Journal articles on the topic 'Antifungal metabolites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antifungal metabolites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lemriss, S., F. Laurent, A. Couble, E. Casoli, J. M. Lancelin, D. Saintpierre-Bonaccio, S. Rifai, A. Fassouane, and P. Boiron. "Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes." Canadian Journal of Microbiology 49, no. 11 (November 1, 2003): 669–74. http://dx.doi.org/10.1139/w03-088.
Full textKokil, Sachin, and Manish Bhatia. "Antifungal Azole Metabolites: Significance in Pharmaceutical and Biomedical Analysis." Journal of Medical Biochemistry 28, no. 1 (January 1, 2009): 1–10. http://dx.doi.org/10.2478/v10011-008-0040-1.
Full textWhyte, Authrine C., Katherine B. Gloer, James B. Gloer, Brenda Koster, and David Malloch. "New antifungal metabolites from the coprophilous fungus Cercophorasordarioides." Canadian Journal of Chemistry 75, no. 6 (June 1, 1997): 768–72. http://dx.doi.org/10.1139/v97-093.
Full textGhisalberti, Emilio L., and Catherine Y. Rowland. "Antifungal Metabolites from Trichoderma harzianum." Journal of Natural Products 56, no. 10 (October 1993): 1799–804. http://dx.doi.org/10.1021/np50100a020.
Full textPacciaroni, Adriana del V., María de los Angeles Gette, Marcos Derita, Luis Ariza-Espinar, Roberto R. Gil, Susana A. Zacchino, and Gloria L. Silva. "Antifungal activity ofHeterothalamus alienus metabolites." Phytotherapy Research 22, no. 4 (2008): 524–28. http://dx.doi.org/10.1002/ptr.2380.
Full textRagasa, Consolacion Y., Angel Lyn Kristin C. Co, and John A. Rideout. "Antifungal metabolites from Blumea balsamifera." Natural Product Research 19, no. 3 (April 1, 2005): 231–37. http://dx.doi.org/10.1080/14786410410001709773.
Full textBuatong, Jirayu, Vatcharin Rukachaisirikul, Suthinee Sangkanu, Frank Surup, and Souwalak Phongpaichit. "Antifungal Metabolites from Marine-Derived Streptomyces sp. AMA49 against Pyricularia oryzae." Journal of Pure and Applied Microbiology 13, no. 2 (June 30, 2019): 653–65. http://dx.doi.org/10.22207/jpam.13.2.02.
Full textBroberg, Anders, Karin Jacobsson, Katrin Ström, and Johan Schnürer. "Metabolite Profiles of Lactic Acid Bacteria in Grass Silage." Applied and Environmental Microbiology 73, no. 17 (July 6, 2007): 5547–52. http://dx.doi.org/10.1128/aem.02939-06.
Full textKoval, Daniel, Milada Plocková, Jan Kyselka, Pavel Skřivan, Marcela Sluková, and Šárka Horáčková. "Buckwheat Secondary Metabolites: Potential Antifungal Agents." Journal of Agricultural and Food Chemistry 68, no. 42 (September 28, 2020): 11631–43. http://dx.doi.org/10.1021/acs.jafc.0c04538.
Full textColeman, Jeffrey J., Suman Ghosh, Ikechukwu Okoli, and Eleftherios Mylonakis. "Antifungal Activity of Microbial Secondary Metabolites." PLoS ONE 6, no. 9 (September 22, 2011): e25321. http://dx.doi.org/10.1371/journal.pone.0025321.
Full textTAHARA, Satoshi, Shiro NAKAHARA, John L. INGHAM, and Junya MIZUTANI. "Fungal metabolites of antifungal isoflavone wighteone." Journal of the agricultural chemical society of Japan 59, no. 10 (1985): 1039–44. http://dx.doi.org/10.1271/nogeikagaku1924.59.1039.
Full textWidiantini, Fitri, Mia Rahmah Qadryani, Fuji Hartati, and Endah Yulia. "Antifungal Potency of Secondary Metabolites Produced by Endophytic Bacteria against Pathogenic Fungi Pyricularia oryzae Cav." Jurnal Perlindungan Tanaman Indonesia 23, no. 2 (December 3, 2019): 185. http://dx.doi.org/10.22146/jpti.48392.
Full textDubey, Olga, Sylvain Dubey, Sylvain Schnee, Gaëtan Glauser, Christiane Nawrath, Katia Gindro, and Edward E. Farmer. "Plant surface metabolites as potent antifungal agents." Plant Physiology and Biochemistry 150 (May 2020): 39–48. http://dx.doi.org/10.1016/j.plaphy.2020.02.026.
