carried out by recording the ion current flowing through the channels formed by these peptides (if any), once inserted in the membrane of Chinese hamster ovary (CHO) cells. In these experiments, the peptides were applied to (and removed from) the extracellular CHO membrane in ~50 ms with a computer-controlled microperfusion system. Therefore, besides assessing ion channel characteristics, the dynamics of pore formation and disaggregation could be precisely evaluated as well. I found that CM18-Tat11 produces a large and irreversible plasma membrane lysis, at concentration where CM18 and Tat11 give instead a nearly reversible membrane permeabilization and no perturbation, respectively. Furthermore, using the same method, I studied the biophysical characteristic of another antimicrobial peptide, called CM12, which sequence was obtained from the optimization of CM18. When applied on CHO, CM12 and CM18 produce voltage-independent membrane permeabilization, and no single-channel events were detected at low peptides concentration. These results indicate that both peptides form pores according to a toroidal model, in which the lipid layer bends continuously through the pore so that the core is formed by both lipid head groups and the peptides. Finally, I have studied the single-channels properties generated by the pore-forming peptide alamethicin (Alm) F50/5 and its [L-Glu(OMe)7,18,19] analog inserted in a natural membrane and in giant unilamellar vesicles (GUVs). The possibility to compare the channel activity in the precisely controlled lipid environment of GUVs, with the one recorded in a natural membrane, will open new possibilities in the biophysical characterization of the pores. The second project of this thesis is focused on the study of the physiological role of the calcium sensor GCAP3 (guanylate cyclase activated protein 3) in the phototransduction cascade in zebrafish. I pursued this study simulating the over expressions and the knockdown of this protein, through the delivery of zGCAP3, or of its monoclonal antibody, into zebrafish cone cytoplasm, while recording their photorensponses with the patch-clamp technique. The proteins were administered inside the cone via the patch pipette thanks to an intracellular perfusion system developed in this thesis. This system allows the delivery of exogenous molecules inside the cell with a controlled timing, by expelling them with a small teflon tube inserted into the pipette lumen controlled by a microperfusion apparatus. Results indicated that the increase in the concentration in zGCAP3 did not altered significantly the light response, while the perfusion with the antibody anti-zGCAP3 caused the progressive fall of the dark current, together with the progressive slowing down of the flash response kinetics. The surprising lack of an effect of zGCAP3 incorporation, suggests that the endogenous number of zGCAP3 is saturating, therefore any further increase of this sensor is ineffective. However, the effects of the antibody can be explained as an inhibition of the target enzyme of zGCAP3, which is the guanylate cyclase (GC). Finally, no experiments mentioned above would have been accomplished without the development of a “pressure-polishing” system, which makes it possible to modify the geometry of the patch-clamp pipette. The pipette shank (the final part of the pipette) is, in fact, very long and tapered, thus generating a high resistance to the passage of ions and molecules, and making very difficult to perfuse efficiently the cell with the internal perfusion. The pressure polishing setup I developed enlarged the patch pipette shank, using a calibrated combination of heat and air pressure. These pipettes minimized errors in membrane potential control and allowed the insertion of teflon tubes in the pipette lumen very close to its tip.
APA, Harvard, Vancouver, ISO, and other styles
7

Zerfas, Breanna L. "Creating Novel Antimicrobial Peptides: From Gramicidin A to Screening a Cyclic Peptide Library." Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107444.

Full text
Abstract:
Thesis advisor: Jianmin Gao
As the threat of microbial resistance to antibiotics grows, we must turn in new directions to find new drugs effective against resistant infections. Antimicrobial peptides (AMPs) and host-defense peptides (HDPs) are a class of natural products that have been well-studied towards this goal, though very few have found success clinically. However, as there is much known about the behavior of these peptides, work has been done to manipulate their sequences and structures in the search for more drug-like properties. Additionally, novel sequences and structures mimicking those seen in nature have been discovered and characterized. Herein, we demonstrate our ability to finely tune the antimicrobial activity of various peptides, such that they can be provided with more clinically desirable characteristics. Our results show that gramicidin A (gA) can be made to be less toxic via incorporation of unnatural cationic amino acids. This is achieved by synthesizing lysine analogues with diverse hydrophobic groups alkylated to the side-chain amine. Through exploring different groups, we achieved peptide structures with improved selectivity for bacterial over mammalian membranes. Additionally, we were able to achieve novel broad-spectrum gram-negative activity for gA peptides. In efforts to combat bacterial resistance to cationic antimicrobial peptides (CAMPs), we have directed our reported amine-targeting iminoboronate chemistry towards neutralizing Lys-PG in bacterial membranes. Originally incorporating 2-APBA into gA, we found this to hinder the peptide’s activity. However, we were successful in increasing the potency of gA3R, a cationic mutant of gA, towards S. aureus by using a co-treatment of this peptide with a Lys-PG binding structure. Currently, we are exploring this strategy further. Finally, we describe our work towards establishing a novel cyclic peptide library incorporating a 2-APBA warhead for iminoboronate formation with a given target. In this, we have achieved intermolecular reduction of iminoboronates, strengthening the stringency of library screening. Although we were unsuccessful in finding a potent hit for binding of the lipid II stem peptide, screening against human transferrin yielded selective hits. Currently we are investigating these hits to understand their activity and therapeutic potential
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
APA, Harvard, Vancouver, ISO, and other styles
8

Borrelli, Alexander P. "Synthetic Genes for Antimicrobial Peptides." Digital WPI, 2003. https://digitalcommons.wpi.edu/etd-theses/427.

Full text
Abstract:
The goal of this project was to clone and express the antimicrobial peptide protegrin 1 (PG-1). Initially a yeast system was chosen but was discarded due to technical difficulties. Invitrogen's bacterial T7 expression system was chosen next to express the peptide. PG-1 expression was verified by anti-his immunoblot and then the peptide was purified by IMAC. Its activity was verified using a Bacillus subtillis radial diffusion assay.
APA, Harvard, Vancouver, ISO, and other styles
9

Jodoin, Joelle. "Histone H5: Bioinspiration for Novel Antimicrobial Peptides." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36976.

Full text
Abstract:
Modern medicine is challenged continuously by the increasing prevalence of multi-drug resistant bacteria. Therefore, the development of alternatives to traditional antibiotics is an urgent necessity. Cationic antimicrobial peptides (CAMPs) are components of the innate immune defense system. Histones, generally known as proteins that package and regulate the transcription of DNA, share all of the essential antimicrobial traits of CAMPs, and could be promising alternatives to antibiotics. In this study, I investigated the antimicrobial properties of nucleated-erythrocyte-specific linker histone H5 and its derived peptides. Histone H5 was extracted and purified from chicken erythrocytes using an acid extraction followed by ion exchange chromatography using a step salt gradient; the purity (>95%) was verified by densitometry and proteomics analysis. Purified histone H5 demonstrated potent antimicrobial activity against various Gram-positive and Gram-negative planktonic bacteria, including resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), as well as anti-biofilm activity against Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, scanning electron microscopy (SEM) revealed significant damage to L. monocytogenes and P. aeruginosa bacterial cell surfaces after histone H5 treatment. The potential for histone toxicity towards mammalian cells was investigated with a hemolytic assay which determined that even at the highest concentration tested (1 mg/mL), histone H5 was non-hemolytic. An in silico analysis determined the predicted antimicrobial domain of histone H5 of which six histone H5-derived peptides with potential antimicrobial activity were identified. These six histone H5-derived peptides were synthesized and tested against bacterial pathogens to determine their antimicrobial properties. Although the H5-derived peptides were identified within the predicted antimicrobial domain of histone H5, they did not possess more potent antimicrobial activity than the full length protein. Overall, this study demonstrates that histone H5 and histone H5-derived peptides could be promising candidates in the development of novel anti-infective therapeutics.
APA, Harvard, Vancouver, ISO, and other styles
10

Linser, Sebastian. "Development of new antimicrobial peptides based on the synthetic peptide NK-2." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=982021631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kwok, Hoi-shan, and 郭凱珊. "The comparison of biological properties of L- and D-enantiomeric antimicrobial peptides." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206507.

Full text
Abstract:
Antibiotics have been used widely for the treatment of bacterial infections for over half a century. However, the emergence of resistance to antibiotics has aroused public health concern, leading to the development of antimicrobial peptides (AMPs) as potential alternative therapeutic agents against bacterial infections. AMPs are naturally found in many species and have important roles in our innate immune defense systems. AMPs are usually cationic amphipathic peptides with membrane destabilizing property. They have a relatively broad spectrum of antimicrobial activity and pathogens are less likely to develop resistance against AMPs. The major challenge of using AMPs as therapeutic agents is their toxicity towards mammalian cells. The biological stability of AMPs to protease in human body is another concern. To address the latter problem, instead of the naturally occur L-enantiomers, Denantiomeric AMPs were introduced to enhance their stability. This study aimed to test the hypothesis that the D-enantiomeric AMPs are more resistant than the Lenantiomeric AMPs against proteolytic degradation. Three pairs of synthetic D-/LAMPs (D-LAO160-P13/LAO160-P12; D-LAO160-H/LAO160-H; and D-LAK-120-HP13/LAK-120-HP13) were employed to test for their stability when treated with trypsin, serum and gastric fluid, and the samples were analyzed by high performance liquid chromatography (HPLC). Generally, all the D-enantiomeric AMPs were found to be resistant towards proteolysis. Besides, to compare the cytotoxicity of D-/LAMPs, MTT and LDH assays of the D/L-LAK120-HP13 pair were carried out on two different cell lines, A549 cells (human lung adenocarcinoma epithelial cells) and RAW264.7 cells (mouse macrophage cells). Significant difference in cytotoxicity of D-LAK120-HP13 and LAK120-HP13 on RAW264.7 cells were obtained from MTT assay, but not in LDH assays or on A549 cells. Further analysis has to be done to validate the findings obtained from this research.
published_or_final_version
Pharmacology and Pharmacy
Master
Master of Medical Sciences
APA, Harvard, Vancouver, ISO, and other styles
12

