Academic literature on the topic 'Antigen specificity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antigen specificity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antigen specificity"
Rhodes, S. G., D. Gavier-Widen, B. M. Buddle, A. O. Whelan, M. Singh, R. G. Hewinson, and H. M. Vordermeier. "Antigen Specificity in Experimental Bovine Tuberculosis." Infection and Immunity 68, no. 5 (May 1, 2000): 2573–78. http://dx.doi.org/10.1128/iai.68.5.2573-2578.2000.
Full textJain, Deepti, and Dinakar M. Salunke. "Antibody specificity and promiscuity." Biochemical Journal 476, no. 3 (February 5, 2019): 433–47. http://dx.doi.org/10.1042/bcj20180670.
Full textKendall-Taylor, P., D. Jones, and S. Atkinson. "The specificity of autoantibodies in Graves' ophthalmopathy." Acta Endocrinologica 116, no. 1_Suppl (August 1987): S330—S333. http://dx.doi.org/10.1530/acta.0.114s330.
Full textJiang, Ning, Ke-yue Ma, Alexandra A. Schonnesen, Chenfeng He, Amanda Xia, Eric Sun, Eunise Chen, Katherine Sebastian, Robert Balderas, and Mrinalini Kulkarni-Date. "High-Throughput and High-Dimensional Single Cell Analysis of Antigen-Specific CD8+ T cells." Journal of Immunology 206, no. 1_Supplement (May 1, 2021): 27.22. http://dx.doi.org/10.4049/jimmunol.206.supp.27.22.
Full textLesavre, Philippe. "Antineutrophil Cytoplasmic Autoantibodies Antigen Specificity." American Journal of Kidney Diseases 18, no. 2 (August 1991): 159–63. http://dx.doi.org/10.1016/s0272-6386(12)80873-0.
Full textBolhuis, Reinder L. H., Els Sturm, Jan Willem Gratama, and Eric Braakman. "Engineering T lymphocyte antigen specificity." Journal of Cellular Biochemistry 47, no. 4 (December 1991): 306–10. http://dx.doi.org/10.1002/jcb.240470404.
Full textKlinger, Mark, Ruth Taniguchi, Joyce Hu, Tim Hayes, Tobias Wittkop, Thomas Asbury, Martin Moorhead, et al. "A scalable multiplex assay enabling assessment of T cell receptor specificity to hundreds of self- and pathogen-derived antigens." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 209.4. http://dx.doi.org/10.4049/jimmunol.196.supp.209.4.
Full textShahi, Payam, Bruce Adams, Daniel Reyes, Shamoni Maheshwari, Nima Mousavi, Sreenath Krishnan, Nandhini Ramen, et al. "High-Throughput Antibody Discovery Using Barcode Enabled Antigen Mapping (BEAM." Journal of Immunology 210, no. 1_Supplement (May 1, 2023): 249.28. http://dx.doi.org/10.4049/jimmunol.210.supp.249.28.
Full textTseng, Diane, Shin-Heng Chiou, Xinbo Yang, Alexandre Reuben, Julie Wilhelmy, Alana McSween, Stephanie Conley, et al. "Discovery of a novel shared tumor antigen in human lung cancer." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): 3087. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.3087.
Full textZollinger, Wendell D., Elizabeth E. Moran, and Deborah H. Schmiel. "Characterization of an Antibody Depletion Assay for Analysis of Bactericidal Antibody Specificity." Clinical and Vaccine Immunology 16, no. 12 (October 14, 2009): 1789–95. http://dx.doi.org/10.1128/cvi.00255-09.
Full textDissertations / Theses on the topic "Antigen specificity"
Košmrlj, Andrej 1981. "Statistical physics of T cell receptor development and antigen specificity." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68875.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 147-158).