Full textYou, Fei, Ting Han, Jing-zhong Wu, Bao-kang Huang, and Lu-ping Qin. "Antifungal secondary metabolites from endophytic Verticillium sp." Biochemical Systematics and Ecology 37, no. 3 (July 2009): 162–65. http://dx.doi.org/10.1016/j.bse.2009.03.008.
Full textSidorova, T. M., A. M. Asaturova, and V. V. Allakhverdyan. "Chromatographic profiles of antifungal exo- and endometabolites of Bacillus velezensis." TAURIDA HERALD OF THE AGRARIAN SCIENCES 2(26) (August 3, 2021): 191–99. http://dx.doi.org/10.33952/2542-0720-2021-2-26-191-199.
Full textDALIE, D. K. D., A. M. DESCHAMPS, V. ATANASOVA-PENICHON, and F. RICHARD-FORGET. "Potential of Pediococcus pentosaceus (L006) Isolated from Maize Leaf To Suppress Fumonisin-Producing Fungal Growth." Journal of Food Protection 73, no. 6 (June 1, 2010): 1129–37. http://dx.doi.org/10.4315/0362-028x-73.6.1129.
Full textSilva, Eliane O., Antonio Ruano-González, Raquel A. Dos Santos, Rosario Sánchez-Maestre, Niege A. J. C. Furtado, Isidro G. Collado, and Josefina Aleu. "Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation." Natural Product Communications 11, no. 1 (January 2016): 1934578X1601100. http://dx.doi.org/10.1177/1934578x1601100128.
Full textKarioti, Anastasia, Helen Skaltsa, Diamanto Lazari, Marina Sokovic, Begoña Garcia, and Catherine Harvala. "Secondary Metabolites from Centaurea deusta with Antimicrobial Activity." Zeitschrift für Naturforschung C 57, no. 1-2 (February 1, 2002): 75–80. http://dx.doi.org/10.1515/znc-2002-1-213.
Full textFarooq, Afgan, Iqbal Choudhary, Atta-ur Rahman, Satoshi Tahara, K. Hüsnü Can Başer, and Fatih Demirci. "Detoxification of Terpinolene by Plant Pathogenic Fungus Botrytis cinerea." Zeitschrift für Naturforschung C 57, no. 9-10 (October 1, 2002): 863–66. http://dx.doi.org/10.1515/znc-2002-9-1018.
Full textHenkels, Marcella D., Teresa A. Kidarsa, Brenda T. Shaffer, Neal C. Goebel, Peter Burlinson, Dmitri V. Mavrodi, Michael A. Bentley, et al. "Pseudomonas protegens Pf-5 Causes Discoloration and Pitting of Mushroom Caps Due to the Production of Antifungal Metabolites." Molecular Plant-Microbe Interactions® 27, no. 7 (July 2014): 733–46. http://dx.doi.org/10.1094/mpmi-10-13-0311-r.
Full textMitrović, I., J. Grahovac, J. Dodić, A. Jokić, Z. Rončević, and M. Grahovac. "Production of plant protection agents in medium containing waste glycerol by Streptomyces hygroscopicus: Bioprocess analysis." Acta Alimentaria 49, no. 3 (September 27, 2020): 270–77. http://dx.doi.org/10.1556/066.2020.49.3.5.
Full textAyer, William A., and Luis Diego Jimenez. "Phomalone, an antifungal metabolite of Phoma etheridgei." Canadian Journal of Chemistry 72, no. 11 (November 1, 1994): 2326–32. http://dx.doi.org/10.1139/v94-296.
Full textScano, Paola, M. Barbara Pisano, Antonio Murgia, Sofia Cosentino, and Pierluigi Caboni. "GC-MS Metabolomics and Antifungal Characteristics of Autochthonous Lactobacillus Strains." Dairy 2, no. 3 (June 23, 2021): 326–35. http://dx.doi.org/10.3390/dairy2030026.
Full textJovicic-Petrovic, Jelena, Sanja Jeremic, Ivan Vuckovic, Sandra Vojnovic, Aleksandra Bulajic, Vera Raicevic, and Jasmina Nikodinovic-Runic. "Aspergillus piperis A/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen Pythium aphanidermatum." Archives of Biological Sciences 68, no. 2 (2016): 279–89. http://dx.doi.org/10.2298/abs150602016j.
Full textMohamed, Cissé, N’guessan Elise Amoin, and Assoi Sylvie. "Identification of Antifungal Metabolites of Lactic Acid Bacteria." International Journal of Current Microbiology and Applied Sciences 8, no. 1 (January 10, 2019): 109–20. http://dx.doi.org/10.20546/ijcmas.2019.801.014.