Nicolás, Lorenzón Esteban [UNESP]. "Efeito do comprimento e da polaridade do espaçador entre cadeias do peptídeo Hylina-C na forma dimérica." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/88051.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:23:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-24Bitstream added on 2014-06-13T19:49:48Z : No. of bitstreams: 1 nicolaslorenzon_e_me_araiq.pdf: 1141028 bytes, checksum: 6886093f73fd039fe1ed73b26a3d43dd (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho foi avaliado o efeito da dimerização e do comprimento/polaridade do espaçador utilizado na formação dos dímeros, na estrutura e atividade biológica do peptídeo antimicrobiano: Gly-Trp-Leu-Asp-Val-Ala-Lys-Lys-Ile-Gly-Lys-Ala-Ala-Phe-Asn-Val-Ala-Lys-Asn-Phe-Leu-CONH2. Nesse sentido, o monômero e três dímeros com diferentes espaçadores foram sintetizados pelo método de síntese de peptídeo em fase sólida (SPFS) utilizando uma combinação das químicas Fmoc e Boc. Análises por cromatografia de fase reversa e espectrometria de massas confirmaram o sucesso das sínteses e das purificações. Os ensaios de atividade antimicrobiana, em termos de CIM mostraram que a dimerização não aumentou a capacidade do peptídeo de inibir o crescimento de bactérias e fungos. No entanto, quando analisada a capacidade dos peptídeos de matar E. coli, um menor tempo para produzir o efeito inibitório foi observado para os dímeros. Adicionalmente, a atividade hemolítica dos peptídeos também foi avaliada, encontrando-se um aumento significativo, aproximadamente 40 vezes, para os dímeros em relação ao monômero. Com o objetivo de tentar explicar esses efeitos, o teste de proteção osmótica foi realizado. No entanto, o tamanho dos poros foi semelhante, o que não permite explicar as diferenças em termos desta variável. Conhecendo seus diâmetros, foi possível determinar que o poro é formado por 6 moléculas monoméricas ou 3 diméricas. Estudos de permeabilização mostraram que a porcentagem e a velocidade de liberação de carboxifluoresceína foram maiores para os dímeros quando comparados com o monômero, especialmente em vesículas contendo esfingomielina. Este ensaio também mostrou que a duplicação da concentração de monômeros não é suficiente para atingir a capacidade de permeabilização dos dímeros, confirmando que a proximidade das cadeias é um fator...
This work analyzed the effect of dimerization and the length/polarity of the spacer used in the formation of dimers, in the structure and biological activity of the antimicrobial peptide: Gly-Trp-Leu-Asp-Val-Ala-Lys-Lys-Ile-Gly-Lys-Ala-Ala-Phe-Asn-Val-Ala-Lys-Asn-Phe-Leu-CONH2. In this way, the monomer and three dimers (Lys-branched) with different spacer groups were synthesized by solid phase peptide synthesis methodology using a combination of Fmoc and Boc chemical approaches. Analysis by reverse phase chromatography and mass spectrometry confirmed the success of the synthesis and purifications. The antimicrobial activity assay, in terms of MICs showed that dimerization did not increase the ability of the peptides to inhibit the growth of bacteria and fungi. Nevertheless, when analyzing the peptides activity against E. coli in terms of kinetics, an increased velocity was observed for the dimers. The hemolytic activity of peptides was also evaluated, finding a very significant difference, approximately 40 times greater for dimers. Aiming to explain this difference, the osmotic protection test was performed, but the pore size was similar, which can not explain the differences in terms of this variable. Knowing the diameter of the pores, it was possible to determine that the pore is formed by six monomeric or three dimeric molecules. Additionally, permeabilization studies showed that the percentage and rate of carboxyfluorescein release were larger for the dimers compared with monomer, especially in vesicles containing sphingomyelin. This test also showed that the use of two times more monomer concentration´s is not sufficient to reach dimers permeabilization capacity, confirming that the proximity of the chains is an important factor in the activity of this peptide. Analysis by circular dichroism revealed that peptides in aqueous solution are in random coil, whereas... (Complete abstract click electronic access below)
APA, Harvard, Vancouver, ISO, and other styles
13

Ringstad, Lovisa. "Interaction Between Antimicrobial Peptides and Phospholipid Membranes Effects of Peptide Length and Composition /." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-101989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gomes, von Borowski Rafael. "Obtention et évaluation de l’activité antibiofilm de peptides et peptidomimétiques issus de Capsicum baccatum var. pendulum (Solanaceae)." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B005.

Full text
Abstract:
Le biofilm confère aux bactéries de nombreux avantages en tant que matrice qui améliore leur résistance et tolérance aux antibiotiques. Staphylococcus epidermidis est l'une des bactéries cliniques les plus importantes en raison de sa capacité à former des biofilms sur des dispositifs médicaux, notamment les stimulateurs cardiaques, les cathéters urinaires et les prothèses. Dans ce contexte, les peptides ont été proposés comme une alternative importante, que ce soit en tant que traitement médicamenteux ou en tant qu’agents de surfaces anti-infectieux. Cette étude porte sur l’identification de nouveaux peptides naturels et synthetiques antibiofilm issus du piment Capsicum baccatum var. pendulum. Un peptide majeur responsable de l'activité antibiofilm contre S. epidermidis a été sélectionné et étudié de manière approfondie. Il agit par un nouveau mécanisme d'action que nous nommons « anti-assemblage de la matrice » (AAM). Dans le premier chapitre, nous décrivons le lien entre les peptides, les biofilms pathogènes et l'activité antibiofilm. Le chapitre 2 est consacré aux principaux résultats expérimentaux de cette thèse. Il intégre la caractérisation antibiofilm du peptide majeur, agissant par le nouveau mécanisme d'action AAM, indépendant de la régulation cellulaire. Des tests de cytotoxicité sont également présentés. Ces résultats nous ont permis de breveter le peptide en question, référencé au chapitre 3. Le dernier chapitre décrit la possible utilisation de peptidomimétiques antibiofilm en tant que perspective. La stratégie consiste à créer de petites molécules analogues à des peptides. Ces peptidomimétiques conservent les capacités inhérentes au peptide majeur, mais sont plus résistants aux protéases et/ou plus actifs
Biofilm confers to bacteria many benefits due to the production of a matrix that improves their resistance and tolerance to antibiotics. Staphylococcus epidermidis is one of the most important clinical bacteria, able to form biofilm on medical devices such as pacemakers, urinary catheters and prostheses. In this context, peptides have been proposed as an important alternative as a treatment or as anti-infective surface agents. This study focuses on the identification of new antibiofilm natural and synthetic peptides from the Capsicum baccatum var. pendulum pepper. As a result, a lead peptide responsible for the antibiofilm activity against S. epidermidis was selected and extensively studied. It acts by a new mechanism of action that we call "matrix anti-assembly" (MAA). In the first chapter, we explore the link between peptides, pathogenic biofilms and the antibiofilm activity. Chapter 2 consists of the main experimental results of this thesis. It describes the antibiofilm characterization of the lead peptide acting by the AAM new mechanism of action, independent of cell regulation. Cytotoxicity tests are also presented. These results allowed us to patent this peptide, referenced in Chapter 3. The last chapter presents the possible use of antibiofilm peptidomimetics as a perspective. The strategy is to create small peptide-like molecules. These peptidomimetics retain the inherent capabilities of the lead peptide, but are more resistant to proteases and / or more active
O biofilme apresenta vários benefícios às bactérias devido à existência de uma matriz que confere resistência e tolerância aos antibioticos. O Staphylococcus epidermidis é uma das bactérias com maior relevância clínica devido à sua capacidade de formar biofilmes em dispositivos médicos, tais como, marca-passos, cateteres urinários e próteses. Neste contexto, os peptídeos têm sido propostos como uma alternativa importante, tanto como tratamento, quanto como agentes anti-infecciosos de superfície. Este estudo consiste na identificação de novos peptídeos naturais e sintéticos, derivados da pimenta Capsicum baccatum var. pendulum, com atividade antibiofilme. Por conseguinte, foi selecionado e estudado extensivamente um peptídeo de referência que apresentou a melhor atividade antibiofilme contra S. epidermidis. Este peptídeo atua através de um novo mecanismo de ação que descrevemos e chamamos de "anti-montagem de matriz" (AMM). No primeiro capítulo deste trabalho foi abordado a ligação entre peptídeos, biofilmes patogênicos e a atividade antibiofilme. O Capítulo 2 consiste nos principais resultados experimentais desta tese como a caracterização da atividade antibiofilme do peptídeo de referência, que age através do novo mecanismo de ação AMM independente da regulação celular e os testes de citotoxicidade. Esses resultados nos permitiram patentear o peptídeo em questão, referenciado no Capítulo 3. Finalmente, o último capítulo descreve o possível uso de peptidomiméticos antibiofilme como uma perspectiva. A estratégia é criar pequenas moléculas semelhantes ao peptídeo de referência. Estes peptidomiméticos mantêm as capacidades inerentes ao peptídeo principal, porém são mais resistentes a proteases e / ou mais ativos
APA, Harvard, Vancouver, ISO, and other styles
15

Strauss, Joshua. "Investigating bacterial lipopolysaccharides and interactions with antimicrobial peptides." Worcester, Mass. : Worcester Polytechnic Institute, 2009. http://www.wpi.edu/Pubs/ETD/Available/etd-012009-120216/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wan, Yang. "Synthesis of β,γ-diamino acids and their use to design new analogues of the antimicrobial peptide Gramicidin Septide antimicrobien, la Gramicidine S." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS407/document.

Full text
Abstract:
Dans notre groupe, nous nous intéressons au développement de peptides contenant des acides γ-aminés. Comme d’autres peptides contenant des acides aminés non naturels, ils ont montré leur capacité à posséder des conformations stables et/ou des propriétés biologiques intéressantes. De plus, ces peptides sont généralement résistant à la protéolyse. Dans l’objectif de synthétiser des acides -diaminés sous la forme d’un seul stéréoisomère, nous avons développé une voie de synthèse reposant sur une réaction de Blaise suivie d’une réduction diastéréosélective. En appliquant cette méthode, nous avons synthétisé des acides β,γ-diaminés dérivés de la D-phénylalanine et de l’acide L-glutamique. Le premier a été utilisé pour concevoir des analogues d’un peptide antimicrobien, la gramicidine S. Comparé à la molécule parent, les analogues ont montré une cytotoxicité beaucoup moins importante pour les cellules hôtes tout en conservant une activité antibactérienne intéressante. Cette étude nous a donné de meilleures connaissances pour développer d’autres analogues de la gramicidine S ainsi que d’autres peptides antimicrobiens. Nous avons également effectué de nombreuses optimisations pour synthétiser de façon efficace des acides β,γ-diaminés cycliques à partir de l’acide L-glutamique. Les oligomères incorporant ces acides β,γ-diaminés et des acides α-aminés ont montré un fort potentiel pour l’adoption de conformations stables. Ces études vont être poursuivies
In our group, we are interested in developing peptides containing β,γ-diamino acids . Along with many other peptides containing unnatural amino acids, they have shown the ability to possess stable conformations and/or interesting biological activities. Moreover, those peptides are usually more resistant to proteolysis. In order to synthesize stereopure γ-amino acids, we have developed a synthetic route using Blaise reaction and subsequent diastereoselective reduction as key reactions. Through applying this method, we have synthesized β,γ-diamino acids derived from D-phenylalanine and L-glutamic acid. The former β,γ-diamino acid was used for designing antimicrobial peptide gramicidin S analogues. Compared with mother molecule, the analogues exerted much less host cell cytotoxicity while remaining interesting antibacterial activity. Meanwhile, it gave us more knowledge for further developing analogues of gramicidin S as well as other antimicrobial peptides. We also paid lots of effort to efficiently synthesize cyclic β,γ-diamino acids starting from L-glutamic acid. Interestingly, when oligomers incorporating this β,γ-diamino acids and α-amino acids, they have shown the potential to adopt stable conformations. The following studies will be continuously investigated
APA, Harvard, Vancouver, ISO, and other styles
17

DAMIANO, Maria Alessandra. "Ulteriori evidenze di attività antimicrobiche in invertebrati marini." Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/92564.