Higher organisms, such as humans, have an adaptive immune system that usually enables them to successfully combat diverse (and evolving) microbial pathogens. The adaptive immune system is not preprogrammed to respond to prescribed pathogens, yet it mounts pathogen-specific responses against diverse microbes, and establishes memory of past infections (the basis of vaccination). Although major advances have been made in understanding pertinent molecular and cellular phenomena, the mechanistic principles that govern many aspects of an immune response are not known. In this thesis, I illustrate how complementary approaches from the physical and life sciences can help confront this challenge. Specifically, I describe work that brings together statistical mechanics and cell biology to shed light on how key regulators of the adaptive immune system, T cells, are selected to enable pathogen-specific responses. A model of T cell development is introduced and analyzed (computationally and analytically) by employing methods from statistical physics, such as extreme value distributions and Hamiltonian minimization. Results show that selected T cell receptors are enriched in weakly interacting amino acids. Such T cell receptors recognize (i.e. bind sufficiently strongly to) pathogens through several contacts of moderate strength, each of which makes a significant contribution to overall binding. Disrupting any contact by mutating the pathogen is statistically likely to abrogate T cell recognition of the mutated pathogen. We propose that this is the mechanism for the specificity of T cells for unknown pathogens. The T cell development model is also used to discuss one way in which host genetics can influence the selection of T cells and concomitantly the control of HIV infection. A model of the T cell selection process as diffusion in a random field of immobile traps that intermittently turn "on" and "off" is developed to estimate the escape probability of dangerous T cells that could cause autoimmune disease. Finally, and importantly, throughout this thesis, I describe, how the theoretical studies are closely synergistic/complementary with biological experiments and human clinical data.
by Andrej Košmrlj.
Ph.D.
Sandberg, Johan. "CD8⁺ T cell specificity in thymic selection and in the recognitionof antigen /." Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3686-2/.
Full textForsström, Björn. "Characterization of antibody specificity using peptide array technologies." Doctoral thesis, KTH, Proteomik och nanobioteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155723.
Full textQC 20141111
Moots, Robert J. "The fine specificity of HLA class I-restricted antigen recognition by cytotoxic T lymphocytes." Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315327.
Full textPeche, Leticia Yamila. "Evidence of functional specificity within the MAGE-I family of tumor expressed proteins." Doctoral thesis, SISSA, 2008. http://hdl.handle.net/20.500.11767/4674.
Full textRIGAMONTI, VALERIA. "Development of a quantitative chemiluminescent immunoassay for the hepatitis B. antigen detection." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19390.
Full textRoter, Evan. "Beta2-glycoprotein I-specific T cells: antigen specificity and role in the induction of anti-phospholipid syndrome." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86847.
Full textLe syndrome antiphospholipide (SAPL) est une maladie autoimmune caractérisée par la présence d'auto-anticorps antiphospholipides (aPL) dirigés contre des protéines liant les phospholipides anioniques dont la β2-glycoproteine I (β2GPI), ainsi que par des manifestations cliniques incluant la thrombose et la perte foetale récurrente. Les patients souffrant du SAPL possèdent des lymphocytes T sensibles au β2GPI mais leurs origines restent inconnues. Nous posons donc l'hypothèse que des souris immunisées avec β2GPI humain produiraient des lymphocytes T sensibles au β2GPI endogène. De surcroit, nous proposons que l'oxydation, la réduction, ou la liaison du β2GPI aux phospholipides affecterait l'identification du β2GPI par les lymphocytes T. Après de nombreuses immunisations avec du β2GPI humain, des lymphocytes T de rate provenant de souris C57BL/6 produisent de l'interferon-γ (IFN-γ) en présence soit de β2GPI humain - isolé ou lié à un phospholipide anionique; de β2GPI humain réduit; ainsi, mais à un degré moindre, de β2GPI humain oxydé. Toutefois, les lymphocytes T n'ont produit pas de réponses à aucune forme de β2GPI murin qui soient. Des résultats similaires avec hybridomes de lymphocytes T sensibles au β2GPI furent aussi obtenus. D'autre part des anticorps contre le β2GPI murin furent obtenus à la suite d'immunisations, utilisant du β2GPI humain ou murin conjointement avec de l'adjuvant de Freund, mais aucune réponse de lymphocytes T sensibles au β2GPI furent observée. Nos résultats indiquent que la tolérance des lymphocytes B au β2GPI autologue peut être brisée en absence d'une réponse détectable in vitro de lymphocytes T au β2GPI.
Johansson, Daniel X. "Expression and interaction studies of recombinant human monoclonal antibodies /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-137-1/.
Full textBabakhani, Farah Kondori 1960. "IN VITRO PRODUCTION AND SPECIFICITY OF ANTI-DNA AUTO ANTIBODIES BY NEW ZEALAND BLACK/NEW ZEALAND WHITE F1 MICE." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276471.
Full textLagardien, Zaida. "The characterisation of the peanut agglutinin an evolved plant lectin, with improved specificity to the Thompson Freidenriech antigen." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/3136.
Full textIncludes bibliographical references.