Full textM., Fathalla, Samy Abd El-Azeem, Metwaly Baraka, and Elshahat Ramadan. "Characterization of Antifungal Metabolites from Antagonistic Fluorescent Pseudomonads." Journal of Applied Plant Protection 4, no. 1 (December 31, 2015): 13–21. http://dx.doi.org/10.21608/japp.2015.7593.
Full textSumarah, Mark W., Julie R. Kesting, Dan Sørensen, and J. David Miller. "Antifungal metabolites from fungal endophytes of Pinus strobus." Phytochemistry 72, no. 14-15 (October 2011): 1833–37. http://dx.doi.org/10.1016/j.phytochem.2011.05.003.
Full textLi, He, Jing Wei, Shi-Yin Pan, Jin-Ming Gao, and Jun-Mian Tian. "Antifungal, phytotoxic and toxic metabolites produced byPenicillium purpurogenum." Natural Product Research 28, no. 24 (August 7, 2014): 2358–61. http://dx.doi.org/10.1080/14786419.2014.940586.
Full textDing, Gang, Shuchun Liu, Liangdong Guo, Yuguang Zhou, and Yongsheng Che. "Antifungal Metabolites from the Plant Endophytic FungusPestalotiopsis foedan." Journal of Natural Products 71, no. 4 (April 2008): 615–18. http://dx.doi.org/10.1021/np070590f.
Full textNguyen, Xuan Hoa, Kyaw Wai Naing, Young Seong Lee, Yong Hwan Kim, Jae Hak Moon, and Kil Yong Kim. "Antagonism of antifungal metabolites fromStreptomyces griseusH7602 againstPhytophthora capsici." Journal of Basic Microbiology 55, no. 1 (February 19, 2014): 45–53. http://dx.doi.org/10.1002/jobm.201300820.
Full textChetverikov, S. P., and O. N. Loginov. "New metabolites of Azotobacter vinelandii exhibiting antifungal activity." Microbiology 78, no. 4 (August 2009): 428–32. http://dx.doi.org/10.1134/s0026261709040055.
Full textHajlaou, M. R., J. A. Traquair, W. R. Jarvis, and R. R. Belanger. "Antifungal activity of extracellular metabolites produced bySporothrix flocculosa." Biocontrol Science and Technology 4, no. 2 (January 1994): 229–37. http://dx.doi.org/10.1080/09583159409355331.
Full textAparna, K., and D. L. N. Rao. "Split-agar assay of antifungal soil microbial metabolites." Biocatalysis and Agricultural Biotechnology 6 (April 2016): 184–88. http://dx.doi.org/10.1016/j.bcab.2016.04.002.
Full textÁlvarez-Caballero, Juan Manuel, and Ericsson Coy-Barrera. "Chemical and Antifungal Variability of Several Accessions of Azadirachta indica A. Juss. from Six Locations Across the Colombian Caribbean Coast: Identification of Antifungal Azadirone Limonoids." Plants 8, no. 12 (November 29, 2019): 555. http://dx.doi.org/10.3390/plants8120555.
Full textMitrovic, Ivana, Jovana Grahovac, Jelena Dodic, Mila Grahovac, Sinisa Dodic, Damjan Vucurovic, and Vanja Vlajkov. "Effect of agitation rate on the production of antifungal metabolites by Streptomyces hygroscopicus in a lab-scale bioreactor." Acta Periodica Technologica, no. 48 (2017): 231–44. http://dx.doi.org/10.2298/apt1748231m.
Full textSonkar, Preeti. "Identification and Characterization of Antagonism Band of Secondary Metabolite from T. asperellum MK045610 against F. oxysporum f. sp. ciceri and F. oxysporum f. sp. lycopersici based on HPTLC and GC-MS." INTERNATIONAL JOURNAL OF PLANT AND ENVIRONMENT 5, no. 03 (July 31, 2019): 219–22. http://dx.doi.org/10.18811/ijpen.v5i03.12.
Full textPlocková, M., J. Stiles, J. Chumchalová, and R. Halfarová. "Control of mould growth by Lactobacillus rhamnosus VT1 and Lactobacillus reuteri CCM 3625 on milk agar plates." Czech Journal of Food Sciences 19, No. 2 (February 7, 2013): 46–50. http://dx.doi.org/10.17221/6574-cjfs.
Full textVieira, Natália Carolina, Patrícia Cardoso Cortelo, and Ian Castro-Gamboa. "Rapid qualitative profiling of metabolites present in Fusarium solani, a rhizospheric fungus derived from Senna spectabilis, using GC/MS and UPLC-QTOF/MSE techniques assisted by UNIFI information system." European Journal of Mass Spectrometry 26, no. 4 (May 3, 2020): 281–91. http://dx.doi.org/10.1177/1469066720922424.