Full text
Abstract:
The antimicrobial molecules are an abundant group of molecules that are amply distributed in nature, from plants and insects to vertebrate animals, including humans. They are an essential component of the innate immune system for host defence against pathogenic agents of different types. They are often the products of individual genes and circulating cells. In this thesis, based on a bioinformatic analysis, we identified three peptides, members to the family of cathelicidins and to the class of peptides rich in proline (PR-AMPs), that may be generally be considered as the first effectors of the interior defense, acting as natural antibiotics (Scocchi et al., 2011; Reddy et al., 2004). We investigate, also, about the possibility of use four extracts from marine invertebrates as possible natural antibiotics. Their small size makes them able to spread rapidly at sites of infection, they are also cheap to synthesize, relatively resistant to denaturation and are less likely to induce resistance. The objective of this doctoral thesis was to deepen the knowledge on the ability of peptides and molecules with antimicrobial activity, initially identified or isolated from different marine invertebrates. The studied peptides show a broad spectrum of activity against a variety of microorganisms such as Gram-positive bacteria, Gram-negative bacteria and fungi. Furthermore, it was interesting to determine the cytotoxic activity of peptides and antimicrobial molecules versus the murine monocytic cell line J774-A1 coming from sarcoma of Balb / c mice. The surprising results, especially on the analysis of peptides, make them interesting to understand the mechanisms of innate immunity evolution and trace an original point of view on a new frontier for the control of microbial infections that could, therefore, be a good alternative for their use in biotechnology and in the pharmaceutical field (Schnapp et al., 1996).
APA, Harvard, Vancouver, ISO, and other styles
18

Vila, Farrés Xavier. "Development of new antimicrobial peptides and peptidomimetics and mechanism of resistance to peptide antibiotics." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/285375.

Full text
Abstract:
Nowadays in the world there is a very big problem associated with two factors related to each other. The first factor is the increase in the resistant of certain bacteria, especially the bacteria from the ESKPAE group. The second factor is the dramatically decrease of new antibiotics approved by the FDA. These two problems show that there is an urgent need to find new antibiotics active against these resistant bacteria. In this thesis, we have tackled two different topics closely related in the race to find new antimicrobials. The first topic tackled was the knowledge of the mechanism of resistance of Gram-negative (A. nosocomialis) and Gram-positive (S. mitis) bacteria. The two antibiotics studied were peptides, colistin and daptomicin, these two peptides are resistant to A. nosocomialis and S. mitis, respectively. Both peptides had a similar mechanism of action related to the membrane of bacteria, therefore we are going to focus just in the modifications in the membrane of the strains resistant to the antibiotic peptides. In S. mitis it was observed, using proteomic techniques, that two proteins related with the membrane were observed. These two proteins has some homologue domains to several proteins involved in daptomycin resistant in S. aureus and Enterococci. In A. nosocomialis, the bacteria showed a high tolerance to colistin, and at 8 mg/L an inflexion point is observed. In this inflexion point, the MIC of colistin, against bacteria increase from <0.1 mg/L to 128 mg/L. These bacteria with high resistance to colistin showed no production of LPS due to the fact that mutations and a stop codon in lpxD gene were observed. This gene is involved in the synthetic pathway of the LPS. Apart from the understanding of the mechanism of action of peptide antibiotics, we have proposed several peptides and peptidomimetics against Acinetobacter species. We have used two different approaches. The first approach is the normal approach, testing several peptides or peptidomimetics against the desired bacteria. The first peptides tested were commercially available, and we found mastoparan that was active against both colistin-susceptible and colistin-resistant A. baumannii. This peptide was optimized specially in terms of stability in human serum. After several in vivo trials we did not observe any activity of the peptides tested, however we found a very strong bindoing with some proteins present in the human serum. Frog skin secretions peptides were also tested against colistin-susceptible and colistin-resistant Acinetobacter species, the results obtained were really interesting specially in two peptides. The last peptides tested were peptidomimetics. These peptidomimetics act as an antimicrobial peptide, with two different faces, one face with a cation charge and the other very amphipathic. These peptidomimetics are analogues from the original structure of cholic acid, the structure was modified in order to have antibacterial activity that was found in colistin-susceptible and colistin-resistant A. baumannii, K. pneumonia and P. aeruginosa. The second approach was completely different, in this case the idea was to block the virulence of bacteria caused by OmpA. This protein is involved in the adherence between bacteria and host cells, therefore several hexacylcic peptides were synthesized in order to inhibit the action of this protein. The results obtained were satisfactory, obtaining good activity in both in vitro and in vivo.
Actualment al mon hi ha un greu problema derivat de dos factors relacionats, el primer factor es el increment de la resistència, especialment del bacteris del grup ESKAPE. El segon factor es la disminució dràstica en el nombre d’antibiòtics aprovats per la FDA. Aquests dos problemes fan que hi hagi una urgència per trobar nous antimicrobians efectius en front d’aquestes soques resistents. En aquesta tesi hem abordat dos temes diferents però que estan relacionats a la hora de trobar nous antibiòtics. El primer tema abordat es el de conèixer a fons els mecanismes de resistència de certs antibiòtics, en aquest cas peptídics, en front diferents tipus de soques tant Gram-positives (S. mitis) com Gram-negatives (A. nosocomialis). Els dos antibiòtics peptídics pels que s’ha estudiat la resistència son daptomicina i colistina, en front de S. mitis i A. nosocomialis respectivament. Ambdós pèptids actuen a nivell de membrana, per tant ens centrarem en veure les modificacions produïdes en els soques resistents. Per part de S. mitis resistent a daptomicina, es pot veure una sobreexpressió de dues proteïnes que tenen dominis homòlegs amb altres proteïnes involucrades en la resistència a daptomicina en altres bacteris. En la resistència a colistina es pot apreciar com les soques resistents d’A. nosocomialis presenten una deficiència del LPS. També hem proposat diferents alternatives com a nous antibiòtics, en aquest cas en front de soques A. baumannii. Dos tipus d’aproximacions van ser utilitzades, la primera, i mes clàssica es la de trobar nous antimicrobians, vàrem trobar mastoparan i va diferents paràmetres van ser optimitzat però sense obtindré bons resultats in vivo. També es van provar diferents pèptids provinents de les secrecions de les granotes, presentant bona activitat en front soques d’Acinetobacter, i per últim, les ceragenines, anàlegs del àcid cólic, que tenen bona activitat en front de totes les soques tant colistina sensibles com colistina resistents en Gram-negatius. La segona aproximació es buscant pèptids capaços d’inhibir l’adherència entre el bacteri i la cèl•lula del hoste bloquejant l’acció de la proteïna OmpA. S’ha trobat un pèptid amb bona activitat fins i tot in vivo.
APA, Harvard, Vancouver, ISO, and other styles
19

HORA, Gabriel Costa Alverni da. "Simulações computacionais do peptídeo híbrido Plantaricina-Pediocina em membranas fosfolipídicas puras e binárias compostas por POPC: POPG." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18337.

Full text
Abstract:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-02-16T14:50:28Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Thesis_Gabriel_digital.final.pdf: 10412972 bytes, checksum: ec85b3671bb5bbcd735ea9e83436b08f (MD5)
Made available in DSpace on 2017-02-16T14:50:28Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Thesis_Gabriel_digital.final.pdf: 10412972 bytes, checksum: ec85b3671bb5bbcd735ea9e83436b08f (MD5) Previous issue date: 2016-04-01
CNPq
Peptídeos antimicrobianos são componentes importantes do sistema de defesa de diversos organismos contra possíveis invasores. Em geral, são pequenos (até 100 aminoácidos), catiônicos e anfipáticos. Eles têm despertado o interesse da comunidade científica por sua capacidade de atuação contra micróbios, que não conseguem desenvolver resistência a esses peptídeos. Ou seja, eles emergem como complemento e/ou alternativa ao uso dos antibióticos convencionais. Este trabalho desenvolveu um modelo computacional de um peptídeo híbrido de pediocina A (N-terminal) e plantaricina 149a (C-terminal), dois peptídeos bactericidas. Dados experimentais obtidos pelo grupo da prof. Dra. Rosângela Itri do IFUSP foram utilizados para modelagem e comparação dos resultados. Foram feitas simulações de MD do peptídeo interagindo com membranas puras e mistas de POPC e POPG utilizando os parâmetros do campo de força GROMOS 53A6 e 54A7. As simulações com uma unidade do peptídeo revelaram a atualização 54A7 era a mais adequado para modelagem desses sistemas. Os mapas de estrutura secundária mostraram que o peptídeo adquire configuração mais ordenada quando interage com membranas com maior quantidade de POPG em sua composição. As simulações com duas unidades do peptídeo sugeririam que o peptídeo interage e penetra na camada de POPG através da região Cterminal. Na simulação com membrana de POPC, nenhuma das porções terminais ficou estável no interior da membrana. O efeito do aumento da concentração de peptídeos foi examinado colocando cinco e dez unidades do peptídeo para interagir com as membranas. Na membrana de POPC, os peptídeos não formam um único aglomerado e causam pouca perturbação na bicamada. Já na membrana de POPG, o efeito da interação do aglomerado de peptídeos é acentuado, provocando grandes deformações na bicamada lipídica, praticamente a destruindo. Esse fenômeno sugere um possível mecanismo carpete para ação do peptídeo sobre a membrana fosfolipídica de bactérias.
Antimicrobial peptides are important components of defense system in various organizations against possible invaders. They are generally small (100 aminoacids), cationic and amphipathic. They have stimulated the interest of the scientific community for its ability to act against microbes that cannot develop resistance to these peptides. That is, they emerge as complement and/or alternative to the use of conventional antibiotics. This study developed a computational model of a hybrid peptide pediocin A (Nterminal) and plantaricin 149a (C-terminal), two bactericidal peptides. Experimental data obtained by the group of prof. Dr. Rosângela Itri (IFUSP) were used for modeling and compare the results. MD simulations were made of the peptide interacting with pure and mixed POPC and POPG membranes. These simulations were performed using the parameters of the force field GROMOS 53A6 and 54A7. Simulations with a single copy of the peptide revealed that the force field 54A7 was the most appropriate for modeling these systems. The secondary structure maps showed that the peptide acquires a more ordered configuration when interacting with membranes with higher amounts of POPG in its composition. The simulations with two copies of the peptide suggest that the peptide interacts and penetrates the POPG layer via the C-terminal part. In the simulation with POPC membrane, none of the end portions remained stable within the membrane. The effect of increasing the peptide concentration of was examined by placing five and ten copies of the peptide to interact with the membranes. In the POPC membrane, the peptides do not form a single cluster and they cause little disturbance in the bilayer. In the POPG membrane, the interaction of peptides cluster is enhanced, causing large deformation and practically destroying the lipid bilayer. This phenomenon suggests a possible carpet mechanism of action of the peptide on the phospholipid membrane of bacteria.
APA, Harvard, Vancouver, ISO, and other styles
20

Bagheri, Mojtaba [Verfasser]. "Cationic antimicrobial peptides : thermodynamic characterization of peptide-lipid interactions and biological efficacy of surface-tethered peptides / Mojtaba Bagheri." Berlin : Freie Universität Berlin, 2010. http://d-nb.info/1025126971/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lorenzón, Esteban Nicolás. "Efeito do comprimento e da polaridade do espaçador entre cadeias do peptídeo Hylina-C na forma dimérica /." Araraquara : [s.n.], 2011. http://hdl.handle.net/11449/88051.