Peanut agglutinin (PNA), a carbohydrate binding protein, is able to recognise and bind a number of distinct carbohydrate structures that have been implicated in a number of disease pathologies in humans. In vitro studies of PNA have previously been shown to have some specificity for the Thomson Freidenriech antigen (T-antigen), found on malignant human cells, and this specificity has made PNA an important target for protein engineering experiments aimed at improving its specificity and affinity. A number of tumour cells are characterised by altered states and patterns of glycosylation on cell surfaces and suitably engineered lectins may be able to recognise tumour specific carbohydrate structures. This study was aimed at carrying out the biophysical characterisation of a set of PNA mutants which showed apparent improvement in specificity for the T-Antigen. Previous studies have aimed to engineer this lectin in order to direct its recognition properties towards the T-antigen and away from lactose, the preliminary binding affinities of these mutants being determined using Surface Plasmon Resonance (SPR). Here a set of PNA mutants were characterised, proteins expressed and purified to determine binding activities to the T-antigen, N-Acetyl-Dlactosamine (LacNAc) and lactose through the use of Protein Micro Array technology as well as Enzyme linked immunosorbant assays (ELISA).
Books on the topic "Antigen specificity"
Schenkel-Brunner, Helmut. Human blood groups: Chemical and biochemical basis of antigen specificity. Wien: Springer-Verlag, 1995.
Find full textSchenkel-Brunner, Helmut. Human blood groups: Chemical and biochemical basis of antigen specificity. 2nd ed. Wien: Springer, 2000.
Find full textHuman blood groups: Chemical and biochemical basis of antigen specificity. 2nd ed. Wien: Springer, 2000.
Find full textHuman blood groups: Chemical and biochemical basis of antigen specificity. Wien: Springer-Verlag, 1995.
Find full textK, Pfeffer, ed. Function and specificity of [alpha/delta] T cells: International Workshop, Schloss Elmau, Bavaria, FRG, October 14-16, 1990. Berlin: Springer, 1991.
Find full textWorkshop on Mechanisms and Specificity of HIV Entry into Host Cells (1989 San Francisco, Calif.). Mechanisms and specificity of HIV entry into host cells. New York: Plenum Press, 1991.
Find full textSpecial Programme for Research and Training in Tropical Diseases, Foundation for Innovative New Diagnostics, and Centers for Disease Control and Prevention (U.S.), eds. Malaria rapid diagnostic test performance: Results of WHO product testing of malaria RDTs : round 2 (2009). Geneva: World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases, 2010.
Find full textservice), ScienceDirect (Online, ed. Tissue-specific vascular endothelial signals and vector targeting. Amsterdam: Elsevier, 2009.
Find full textLandsteiner, Karl. The Specificity of Serological Reactions. Dover Publications, 1990.
Find full textIvanyi, Juraj, and Tom H. M. Ottenhoff, eds. Significance of antigen and epitope specificity in tuberculosis. Frontiers SA Media, 2015. http://dx.doi.org/10.3389/978-2-88919-451-3.
Full textBook chapters on the topic "Antigen specificity"
Band, H., St A. Porcelli, G. Panchamoorthy, J. Mclean, C. T. Morita, S. Ishikawa, R. L. Modlin, and M. B. Brenner. "Antigens and Antigen-Presenting Molecules for γδ T Cells." In Function and Specificity of γ/δ T Cells, 229–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_32.
Full textMorris, Emma C., and J. H. F. Falkenburg. "What Defines a Good Tumour Antigen?" In The EBMT/EHA CAR-T Cell Handbook, 11–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_3.
Full textLund, Ole, Edita Karosiene, Claus Lundegaard, Mette Voldby Larsen, and Morten Nielsen. "Bioinformatics Identification of Antigenic Peptide: Predicting the Specificity of Major MHC Class I and II Pathway Players." In Antigen Processing, 247–60. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-218-6_19.
Full textWang, Chunlin, Huang Huang, and Mark M. Davis. "Grouping T-Cell Antigen Receptors by Specificity." In Methods in Molecular Biology, 291–307. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2712-9_15.
Full textVan Regenmortel, Marc H. V. "Specificity, Polyspecificity and Heterospecificity of Antibody-Antigen Recognition." In HIV/AIDS: Immunochemistry, Reductionism and Vaccine Design, 39–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32459-9_4.
Full textDent, A. L., and S. M. Hedrick. "Mechanisms of Development of αβ T Cell Antigen Receptor-Bearing Cells in γδ T Cell Antigen Receptor Transgenic Mice." In Function and Specificity of γ/δ T Cells, 121–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_17.