Full textEngler, Michaela, Timm Anke, and Olov Sterner. "Production of Antibiotics by Collybia nivalis, Omphalotus olearius, a Favolaschia and a Pterula Species on Natural Substrates." Zeitschrift für Naturforschung C 53, no. 5-6 (June 1, 1998): 318–24. http://dx.doi.org/10.1515/znc-1998-5-604.
Full textXue, Huanhuan, Yifan Jiang, Hongwei Zhao, Tobias G. Köllner, Sumei Chen, Fadi Chen, and Feng Chen. "Characterization of Composition and Antifungal Properties of Leaf Secondary Metabolites from Thirteen Cultivars of Chrysanthemum morifolium Ramat." Molecules 24, no. 23 (November 20, 2019): 4202. http://dx.doi.org/10.3390/molecules24234202.
Full textDewi, Tirta Kumala, Dwi Agustiani, and Sarjiya Antonius. "Secondary Metabolites Production by Actinomycetes and their Antifungal Activity." KnE Life Sciences 3, no. 4 (March 27, 2017): 256. http://dx.doi.org/10.18502/kls.v3i4.713.
Full textEscher, Silvia Katrine Silva, José Jeosafá Vieira de Sousa Júnior, Adrielle Leal Dias, Elba Lúcia Cavalcanti de Amorim, and Janete Magalí de Araújo. "Influence of glucose and stirring in the fermentation process in order to produce anti- Candida metabolites produced by Streptomyces sp." Brazilian Journal of Pharmaceutical Sciences 52, no. 2 (June 2016): 265–72. http://dx.doi.org/10.1590/s1984-82502016000200004.
Full textCastañeda-Novoa, Carlos Daniel, Diana Marcela Vinchira-Villarraga, Ibonne Aydee García Romero, and Nubia Moreno-Sarmiento. "Evaluation of the production of antifungal metabolites against Colletotrichum gloeosporioides in Streptomyces 5.1 by random mutagenesis." Acta Scientiarum. Biological Sciences 43 (March 24, 2021): e54709. http://dx.doi.org/10.4025/actascibiolsci.v43i1.54709.
Full textKusumawati, Pipin, Yosi Bayu Murti, and Nastiti Wijayanti. "Screening of anti-Candida albicans metabolites produced by marine sponge-associated bacteria." Marine Research in Indonesia 45, no. 2 (December 31, 2020): 47–58. http://dx.doi.org/10.14203/mri.v45i2.575.
Full textSarker, Ashish Kumar, Md Anwarul Haque, Urmi Saha, Md Ajijur Rahman, and Md Anwar Ul Islam. "Evaluation of Antibacterial, Antifunfgal and Cytotoxic Potentials of Crude Metabolite of ANAM-39, a Marine Bacterium Isolated from Sundarbans, Bangladesh." Bangladesh Pharmaceutical Journal 18, no. 2 (July 26, 2015): 103–9. http://dx.doi.org/10.3329/bpj.v18i2.24306.
Full textSaryanah, Nur Alfi, Suryo Wiyono, and Dadang Dadang. "Aktivitas Metabolit Sekunder Cendawan Endofit terhadap Colletotrichum acutatum pada Cabai Merah." Jurnal Fitopatologi Indonesia 15, no. 1 (November 14, 2019): 36. http://dx.doi.org/10.14692/jfi.15.1.36.
Full textAhn, Il-Pyung, Soon-Ok Kim, and Yong-Hwan Lee. "High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides." Plant Pathology Journal 24, no. 1 (March 31, 2008): 24–30. http://dx.doi.org/10.5423/ppj.2008.24.1.024.
Full textLiu, Qiu, Jicheng Yu, Jianfang Yan, Xiaohui Qi, Changjian Liu, and Hua Jin. "Antagonism and Action Mechanism of Antifungal Metabolites fromStreptomyces rimosusMY02." Journal of Phytopathology 157, no. 5 (May 2009): 306–10. http://dx.doi.org/10.1111/j.1439-0434.2008.01494.x.
Full textEbrahim, Weaam, Ferhat C. Özkaya, and Sherif S. Ebada. "Antifungal metabolites from endophytic fungus Fusarium verticillioides strain WF18." South African Journal of Botany 133 (September 2020): 40–44. http://dx.doi.org/10.1016/j.sajb.2020.06.029.
Full textYue, Qun, Li Chen, Xiaoling Zhang, Kuan Li, Jingzu Sun, Xingzhong Liu, Zhiqiang An, and Gerald F. Bills. "Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites." Eukaryotic Cell 14, no. 7 (May 29, 2015): 698–718. http://dx.doi.org/10.1128/ec.00076-15.
Full text