Full text
Abstract:
Orientador: Eduardo Maffud Cillli
Banca: Ana Marisa Fusco Almeida
Banca: Vani Xavier de Oliveira Júnior
Resumo: Neste trabalho foi avaliado o efeito da dimerização e do comprimento/polaridade do espaçador utilizado na formação dos dímeros, na estrutura e atividade biológica do peptídeo antimicrobiano: Gly-Trp-Leu-Asp-Val-Ala-Lys-Lys-Ile-Gly-Lys-Ala-Ala-Phe-Asn-Val-Ala-Lys-Asn-Phe-Leu-CONH2. Nesse sentido, o monômero e três dímeros com diferentes espaçadores foram sintetizados pelo método de síntese de peptídeo em fase sólida (SPFS) utilizando uma combinação das químicas Fmoc e Boc. Análises por cromatografia de fase reversa e espectrometria de massas confirmaram o sucesso das sínteses e das purificações. Os ensaios de atividade antimicrobiana, em termos de CIM mostraram que a dimerização não aumentou a capacidade do peptídeo de inibir o crescimento de bactérias e fungos. No entanto, quando analisada a capacidade dos peptídeos de matar E. coli, um menor tempo para produzir o efeito inibitório foi observado para os dímeros. Adicionalmente, a atividade hemolítica dos peptídeos também foi avaliada, encontrando-se um aumento significativo, aproximadamente 40 vezes, para os dímeros em relação ao monômero. Com o objetivo de tentar explicar esses efeitos, o teste de proteção osmótica foi realizado. No entanto, o tamanho dos poros foi semelhante, o que não permite explicar as diferenças em termos desta variável. Conhecendo seus diâmetros, foi possível determinar que o poro é formado por 6 moléculas monoméricas ou 3 diméricas. Estudos de permeabilização mostraram que a porcentagem e a velocidade de liberação de carboxifluoresceína foram maiores para os dímeros quando comparados com o monômero, especialmente em vesículas contendo esfingomielina. Este ensaio também mostrou que a duplicação da concentração de monômeros não é suficiente para atingir a capacidade de permeabilização dos dímeros, confirmando que a proximidade das cadeias é um fator... (Resumo completo clicar acesso eletrônico abaixo)
Abstract: This work analyzed the effect of dimerization and the length/polarity of the spacer used in the formation of dimers, in the structure and biological activity of the antimicrobial peptide: Gly-Trp-Leu-Asp-Val-Ala-Lys-Lys-Ile-Gly-Lys-Ala-Ala-Phe-Asn-Val-Ala-Lys-Asn-Phe-Leu-CONH2. In this way, the monomer and three dimers (Lys-branched) with different spacer groups were synthesized by solid phase peptide synthesis methodology using a combination of Fmoc and Boc chemical approaches. Analysis by reverse phase chromatography and mass spectrometry confirmed the success of the synthesis and purifications. The antimicrobial activity assay, in terms of MICs showed that dimerization did not increase the ability of the peptides to inhibit the growth of bacteria and fungi. Nevertheless, when analyzing the peptides activity against E. coli in terms of kinetics, an increased velocity was observed for the dimers. The hemolytic activity of peptides was also evaluated, finding a very significant difference, approximately 40 times greater for dimers. Aiming to explain this difference, the osmotic protection test was performed, but the pore size was similar, which can not explain the differences in terms of this variable. Knowing the diameter of the pores, it was possible to determine that the pore is formed by six monomeric or three dimeric molecules. Additionally, permeabilization studies showed that the percentage and rate of carboxyfluorescein release were larger for the dimers compared with monomer, especially in vesicles containing sphingomyelin. This test also showed that the use of two times more monomer concentration's is not sufficient to reach dimers permeabilization capacity, confirming that the proximity of the chains is an important factor in the activity of this peptide. Analysis by circular dichroism revealed that peptides in aqueous solution are in random coil, whereas... (Complete abstract click electronic access below)
Mestre
APA, Harvard, Vancouver, ISO, and other styles
22

Morin, Kimberly M. "Cloning and expression of plasmids encoding multimers of antimicrobial peptides indolicidin and PGQ." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0425103-153311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bell, Stephanie. "Antimicrobial peptide gene expression in human tonsils." Thesis, University of Newcastle upon Tyne, 2009. http://hdl.handle.net/10443/3589.

Full text
Abstract:
The human palatine tonsils play important roles in host immunity and provide a barrier against invading pathogens. However the Gram-positive bacterium, Streptococcus pyogenes often penetrates their defences. This results in tonsillitis, in which sufferers present with swollen and painful palatine tonsils. Moreover tonsillitis is often recurrent. Despite tonsillitis being relatively common, the immunological factors that allow this infection to perpetuate remain obscure. Antimicrobial peptides (AMPs), expressed at epithelial and mucosal surfaces, provide a first-line of defence against potential pathogens. Moreover these molecules have also been reported to be up-regulated in response to infection, but their roles in the defence of the human palatine tonsils are not well known. Studies were therefore initiated to test the hypothesis that a defect in the innate immune response involving host AMPs, is a cause or contributory factor to recurrent acute tonsillitis (RAT). The first study investigated and compared AMP gene expression patterns in palatine tonsils excised from patients undergoing tonsillectomy for RAT to those of control subjects whose tonsils were excised for conditions such as snoring. To date it was the largest investigation of its kind using over ninety tonsils. The levels of LL-37, HBDl, HBD2 and LEAP-2 AMP mRNA expression were quantified by real-time PCR assays developed and optimised specifically for the study. The data indicated that all AMP genes examined were expressed, that considerable variability was detected between the AMP expression levels of individual subjects but that the mean AMP expression levels between the RAT and control groups were not statistically different. This study was conducted using tonsils excised from RAT patients at the time of their surgery when they were probably not suffering a streptococcal infection. To answer the question of whether RAT was due to a failure of the AMPs to up-regulate in response to infection, an in vitro model was adopted. HaCaT cells were used as the in vitro model of the tonsil and challenged with Group A streptococci. Quantitative real-time expression data suggested that in response to the S. pyogenes MI serotype, HBDI gene expression was decreased, suggesting that GAS down regulates the expression of this gene, whereas that of LEAP-2 was induced. The results of challenge experiments performed using pili-defective mutants also suggested that such changes in the host response occurred in the absence of streptococcal binding. The HaCaT cells were not however derived from tonsil. Thus to further investigate streptococcal-tonsil AMP responses an ex vivo tonsil model was used. Following challenge of the control (non-RAT) and RAT tonsil sections with S. pyogenes, a statistically significant increase in HBDI gene expression and a decrease in HBD2 gene expression were observed in the control (non-RAT) tonsils. No comparable statistically significant changes were identified in the RAT tonsils. These data therefore highlighted differences between the AMP expression profiles of the control (non-RAT) and RAT tonsils in response to a S. pyogenes M I challenge. Although speculative these data indicate that the RAT tonsils were less able to respond to the S. pyogenes challenge, which in part may help to explain the susceptibility of RAT patients to infection.
APA, Harvard, Vancouver, ISO, and other styles
24

Borelli, Alexander P. "Synthetic genes for antimicrobial peptides." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0428103-102059/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Franzman, Michael Ryan. "Targeted antimicrobial activity of SMAP28 conjugated to IgG antibody." Thesis, University of Iowa, 2007. http://ir.uiowa.edu/etd/140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bergsson, Gudmundur. "Antimicrobial polypeptides and lipids as a part of innate defense mechanism of fish and human fetus /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-546-1/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Erikson, Alexander K. "Antimicrobial Peptide Development: From Massively Parallel Peptide Sequencing to Bioinformatic Motif Identification." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8761.

Full text
Abstract:
The isolation, purification, and clinical deployment of antibiotics is one of the major drivers of decrease in morbidity and mortality from infectious bacteria in the 20th century. The rapid, ubiquitous deployment of antibiotics encouraged swift development and distribution of antibiotic resistance. New, novel techniques, technologies, and ultimately therapeutic antimicrobial compounds will be required to counter the rise of antibiotic resistant microbes. Historically, mimicking naturally occurring compounds has been the most fruitful method for discovering new antibiotics; unsurprisingly, many recent efforts have focused on expanding the cultivation and detection of previously unknown microbes and compounds, respectively. Other techniques explore developing compounds de novo, reverse-engineering potential therapies from a detailed understanding of the biochemistry of pathogens. We describe a novel peptide screening tool in E. coli designed to be used for such an application. This platform, termed PepSeq, is capable of screening millions of peptides simultaneously by using Illumina sequencing technology. Additionally, we have explored several peptide scaffolds that have a conserved secondary structure with a large randomizable domain of several amino acids, which allows the screening for new and novel biochemical interactions with more stable structure than a simple linear peptide. Finally, we have developed a bioinformatics workflow that complements PepSeq that allows analysis of PepSeq data for peptide motifs of interest, vastly streamlining motif identification and verification.
APA, Harvard, Vancouver, ISO, and other styles
28

Frohm, Nilsson Margareta. "The human antimicrobial peptide hCAP18 in epithelial defense /." Stockholm : [Karolinska institutets bibl.], 2001. http://diss.kib.ki.se/2001/91-7349-029-6/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, Manhong. "Characterization of bactenecin, a small antimicrobial cationic peptide." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0002/NQ39006.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

El, Abbouni Sarah. "Microencapsulation of LL-37 Antimicrobial Peptide in PLGA." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/235.