Full textDe Libero, G., G. Casorati, N. Migone, and A. Lanzavecchia. "Correlation Between TCRV Gene Usage and Antigen Specificities in Human γδ T Cells." In Function and Specificity of γ/δ T Cells, 235–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_33.
Full textPowell, Daniel J., and Bruce L. Levine. "Genetically Engineered Antigen Specificity in T Cells for Adoptive Immunotherapy." In Experimental and Applied Immunotherapy, 251–78. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-980-2_12.
Full textHoloshitz, J., N. K. Bayne, D. R. McKinley, and Y. Jia. "A Dichotomy Between the Cytolytic Activity and Antigen-Induced Proliferative Response of Human γδ T Cells." In Function and Specificity of γ/δ T Cells, 167–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_22.
Full textLefrancois, L., R. LeCorre, Judy Mayo, J. A. Bluestone, and T. Goodman. "Selection of Vδ+ T Cell Receptors of Intestinal Intraepithelial Lymphocytes is Dependent on Class II Histocompatibility Antigen Expression." In Function and Specificity of γ/δ T Cells, 255–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76492-9_36.
Full textConference papers on the topic "Antigen specificity"
Kleist, Sierra, Shawn Musial, Hanna Degefu, Pamela Rosato, and Jordan Isaacs. "1032 Uncoupling CD39 and T cell antigen specificity in brain tumors." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.1032.
Full textPark, Seungtae, Sungsik Kim, Hee Joon Jeon, Na Ri Yoon, Bo Ryeong Lee, Sung-min Kim, Woong-Yang Park, and Hyung Ju Hwang. "74 DeepTCRMatch: An effective way of computing T cells antigen specificity." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0074.
Full textChen, Liang, Chunlin Wang, and Mark Davis. "Abstract PR14: Identification of specificity TCR groups of tumor antigen specific T-cells." In Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-pr14.
Full textSantoso, S., Y. Shibata, V. Kiefel, and C. Mueller-Eckhardt. "IDENTIFICATION OF YUK(b) ALLOANTIGEN ON PLATELET GLYCOPROTEIN IIIa*." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643528.
Full textSilveira, A. M. V., B. Hessel, and B. Blombäck. "VON WILLEBRAND FACTOR (VWF) ANTIGENS IN URINE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644083.
Full textFisher, Jonathan, anna capsomidis, Barry Flutter, Gabriel Benthal, Rebcca Wallace, Kenth Gustafsson, Karin Straathof, Martin Pule, and John Anderson. "Abstract B128: Chimeric antigen receptor transduced gamma delta T lymphocytes provide enhanced tumor specificity." In Abstracts: CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr15-b128.
Full textAdams, Gregor B., Jun Feng, Atefeh Ghogha, Armen Mardiros, Ruben Rodriguez, Tassja J. Spindler, Jed Wiltzius, and Tony Polverino. "Abstract 2135: Selectivity and specificity of engineered T cells expressing KITE-585, a chimeric antigen receptor targeting B-cell maturation antigen (BCMA)." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2135.
Full textSchirmer, David, Richard Klar, Oxana Schmidt, Dirk Wohlleber, Wolfgang Uckert, Uwe Thiel, Felix Bohne, et al. "Abstract 3202: Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3202.
Full textBanerjee, Rupak K., Meinrad Praxmaraer, Ilhan Dilber, Peter Bungay, William van Osdol, and Cynthia Sung. "Numerical Simulation of Antibody Penetration in a Solid Tumor Nodule Using Finite Element Method." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0058.
Full textXiao, Yang, Yueshan Huang, Yu Zhao, Fan Xu, Qin Ren, Bing He, Jianhua Yao, and Xiao Liu. "Multimodal-AIR-BERT: A Multimodal Pre-trained Model for Antigen Specificity Prediction in Adaptive Immune Receptors." In 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2023. http://dx.doi.org/10.1109/bibm58861.2023.10385479.
Full textReports on the topic "Antigen specificity"
Friedmann, Michael, Charles J. Arntzen, and Hugh S. Mason. Expression of ETEC Enterotoxin in Tomato Fruit and Development of a Prototype Transgenic Tomato for Dissemination as an Oral Vaccine in Developing Countries. United States Department of Agriculture, March 2003. http://dx.doi.org/10.32747/2003.7585203.bard.
Full text