Full text
Abstract:
Antimicrobial peptides are key actors in organisms€™ immune systems. They play an important role in phagocytosis, breaking bacteria membranes. They destroy the microbes, keeping them from repairing themselves, and therefore do not promote antimicrobial resistance. LL37 is a peptide produced by the human body. It is a short amino acid chain that is particularly active on the skin and mucous membranes. It has antimicrobial and fungal activity as well as wound healing properties, which makes it a very interesting active substance in wound treatment. However, its fragile and sensitive structure is a challenge to its use. Nowadays, encapsulation in a biocompatible polymer system is a promising technique in drug delivery, and presents a solution to LL37 administration and delivery. LL37 is a hydrophilic active substance, it will be trapped in PLGA (poly (lactic-co-glycolic acid)) by double emulsion and the microspheres will be shaped and stabilized by solvent evaporation. The capsules will be characterized by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy. Their main features, drug loading, encapsulation efficiency and release profile, are determined using the Bradford assay. Since the peptide is expensive and delicate, it is important to optimize its encapsulation. For that reason, we will adapt the process to have the best drug loading as possible using water in oil in oil emulsions. For an external use, the capsules would be used over a few days, so having a fast release is very relevant. The larger the specific surface area, the faster the diffusion. For that reason, we will also study the impact of porosity on the release profile. As a result, different types of capsules will be synthesized, with higher porosity and by two processes: aqueous double emulsion and oil double emulsion. Their characteristic features and impact on bacterial pathogens will be determined and compared in order to determine their optimal synthesis process and formulation in given conditions of use.
APA, Harvard, Vancouver, ISO, and other styles
31

Nilebäck, Linnea. "Recombinant spider silk with antimicrobial properties." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102804.

Full text
Abstract:
Immobilizing antimicrobial substances onto biocompatible materials is an important approach for the design of novel, functionalized medical devices. By choosing antimicrobial substances from innate immune systems, the risk for development of resistance in pathogenic microbes is lower than if conventional antibiotics are used. Combining natural antimicrobial peptides and bactericidal enzymes with strong and elastic spider silk through recombinant protein technology would enable large-scale production of materials that could serve as functionalized wound dressings. Herein, fusion proteins with the engineered spider silk sequence 4RepCT and five different antimicrobial substances were constructed using two different strategies. In the first, the fusion proteins had a His-tag as well as a solubility-enhancing domain N-terminally to the antimicrobial agent during expression. The tags were cleaved and separated from the target protein during the purification process. The other approach provided a His-tag but no additional solubility domain. The antimicrobial agents included in the work were a charge engineered enzyme and four antimicrobial peptides herein called Peptide A, Peptide B, Peptide C and Peptide D. Four out of five fusion proteins could be expressed in Escherichia coli without exhibiting noticeable toxicity to the host. However, most target proteins were found in the non-soluble fraction. For D-4RepCT, neither soluble nor non-soluble proteins were identified. An operating strategy for expression and purification of antimicrobial spider silk proteins was developed, where the construct system providing the solubility-enhancing domain N-terminally to the antimicrobial sequence, and long time expression at low temperatures is a promising approach. The fusion proteins A-4RepCT and C-4RepCT could be produced in adequate amounts, and they proved to possess the ability to assemble into stable fibers. When incubating solutions of Escherichia coli on the functionalized silk material A-4RepCT, it showed to decrease the number of living bacteria in solution, in contrary to wild-type 4RepCT on which bacteria continued to proliferate. Initial studies of the viability of bacteria adhered to the surface of the functionalized spider silk are so far inconclusive. A larger sample size, complementary experiments and methodology optimization is needed for a proper assessment of antibacterial properties. However, preliminary results for the development of antimicrobial spider silk are positive, and the approach elaborated in this work is believed to be applicable for the construction of functional spider silk with a wide range of natural antimicrobial agents for future wound healing applications.
APA, Harvard, Vancouver, ISO, and other styles
32

Tollin, Maria. "Antimicrobial peptides and proteins in innate immunity : emphasis on isolation, characterization and gene regulation /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-270-5/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

López, Marcos Alejandro Sulca. "Desenvolvimento de novos peptídeos antimicrobianos a partir de proteínas dos venenos das serpentes peruana Bothrops pictus e Bothriopsis oligolepis." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042017-083735/.

Full text
Abstract:
A resistência aos antibióticos adquirida por micro-organismos patogênicos é um problema de saúde mundial e, por isso, o desenvolvimento de novos agentes antimicrobianos vem sendo amplamente estimulado. Sabendo que muitos peptídeos bioativos correspondem a fragmentos peptídicos de proteínas e/ou seus análogos, este trabalho teve o objetivo de desenvolver novos peptídeos antimicrobianos (AMPs) a partir das sequências aminoacídicas e das estruturas 3D de proteínas possivelmente envolvidas na atividade antimicrobiana de venenos de serpentes pouco estudados. As etapas iniciais seguidas foram: a) escolher uma fosfolipase A2 (PLA2) de veneno de serpente peruana do gênero Bothrops da família Viperidae com sequência de aminoácidos conhecida e modelar por homologia a sua estrutura 3D; b) verificar atividade antimicrobiana em venenos de serpentes peruanas dos gêneros Bothrops e Bothriopsis da família Viperidae, selecionar um veneno ativo, fracioná-lo para isolar proteínas provavelmente envolvidas nessa atividade, tripsinizar as proteínas isoladas, sequenciar os fragmentos trípticos para identificá-las, localizar esses fragmentos em sequências aminoacídicas de proteínas com estruturas 3D disponíveis correlatas às proteínas isoladas/identificadas em classe, função e fonte natural. Em seguida, foram escolhidos fragmentos peptídicos da PLA2 (item a) e das proteínas isoladas do veneno ativo (item b) e/ou desenhados análogos que apresentassem características exibidas por AMPs conhecidos. Os peptídeos desenhados foram sintetizados, purificados, caracterizados e testados em suas atividades antimicrobianas. Os modelos estruturais 3D da PLA2 de Bothrops pictus e quatro peptídeos (PLA2-1 a -4) amidados derivados dela foram obtidos, sendo o PLA2-1 ativo frente a Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Candida krusei e Candida parapsilosis (MICs de 6,25-200 µmol.mL-1). Dos três venenos de serpentes peruanas testados, Bothrops taeniatta, Bothrops barnetti e Bothriopsis oligolepis, os dois últimos inibiram o crescimento de S. aureus (MICs 0,78-50 µmol.mL-1), mas apenas B. oligolepis demonstrou espectro de ação amplo. O seu fracionamento sequencial, acompanhado de ensaios de inibição do crescimento de S. aureus, gerou frações ativas relativamente homogêneas que, tripsinizadas e os fragmentos trípticos sequenciados, continham metalo-peptidases do tipo III, serino-peptidase ou lectinas do tipo C. A verificação de atividade enzimática e de coagulação sanguínea nessas frações confirmaram as naturezas das proteínas isoladas. Dos três peptídeos amidados (Bo-Ser1, Bo-Met1 e Bo-Lec1) desenhados a partir de suas estruturas, um deles foi ativo frente às leveduras C. albicans, C. krusei e C. parapsilosis (Bo-Met1; MIC de 6,25 - 200 µmol.mL-1). Pela primeira vez, foi demonstrado que: a) os venenos das serpentes peruanas B. barnetti e B. oligolepis apresentam ação antimicrobiana, sendo o último de espectro amplo; b) que as proteínas acima citadas, que incluem uma serino-peptidase, estão envolvidas com essa propriedade do veneno de B. oligolepis; c) que as sequências aminoacídicas e modelo 3D de uma PLA2 ácida e de proteínas presentes nos venenos das serpentes peruanas B. pictus e Bothriopsis oligolepis podem funcionar como fontes naturais para o desenvolvimento de novos AMPs de ação potente em micro-organismos de interesse clínico e científico.
Resistance to antibiotics obtained by pathogenic microorganisms is a global health problem, so the search for new antimicrobial agents has been encouraged. Knowing that many protein fragments and analogues are bioactive peptides, the aim of this work was to develop new antimicrobial peptides (AMPs) based on the amino acid sequences and 3D structures of proteins apparently involved in the antimicrobial activity of snake venoms very little or not studied so far. The first steps taken were: a) selection of a phospholipase A2 (PLA2) present in the venom from a Peruvian Bothrops sp. belonging to the family Viperidae, whose amino acid sequence was known, to model by homology its 3D structure; b) detection of antimicrobial activity in venoms from other Peruvian Viperidae Bothrops and Bothriopsis snakes, selection of an active venom, fractionation of it for isolation of proteins possibly involved in the antimicrobial activity, trypsinization of the isolated proteins, sequencing of the tryptic fragments for protein identification, location of such fragments in the amino acid sequences and 3D structures of proteins directly related in class, function and natural source to the isolated proteins. Then, peptide fragments from the chosen PLA2 (item a) and from the isolated proteins (item b) that presented structural features found in the known AMPs were selected and/or their analogues were designed. Finally, synthesis, purification and characterization of the peptides with AMP potential, (viii) verification on whether or not they display antimicrobial activity. The 3D-structure models of Bothrops pictus PLA2 and four amidated peptides (PLA2-1 to -4) derived from it were obtained, being PLA2-1 active against Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa as well as the yeasts Candida albicans, Candida krusei and Candida parapsilosis (MICs de 6.25-200 µmol.mL-1). Among the three Peruvian snake venoms tested Bothrops taeniatta, Bothrops barnetti and Bothriopsis oligolepis, the last two inhibited the growth of S. aureus (MICs 0.78-50 µmol.mL-1) and B. oligolepis presented a wide spectrum of bacterial action. Sequential fractionation followed by S. aureus growth inhibition assays of the main fractions led to active relatively homogeneous ones. Their trypsinization and sequencing of the tryptic fragments indicated that they contained metalloproteinases type III, serine-proteinase or lectins type CTL. Enzymatic activity and blood coagulation assays confirmed the nature of the isolated proteins. From the three amidated peptides (Bo-Ser1, Bo-Met1 e Bo-Lec1) derived from them, Bo-Met1 showed to be active against C. albicans, C. krusei e C. parapsilosis (MIC 6,25 - 200 µmol.mL-1). In summary, for the first time, it was demonstrated that: a) the venoms of the Peruvian snakes B. barnetti and B. oligolepis display antimicrobial activity, being the last of wide spectrum of action, b) the proteins isolated from B. oligolepis snake venom, including a serine-peptidase, are involved in the antimicrobial activity of the B. oligolepis snake venom, c) the amino acid sequences and 3D structures of acidic PLA2 and of other proteins found in the venoms of the Peruvian B. pictus e Bothriopsis oligolepis snakes can be used as safe and natural sources for the development of new AMPs potent against microorganisms of clinical and scientific interest.
APA, Harvard, Vancouver, ISO, and other styles
34

Vargues, Thomas. "Antimicrobial peptides : structure, function and resistance." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4076.

Full text
Abstract:
Higher eukaryotes produce a vast range of antimicrobial peptides (AMPs) that play important roles in their defence against microbial infection. Beta defensins are small (3-5 kDa), cationic peptides that display broad, potent antimicrobial activity against a range of microbes and also act as chemoattractants of important immunomodulatory cells. To generate highly pure peptides for structural and functional studies, we developed a method to prepare recombinant human beta defensin-2 (HBD2). The HBD2 gene was synthesised by recursive PCR with codons optimised for expression in Escherichia coli. HBD2 was expressed as an insoluble fusion to a His-tagged ketosteroid isomerase. After cleavage from the fusion with cyanogen bromide, 1H NMR spectroscopy and mass spectrometry confirmed that the oxidised HBD2 was folded and possessed the correct b-defensin disulfide bond topology. The recombinant HBD2 was active against E. coli, P. aeruginosa, S. aureus and C. albicans and was also a chemoattractant against HEK293 cells expressing the chemokine receptor CCR6. 15N-labelled HBD2 was also prepared and was highly suitable for future structural studies. Since defensins are thought to interact with bacterial membranes we also tested the recombinant HBD2 in biophysical studies (surface plasmon resonance, SPR, Biacore). We observed different binding to artificial model membranes containing either E. coli Kdo2-lipid A or phospholipids. Bacterial resistance to AMPs has been linked to the covalent modification of the outer membrane lipid A by 4-amino-4-deoxy-L-arabinose (L-Ara4N). This neutralises the charge of the LPS, thereby decreasing the electrostatic attraction of cationic peptides to the bacterial membrane. The pathogen Burkholderia cenocepacia displays extremely high resistance to AMPs and other antibiotics and the Ara4N pathway appears to be essential. To explore this further we expressed recombinant forms of two enzymes (ArnB and ArnG) from the B. cenocepacia Ara4N pathway. Purified ArnB is a pyridoxal 5’-phosphate (PLP)-dependent transaminase and we tested its ability to bind amino acid substrates. We investigated the binding of inhibitors L- and D-cycloserine to ArnB and tested their antibiotic activity against Burkholderia strains. We also studied the B. cenocepacia ArnG – a proposed membrane protein undecaprenyl-L-Ara4N flippase – and showed that the protein behaved as a dimer by non-denaturing gel analysis. The B. cenocepacia ArnG failed to complement E. coli knock-out strains encoding the equivalent flippase proteins ArnE and ArnF, suggesting that ArnG is a Burkholderia-specific protein.
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Hongxia. "Mode of action of antimicrobial peptides." Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/laa/biola/vk/zhao/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Parisi, Rosaura. "Computational design of new antimicrobial peptides." Doctoral thesis, Universita degli studi di Salerno, 2018. http://hdl.handle.net/10556/3018.

Full text
Abstract:
2016 - 2017
Antimicrobial peptides (AMP) are evolutionarily conserved components of the innate immune system. They have a broad spectrum of action against bacteria, fungi and viruses. Therefore, AMP are studied as probable substitutes of the traditional antibiotics, for which most pathogens have developed resistance. The main objective of this work was the design of novel linear peptides capable to interact with the cellular membrane of the common pathogens. In this work, sequences of active AMP were carefully obtained from the scientific literature and collected in Yadamp (http://yadamp.unisa.it/), a database of AMP created recently in the laboratory where this project was carried out. In Yadamp, there are information about peptides name, amino acid sequence, length, presence of disulfide bridges, date of discovery, activity and taxonomy. The most relevant chemical-physical properties are also listed. This database is mainly focused on the peptides activities. Experimental MIC values (the lowest concentration of an antimicrobial that inhibits the visible growth of a microorganism) are constantly obtained from careful reading the original papers. In this work, a great contribution was made in the enrichment of the database. In fact, 1009 sequences were added to Yadamp. It currently contains 3142 AMP sequences. For these AMP, 573 molecular descriptors were calculated. In addition, this project also involved the search for new molecular descriptors. Yadamp is a resource for QSAR investigations on AMP. It allows to create subsets of AMP, homogeneous in one, two or more parameters...[abstract by Author]
XXX ciclo
APA, Harvard, Vancouver, ISO, and other styles
37

Arranz, Trullén Javier. "Unveiling the multifaceted antimicrobial mechanism of action of human host defence RNases." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/400666.

Full text
Abstract:
La presente tesis doctoral se encuentra integrada dentro del estudio a gran escala de la estructura-función de las ribonucleasas antimicrobianas humanas. Estas proteínas catiónicas y de bajo peso molecular son secretadas por la mayoría de los organismos vertebrados agrupándose dentro la superfamilia de la ribonucleasa A, una de las enzimas mejor caracterizadas del siglo XX. De interés remarcable podríamos considerar su amplio abanico de propiedades biológicas, teniendo en cuenta su diverso historial de propiedades biológicas no catalíticas, convirtiéndolas en un buen modelo de proteínas multifunción. Junto a su principal característica como enzima catalizador de ácidos ribonucleicos, es importante destacar también otro tipo de propiedades biológicas no menos esenciales, como su actividad antimicrobiana, que comparten miembros distantes de la familia sugiriendo una función ancestral en el sistema inmune. Además, se ha visto que la expresión de algunas RNasas humanas puede ser inducida en procesos infecciosos. En particular, las RNasas estudiadas en este trabajo, las RNasas humanas 3, 6 y 7, se expresan principalmente en eosinófilos, monocitos y células epiteliales, respectivamente. Estas proteínas muestran una alta cationicidad debido a su alta proporción de residuos básicos y una notable actividad antimicrobiana frente a una amplia gama de patógenos humanos. Nuestro grupo de investigación posee una larga trayectoria en el estudio del mecanismo de acción de las ribonucleasas humanas y el trabajo teórico-experimental que se presenta en esta tesis ha contribuido a consolidar el actual proyecto de investigación. Los principales avances llevados a cabo por la presente tesis doctoral se enumeran a continuación: - La caracterización del mecanismo antimicrobiano de la ribonucleasa 6, evaluando sus propiedades microbicidas frente a patógenos y modelos de membrana. Concretamente se ha revelado su actividad aglutinadora además de demostrarse que su actividad antimicrobiana está localizada básicamente en su extremo Nterminal. - La resolución de la primera estructura tridimensional de la ribonucleasa 6, obtenida a 1.72 Å, que ha permitido asentar las bases estructurales para futuros estudios funcionales. Análisis complementarios sobre su caracterización cinética y predicción de complejos con diferentes ligandos han revelado sitios de unión y de catálisis que posteriormente han sido confirmados mediante mutagénesis dirigida. - El estudio de la efectiva actividad antipatogena a nivel intracelular que presentan las ribonucleasas 3,6 y 7 asi como sus péptidos derivados N-terminales frente a micobacterias en un modelo de macrófagos infectados. - La expansión del conocimiento sobre las bases antipatogenas de diferentes péptidos y proteínas antimicrobianas que participan en la erradicación de las infecciones por micobacterias, asi como las terapias derivadas. - La caracterización del mecanismo antimicrobiano de los 8 peptidos N-terminales derivados de las ribonucleasas frente a Candida albicans, como modelo de patógeno eucariota Como conclusión, los resultados presentados en esta tesis contribuyen a profundizar en la comprensión de las bases moleculares del papel que desempeñan algunas ribonucleasas en el sistema inmune y expandir el proyecto al diseño de agentes terapéuticos basados en péptidos antimicrobianos con el objetivo de erradicar enfermedades infecciosas causadas por patógenos resistentes.
The present doctoral thesis is integrated into the large-scale study of the structure and function of human antimicrobial ribonucleases. These cationic and low molecular weight proteins are grouped into the ribonuclease A superfamily, considered one of the best characterized enzymes of the twentieth century. The RNase A superfamily is specific for vertebrates and has attracted remarkable interest due to the diversity of displayed biological properties; and represents an excellent example of a multifunctional protein´s family. Together with the main enzymatic activity we must highlight other biological properties such as the angiogenic, immunomodulatory and antimicrobial activities. The reported antimicrobial activity of distantly related family members in early vertebrates suggests that the family arouse with an ancestral function in host defence. Besides, the expression of several human RNases has been reported to be induced by infection. In particular, the RNases studied in this work, the human RNases 3, 6 and 7, are mainly expressed in eosinophils, monocytes and epithelial cells respectively. These proteins show a high cationicity due to the high proportion of basic residues and a remarkable antimicrobial activity against a wide range of human pathogens. Our research group has a consolidated experience in the study of the mechanism of action of human ribonucleases and the experimental work presented in this thesis is contributing to this overall research project. The main results achieved by the present PhD study are outlined below: - The characterization of the antimicrobial mechanism of RNase 6, both in bacteria cell cultures and using membrane models. Results highlight that the antimicrobial and cell agglutinating activities are mainly located at the N-terminus. - The resolution of the first three-dimensional structure of ribonuclease 6, obtained at 1.72 Å, which has set the structural basis for future functional studies. The kinetic characterization of RNase 6 mutant variants and the prediction of protein- substrate complexes have identified the enzyme nucleotide binding sites. - The study of the intracellular activity of ribonucleases 3, 6 and 7 and their derived Nterminal peptides against intracellular resident mycobacteria using a macrophage infected model. - The analysis of the anti-pathogenic mechanism of action of human antimicrobial proteins and peptides in mycobacterial infections and their applied therapies. - The comparative characterization of the antimicrobial mechanism of action of human RNases and their N-terminal derived peptides towards Candida albicans, as an eukaryote pathogen model. The results presented in this thesis will contribute to the understanding of the role of human RNases in the immune system and provide the structure- function basis to expand the initial project into the design of novel peptide mimetic therapeutics agents towards the eradication of resistant infectious diseases.
APA, Harvard, Vancouver, ISO, and other styles
38

Giffard, Catriona Julie. "The structure-function relations of the antimicrobial peptide nisin." Thesis, University of York, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hammi, Ikram. "Isolement et caractérisation de bactériocines produites par des souches de bactéries lactiques isolées à partir de produits fermentés marocains et de différentes variétés de fromages français." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF028/document.

Full text
Abstract:
Les bactériocines sont des peptides antimicrobiens produits par des bactéries naturellement immunisées contre leurs propres bactériocines. Ce travail a permis l’identification de nombreuses souches productrices de peptides antimicrobiens. Ces derniers ont été extraits et purifiés par différentes techniques chromatographiques, puis identifiés et caractérisés par la mesure de leurs masses et par l’analyse de leurs structures (approche protéomique et séquençage d’Edman). Parmi les résultats obtenus, il y a :- la mise en évidence d’une nouvelle bactériocine (maltaricin CPN), appartenant à la classe IIa, isolée et identifiée chez Carnobacterium maltaromaticum ;- l’identification de trois nouvelles espèces productrices de pédiocine PA-1 ;- l’isolement de souches productrices de bactériocines multiples (appartenant à différentes classes) ;- la mise en évidence pour certaines bactériocines d’une forte activité antimicrobienne in vitro (spectres d’activité incluant des pathogènes).Les travaux se poursuivent avec l’application de deux souches productrices de bactériocines dans du lait fermenté (Lben) en vue de lutter contre L. monocytogenes.Les bactériocines sont des peptides antimicrobiens produits par des bactéries naturellement immunisées contre leurs propres bactériocines. Ce travail a permis l’identification de nombreuses souches productrices de peptides antimicrobiens. Ces derniers ont été extraits et purifiés par différentes techniques chromatographiques, puis identifiés et caractérisés par la mesure de leurs masses et par l’analyse de leurs structures (approche protéomique et séquençage d’Edman). Parmi les résultats obtenus, il y a :- la mise en évidence d’une nouvelle bactériocine (maltaricin CPN), appartenant à la classe IIa, isolée et identifiée chez Carnobacterium maltaromaticum ;- l’identification de trois nouvelles espèces productrices de pédiocine PA-1 ;- l’isolement de souches productrices de bactériocines multiples (appartenant à différentes classes) ;- la mise en évidence pour certaines bactériocines d’une forte activité antimicrobienne in vitro (spectres d’activité incluant des pathogènes).Les travaux se poursuivent avec l’application de deux souches productrices de bactériocines dans du lait fermenté (Lben) en vue de lutter contre L. monocytogenes
Bacteriocins are antimicrobial peptides produced by bacteria naturally immunized against their own bacteriocins. This work has allowed the identification of several strains which produce antimicrobial peptides. These have been purified using different chromatographic techniques. Then, they have been identified and characterized by the measurement of their mass and by the analysis of their structure (proteomic approach/ Edman sequencing). Among the obtained results, there was:- the discovery of a new bacteriocin (maltaricin CPN) produced by C. maltaromaticum and belonging to the class IIa ;- the identification of three new pediocin PA-1 producing species;- the isolation of bacterial strains wich produce multiple bacteriocins belonging to several classes ;- the in vitro determination of a strong antimicrobial activity(affecting pathogens) with some bacteriocins.This work is still underway with the application of two bacteriocin producing strains in fermented milk (Lben) in order to tackle L. monocytogenes
APA, Harvard, Vancouver, ISO, and other styles
40

Okechuku, Adaora. "Determination of the mode of action of the antibacterial peptide ApoEdp." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/determination-of-the-mode-of-action-of-the-antibacterial-peptide-apoedp(1937bcc4-f28b-416e-8dd7-8d493082ac2a).html.

Full text
Abstract:
The emergence of multidrug resistant strains of bacteria has resulted in the need for novel therapeutic agents. The ApoEdp peptide, derived from the receptor-binding region of the human apolipoprotein E, had previously been shown to have activity against herpes simplex viruses, human immunodeficiency virus and certain bacterial species. However, its antibacterial mode of action was not elucidated, therefore the present study aimed to determine this mechanism. The susceptibility of several different strains, including Pseudomonas aeruginosa, Staphylococcus aureus, Mycobacterium smegmatis, Staphylococcus epidermidis and Escherichia coli, to ApoEdp was investigated. No significant difference was observed between the minimal inhibitory concentrations (MICs) of ApoEdp against a range of Gram positive and Gram negative bacteria. The presence of E. coli K5 capsular polysaccharide in the growth medium led to a decrease in ApoEdp susceptibility of the non-capsulated E. coli MS101 DeltakfiC strain. Bacteria with non-functioning multidrug efflux pumps showed no difference in susceptibility. A mutation in the phoP gene of Salmonella enterica Serovar Typhimurium LT2, which regulates cell surface modifications led to an increase in ApoEdp susceptibility. Transmission electron microscopy (TEM) images showed changes in the membrane and internal structures of strains incubated with a minimal bactericidal concentration (MBC) of ApoEdp for 5 min. ApoEdp was able to depolarise the cytoplasmic membrane. The ability of ApoEdp to induce cell lysis was assessed by the release of β-galactosidase into the supernatant. There was no significant difference in the supernatant β-galactosidase levels of ApoEdp treated and unlysed cells. ApoEdp, however was able to form pores in artificial lipid bilayers and decrease intracellular ATP levels. The effect of ApoEdp on transcription and translation was determined using an in vitro transcription/translation system. Results showed that ApoEdp did not affect protein synthesis. ApoEdp also worked in synergy with rifampicin, chloramphenicol, ampicillin and ciprofloxacin against bacteria. Overall, the results showed that ApoEdp acts by targeting the cytoplasmic membrane, although it may also have intracellular targets. Its ability to work in combination with conventional antibiotics and antibacterial activity against a range of different bacteria species demonstrates its therapeutic potential.
APA, Harvard, Vancouver, ISO, and other styles
41

Díaz, i. Cirac Anna. "Mechanism of action of cyclic antimicrobial peptides." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/38252.

Full text
Abstract:
This PhD thesis is the result of the combination of experimental and computational techniques with the aim of understanding the mechanism of action of de novo cyclic decapeptides with high antimicrobial activity. By experimental techniques the influence of the replacement of the phenylalanine for tryptophan residue in their antimicrobial activity was tested and the stability in human serum was also analyzed, in order to evaluate their potential therapeutic application as antitumor agents. On the other hand, the interaction amongst the peptide BPC194 c(KKLKKFKKLQ), the best candidate from the whole library of cyclic peptides, and a model anionic membrane was simulated. The results showed a structure-function relationship derived from the stable conformation of the peptides involved in the membrane permeabilization. As a result, a rational design was performed being BPC490 the peptide with best antimicrobial activity compared with the best active peptide from the original library.
Aquesta tesi doctoral resulta de la combinació d’estudis mitjançant tècniques experimentals i computacionals amb l’objectiu d’entendre el mecanisme d’acció de "de novo" decapèptids cíclics amb elevada activitat antimicrobiana. Experimentalment, es va avaluar la influència de la substitució dels residus de fenilalanina per triptòfan en la seva activitat antimicrobiana i també la seva estabilitat sèrum humà, per tal de valorar la seva possible aplicació terapèutica envers el càncer. Per altra banda, es va simular la interacció del pèptid BPC194 c(KKLKKFKKLQ), millor candidat de la biblioteca de pèptids cíclics, amb models aniònics de bicapa lipídica. Els resultats van posar en manifest una relació estructura-funció derivada de la conformació estable dels pèptids que participen directament en la permeabilització de la membrana. Es va procedir doncs al disseny racional de nous pèptids cíclics sent el pèptid BPC490 el que va presentar una millor activitat bacteriana en comparació amb el pèptid més actiu de la llibreria original.
APA, Harvard, Vancouver, ISO, and other styles
42

Bunkóczi, Gábor. "Structure determination of peptides with antimicrobial action." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974033650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lu, Shanshan. "Immobilization of antimicrobial peptides onto titanium surfaces." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12622.

Full text
Abstract:
Prosthetic-associated infections are one of the most challenging postoperative complications for orthopedic implants. The consequences that infections may lead to include patient pain, high cost, prolonged hospitalization time, and usually the revision of the implant. Current prophylaxis and therapy utilizing antibiotics are facing an emergency of increasing bacterial resistance; the design of a novel anti-infectious implant surface is therefore required. Among the potential antimicrobial alternatives are the antimicrobial peptides (AMP). AMPs are a family of natural defense peptides that has not received enough recognition until recently. The complex killing mechanisms of these cationic peptides make them very unlikely to encounter resistant mutants, and their broad-spectrum activity offers them great opportunity in possible clinical applications. In this study, a novel short AMP Tet213 with prominent bactericidal activity was chosen as the antimicrobial candidate and was covalently attached to titanium surfaces through a short bifunctional linker. This designed routine was confirmed with single cysteine before being applied to the 9-mer AMP candidate. The surface density of the immobilized AMP was determined by detecting its arginine residues after a reaction with 9,10-phenanthrequenon (PHQ). The reaction between arginine and PHQ generates a fluorescent product, by the emission of which the quantity of the arginine-containing peptide can be calculated. The density of the surface-attached Tet213 was measured to be 1.30±0.55 μg/cm². A relatively large proportion of physically adsorbed Tet213 was also observed, with the net adsorbed quantity to be 0.74±0.20 μg/cm². The affinity of the cationic AMP to the bare titanium surface is believed to be a result of electrostatic interactions. Both the covalently immobilized and the physically adsorbed Tet213 showed bactericidal activities of generally > 50% against a Pseudomonas aeruginosa (P. aeruginosa) strain which constitutively expresses luminescence when alive. The inhibition rate was calculated by the luminescence reduction and confirmed by the colony counts of the surviving bacteria. Several parameters were found to be influential to the overall inhibition rate, including the selection of the AMP candidate, the dilution of the bacterial culture and the bacterial incubation time.
APA, Harvard, Vancouver, ISO, and other styles
44

Neville, Frances Clare. "Interaction of antimicrobial peptides with bacterial membranes." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chau, Tanguy. "Delivery, design, and mechanism of antimicrobial peptides." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62063.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Each year, 2 million people contract hospital-acquired bacterial infections, which causes the death of 100,000 patients and costs the US healthcare system over $21 billion. These infections have become dangerously resistant to our existing line of antibiotics and are rapidly spreading outside of hospitals and into communities. As molecular targets to develop new antibiotics are becoming exhausted, clinicians and scientist are concerned that antibiotic resistant infections will wipe out most of the major health benefits acquired over the last century. The work described in this thesis develops new antimicrobials strategies against bacterial infections, focusing on antimicrobial peptides (AmPs). We first delivered genes inducing the toxic expression of AmPs and other lytic agents directly into bacteria using re-engineered bacteriophages. Expression of these lytic agents in lysogenic bacteriophages resulted in bactericidal activity, and demonstrated, for the first time, a long-term cidal effect for over 20 hours. We then enhanced the efficacy of our approach by expressing the same agents in lytic bacteriophage, which resulted in complete suppression of the bacterial culture and prevented bacterial regrowth and resistance to bacteriophages. Since a large fraction of medical infections originates at the surface of implantable devices, we developed film coatings that release active AmPs to cover these surfaces and prevent bacterial colonization. We incorporated AmPs in layer-by-layer films and demonstrated that the kinetics of AmP release can be adjusted. These released AmPs still actively prevented bacterial growth and remained non-toxic towards mammalian cells. While natural AmPs have broad activity against pathogens, they are not optimized for a specific antimicrobial function or bacterial target. Thus, researchers have tried for decades to design highly active and specific de novo AmPs. One approach is to design new peptides using conserved motifs identified from the amino acid sequence of natural AmPs. We improved this approach by measuring the antimicrobial activity of a large database of natural AmPs and incorporating this activity information in the design algorithm. This strategy improved the success rate of designing de novo peptides from 45% to 73% and increased the antimicrobial strength of the designed peptides. Finally, we developed new potentiating strategies by studying the mode-of-action of the family of ponericin AmPs. First, we measured their cidal behavior and differentiated bactericidal ponericins from bacteriostatic ones. Using a modified AFM and a microfluidic device, we observed that the action of AmPs led to cellular death through the corrugation of bacterial, while subpopulation of cells resisted the action of the AmPs longer than others. Focusing on the ponericin G1 AmP, we correlated these visual observations with various membrane stress sensing mechanisms. We concluded that bacteria's ability to develop resistance to ponericin G1 requires the sensing and repair of misfolded membrane proteins via the CpxAR system, as well as DNA repair via induction of the SOS response by RecA. Using microarrarys, we showed that ponericin G1 targets tRNA synthetases in the ribosome. Finally, we demonstrated 99.999% killing of antibiotic resistant bacteria by potentiating ponericin G1 with the ribosomal antibiotic kanamycin, whereas no killing is observed when these two agents are applied independently. untreta The PhDCEP capstone requirement finalizes the work of this thesis by analyzing market entry and expansion strategies for an antimicrobial company commercializing genetically engineered bacteriophages. In conclusion, this thesis establishes new advances in the delivery, the design and the potentiation of AmPs in order to eradicate resilient bacterial infections.
by Tanguy Chau.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
46

Bolt, Hannah Louise. "Antimicrobial peptoids : design, synthesis and biological applications." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11947/.

Full text
Abstract:
The emergence of antimicrobial resistance is a severe threat to global health and new classes of antibiotics are desperately needed. Peptoids, or oligo-N-substituted glycines, are a group of peptidomimetics with increased structural stability and resistance to protease degradation compared to peptide analogues. In Chapter 1, peptoids are introduced and their antimicrobial properties reported to date are summarised. The synthesis and characterisation of one of the largest library of antimicrobial peptoids in existence is outlined in Chapter 2, comprising linear sequences and cyclic compounds. The development of synthetic methodology that allows the on-resin synthesis of novel peptoids containing both lysine- and arginine-type monomers is also described. In Chapter 3, the antiparasitic activity of the peptoid library is assessed against a variety of clinically relevant protozoan targets; including Leishmania mexicana, the causative agent of the neglected tropical disease cutaneous leishmaniasis. Active peptoids were identified against the insect and mammalian life stages of this parasite, including several with low micromolar potency against L. mexicana infected macrophages, an in vivo model of the disease. Additionally, peptoids that have selective activity at sub-micromolar concentrations against Plasmodium falciparum have been identified. Chapter 4 discusses the potent antibacterial and antifungal properties of the peptoid library against planktonic bacteria and also against mixed species, cross kingdom biofilms using a new quantitative polymerase chain reaction approach. Evaluation of peptoid toxicity to mammalian cells is also considered and conjugation of active sequences to the lantibiotic nisin is evaluated as a method to increase peptoid selectivity. To rationalise the activity of the peptoid library, Chapter 5 investigates the relationship between peptoid hydrophobicity, secondary structure and biological activity using circular dichroism spectroscopy and partitioning experiments. Finally, the antimicrobial mode of action is also examined using confocal fluorescence microscopy.
APA, Harvard, Vancouver, ISO, and other styles
47

SOLLAMI, DELEKTA SZYMON. "Hexosomes as Drug Delivery Vehicles for Antimicrobial Peptides." Thesis, KTH, Skolan för kemivetenskap (CHE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172360.

Full text
Abstract:
This master thesis project was carried out at SP Technical Research Institute of Sweden within the FORMAMP project which goal is to increase the efficiency and stability of antimicrobial peptides (AMPs) by exploring and developing a number of innovative formulation strategies for the drug delivery of those systems. In view of the growing problem of bacterial resistance to traditional antibiotics, AMPs represent one of the most promising alternatives as therapeutics against infectious diseases: besides having a fast and non-specific mechanism of action, they are less prone to bacterial resistance. In this project, the goal was to develop an efficient method for the formulation of hexagonal lyotropic phase nanodispersions (called hexosomes) as drug delivery vehicles for the AP114, DPK-060 and LL-37 AMPs. Then, these formulations were characterized through size measurements, zeta potential measurements, SAXS, cryo-TEM and UPLC and their stability was assessed. Lastly, the interaction of these systems with model bacterial membranes was tested through QCM-D and ellipsometry. The relevant samples were found to have a hexagonal structure with the lattice parameter being larger when peptide was loaded. The systems were observed to be sufficiently stable and the peptide loading efficiency was found to be higher than 90% in most cases. The hexosomes loaded with LL-37 were observed to preserve the effectiveness of the peptide when interacting with the model membrane through QCM-D.
APA, Harvard, Vancouver, ISO, and other styles
48

Oliveras, Rovira Àngel. "Síntesi de lipopèptids i de pèptids conjugats derivats de BP100. Caracterització estructural de lipopèptids lineals i cíclics." Doctoral thesis, Universitat de Girona, 2020. http://hdl.handle.net/10803/671194.

Full text
Abstract:
Nowadays, around a third of the agricultural production is lost due to the damage caused by pests, resulting in a significant economic impact. It is estimated that about a third of these losses are provoked by phytopathogens. Currently, the solution to these problems focuses on the use of pesticides, mainly copper derivatives, antibiotics or fungicides. These compounds are effective, but they are highly polluting. In addition, antibiotics are not allowed in many countries, because abusive use causes the rapid appearance of bacterial resistant strains. The lack of non-polluting and effective treatments for plant disease control has raised the search for new compounds. Antimicrobial peptides are one of the most promising alternatives to traditional pesticides. With this aim, in this doctoral thesis the design, synthesis and characterization of BP100 derivatives was considered
Actualment, es calcula que, aproximadament, un terç de la producció agrícola es perd a causa dels danys provocats per les plagues, resultant en un impacte econòmic molt important. Al voltant d’un terç d’aquestes pèrdues són provocades per fitopatògens. Avui en dia, la solució a aquests problemes es centra en l’ús de pesticides, fonamentalment derivats de coure, antibiòtics o fungicides; tanmateix, tot i ser eficaços, són altament contaminants. A més, els antibiòtics no estan permesos en molts països, perquè un ús abusiu provoca l’aparició ràpida de soques bacterianes resistents. La manca de tractaments no contaminants i efectius per al control de malalties de plantes ha motivat la recerca de nous compostos. Els pèptids antimicrobians són una de les alternatives més prometedores als pesticides tradicionals, perquè mostren una activitat biològica elevada. Per aquest motiu, en aquesta tesi doctoral es va plantejar el disseny, la síntesi i la caracterització de derivats de BP100
APA, Harvard, Vancouver, ISO, and other styles
49

Raghoonanan, Venisha. "Molecular characterization and in vitro functional analysis of putative immunoprotective molecules in the soft tick, Ornithodoros savignyi." Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/29182.

Full text
Abstract:
Since ticks are classified as hematophagous ectoparasites, the primary feeding event involves a bloodmeal on a vertebrate host. Such activities facilitate the ingestion of microorganisms which may be detrimental to the survival of a tick. It is observed, however, that ticks are able to survive such invasion by microorganisms and in several cases, facilitate the transmission of pathogens, while themselves remaining unaffected. This phenomenon is attributed to the innate immune system of ticks. The focus of this project is on stimulus-induced immunoreactive peptides known as antimicrobial peptides. In chapter 2, an attempt was made to identify a homolog of the anti Gram-positive and bacteriostatic peptide microplusin, in the salivary glands of the argasid tick Ornithodoros savignyi. It was reported previously that tissue and life stage specific expression of this transcript occurs in the fat body of adult, fully fed, female Rhipicephalus (Boophilus) microplus ticks. The positive control used for this study was unsuccessful due to the incorrect tissue and life stage of R. (B.) microplus ticks. No significant homolog was identified due to the possible existence of stringent regulation of expression as well as differences in the induction stimuli between argasid and ixodid ticks. Lysozyme catalyzes the cleavage of the β-1,4 glycosidic bond between N-acetyl muramic acid and N-acetyl glucosamine of the peptidoglycan layer of bacterial cell walls affording the molecule antibacterial activity. In argasid ticks, lysozyme was observed to be induced by feeding. In chapter 3, an attempt was made to elucidate the O. savignyi homolog of the O. moubata lysozyme molecule. The partial sequence obtained revealed the presence of a lysozyme homolog in O. savignyi. The tissue expression profile revealed constitutive expression in the midgut and ovaries and induction of transcription in the hemolymph upon feeding. In salivary glands, upregulation was observed following ingestion of Gram-positive bacteria. In chapter 4, the tissue expression profile of O. savignyi defensin was investigated. It was found that transcription is induced following the ingestion of Gram-positive bacteria, while in the hemolymph upregulation was observed upon feeding. Furthermore, chapter 4 saw the attempts made at the RNAi mediated silencing of the lysozyme and defensin transcripts. Silencing, analysed by real time PCR, was not efficient as no statistically significant silencing was observed. Observation of the phenotype revealed mortality. However, statistical analysis of silencing revealed that the mortality observed was not due to silencing, but non-specific and possibly the result of injury during injection. Overall, the abovementioned experiments revealed the tissue specificity of expression of ixodid microplusin and that a more strategic approach is required for the elucidation of the argasid homolog. The partial O. savignyi lysozyme sequence was elucidated together with the tissue expression profile of this molecule and O. savignyi defensin. The RNAi experiments require optimization for future studies.
Dissertation (MSc)--University of Pretoria, 2010.
Biochemistry
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
50

Gooderham, William James. "Regulation of virulence and antimicrobial peptide resistance in Pseudomonas aeruginosa." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1014.

Full text
Abstract:
Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. These P. aeruginosa infections can be extremely difficult to treat due to the high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It was demonstrated here that the psrA gene, encoding a transcriptional regulator, was up-regulated in response to sub-inhibitory concentrations of antimicrobial peptides. Compared to wild-type and the complemented mutant, a P. aeruginosa PAO1 psrA::Tn5 mutant displayed intrinsic super-susceptibility to polymyxin B, a last resort antimicrobial used against multi-drug resistant infections, and indolicidin, a bovine neutrophil antimicrobial peptide; this super-susceptibility phenotype correlated with increased outer membrane permeability. The psrA mutant was also defective in simple biofilm formation, rapid attachment, and normal swarming motility, phenotypes that could be complemented by the cloned psrA gene. The role of PsrA in global gene regulation was studied by comparing the psrA mutant to wild-type by microarray analysis, demonstrating that 178 genes were up or down-regulated by greater than 2-fold (P ≤0.05). Dysregulated genes included those encoding known PsrA targets, the type III secretion apparatus and effectors, adhesion and motility genes and a variety of metabolic, energy metabolism and outer membrane permeability genes. This indicates that PsrA is a central regulator of antimicrobial peptide resistance and virulence. P. aeruginosa containing a mutation in the PhoQ sensor kinase-encoding gene was highly attenuated for persistence in a rat chronic lung infection model. In addition, the polymyxin B hyper-resistant phoQ mutant displayed reduced type IV pili-dependent twitching motility and was less cytotoxic towards human bronchial epithelial cells, indicating that the virulence defect observed could be due at least in part to these phenotypes. Using microarrays it was further demonstrated that PhoQ regulates a large number of genes that are PhoP-independent and that the phoQ mutation leads to up-regulation of PhoP- and PmrA regulated genes as well as other genes consistent with its virulence phenotypes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography