Academic literature on the topic 'Antifouling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antifouling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antifouling"
Tian, Limei, Yue Yin, Wei Bing, and E. Jin. "Antifouling Technology Trends in Marine Environmental Protection." Journal of Bionic Engineering 18, no. 2 (March 2021): 239–63. http://dx.doi.org/10.1007/s42235-021-0017-z.
Full textDong, Miao, Liju Liu, Dazhuang Wang, Mengting Li, Jianxin Yang, and Junhua Chen. "Synthesis and Properties of Self-Polishing Antifouling Coatings Based on BIT-Acrylate Resins." Coatings 12, no. 7 (June 23, 2022): 891. http://dx.doi.org/10.3390/coatings12070891.
Full textZhang, Jun, Wei Ling, Zhiqiang Yang, Yan Liang, Linyan Zhang, Can Guo, Kailing Wang, Balian Zhong, Shihai Xu, and Ying Xu. "Isolation and Structure-Activity Relationship of Subergorgic Acid and Synthesis of Its Derivatives as Antifouling Agent." Marine Drugs 17, no. 2 (February 6, 2019): 101. http://dx.doi.org/10.3390/md17020101.
Full textLiu, De, Haobo Shu, Jiangwei Zhou, Xiuqin Bai, and Pan Cao. "Research Progress on New Environmentally Friendly Antifouling Coatings in Marine Settings: A Review." Biomimetics 8, no. 2 (May 13, 2023): 200. http://dx.doi.org/10.3390/biomimetics8020200.
Full textFu, Ye, Wencai Wang, Liqun Zhang, Vladimir Vinokurov, Anna Stavitskaya, and Yuri Lvov. "Development of Marine Antifouling Epoxy Coating Enhanced with Clay Nanotubes." Materials 12, no. 24 (December 13, 2019): 4195. http://dx.doi.org/10.3390/ma12244195.
Full textVilas-Boas, Cátia, Francisca Carvalhal, Beatriz Pereira, Sílvia Carvalho, Emília Sousa, Madalena M. M. Pinto, Maria José Calhorda, et al. "One Step Forward towards the Development of Eco-Friendly Antifouling Coatings: Immobilization of a Sulfated Marine-Inspired Compound." Marine Drugs 18, no. 10 (September 25, 2020): 489. http://dx.doi.org/10.3390/md18100489.
Full textTsunemasa, Noritaka. "Residual Concentration of Antifouling Biocides in Environment -Organotin Alternative Antifoulings." Journal of The Japan Institute of Marine Engineering 45, no. 3 (2010): 358–62. http://dx.doi.org/10.5988/jime.45.358.
Full textGu, Yunqing, Lingzhi Yu, Jiegang Mou, Denghao Wu, Maosen Xu, Peijian Zhou, and Yun Ren. "Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings." Marine Drugs 18, no. 7 (July 18, 2020): 371. http://dx.doi.org/10.3390/md18070371.
Full textCao, Zhimin, and Pan Cao. "Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review." Biomimetics 8, no. 6 (October 21, 2023): 502. http://dx.doi.org/10.3390/biomimetics8060502.
Full textSa’adah, Nor, and Alifia Rizky Novitasari. "Potensi Bakteri Simbion Endofit Mangrove Avicennia marina sebagai Antifouling." Journal of Marine Research 11, no. 1 (February 15, 2022): 1–8. http://dx.doi.org/10.14710/jmr.v11i1.33194.
Full textDissertations / Theses on the topic "Antifouling"
Howell, Dickson. "Dynamic testing of antifouling coatings." Thesis, University of Newcastle Upon Tyne, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437978.
Full textzam, Abu Mazrul Nizam Abu. "Development of antifouling properties for nalofiltration membranes." Thesis, University of Nottingham, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.537648.
Full textLasne, Anne-Cécile Gisèle. "Conception de revêtement antifouling supramoléculaires respectant l'environnement." Lorient, 2011. http://www.theses.fr/2011LORIS236.
Full textPolyanhydrides are well-known biodegradable polymers. Their surface-eroding properties in aqueous media make them desirable for the controlled release of bioactive molecules as drugs and functional tissue substitutes. Their main advantages are the adjustability of degradation and release rates, the zero order kinetics of release and biocompatibility. However, their low solubility in common organic solvents and their high melting points limit their potential applications, especially in environmental fields. This is the reason why new strategies of formulation need to be considered to enlarge the use of polyanhydrides and overcome their main disadvantages. The purpose of this study was to evaluate the potential of anhydride oligomers as film-forming matrices. The use of oligomers cleared up many difficulties of synthesis (which is long, extended and tedious), stability and solubilization. Covalent bonds were replaced by weak interactions to preserve cohesion between molecules and obtain film properties. Coating characterization was carried out by nuclear magnetic resonance and electrospray ionization to obtain chemical structures of the products. The formation of weak interactions, which confer cohesion between chains, allowed film properties to be observed. The impact of the solvent polarity on the specific organization was investigated by a combination of focused methods: capillary viscosimetry, IR spectroscopy, polarized light microscopy and x-ray diffraction. Oligomer coating being designed to using in marine environment, hydration and erosion studies was performed. Water uptake was carried out from Karl Fischer Coulometry with different water condition (pH and salinity). Hydration was also studied from CLSM and SEM to evidence the erosion zone. Finally degradation was carried out from weight loss, HPLC with the monomer release and from SEM with the observation of coating surface. Although an effect of interaction was observed on erosion kinetic, polyanhydrides are so erodible to antifouling paint application
Chen, Peiru. "Surface functionalized TPU for antifouling catheter application." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525170686769959.
Full textYee, Swee Li Maxine. "Silver-based nanocomposite materials for marine antifouling applications." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/45513/.
Full textAkhtar, Moeen. "Characterization of industrial foulants and designing antifouling surfaces." Thesis, KTH, Tillämpad fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301965.
Full textVid industriella processer (livsmedel, petrokemisk etc.) används ofta olika tekniker för separation med hjälp av gravitation. Sådana separationsprocesser drabbas ofta av oönskade beläggningar och påväxt på processutrustningens aktiva ytor så som t.ex. i en separator eller en dekanter, vilket orsakar problem med processen eller produktkvaliteten. För att återställa driftseffektivitet krävs särskilda rengöringssteg med både vatten och kemikalier vilket gör processen dyrare och mindre miljövänlig. Förutom drifttid och processvätskans sammansättning finns det flera faktorer såsom ytbeskaffenhet, ytjämnhet, materialtyp, ytladdning m.m. som påverkar mängden oönskade beläggningar på ytor. Föroreningarna på ytor kan tillväxa med olika mekanismer. Målet med detta forskningsarbete är att studera interaktionen mellan olika former av påväxt och ytan på rostfritt stål och senare utforma metoder för att förhindra bildandet av sådana oönskade beläggningar. Det är en stor utmaning att studera olika typer av påväxt för alla typer av flöden och industrier. I studien undersöktes organisk påväxt inom mejeri- och bryggeriindustrin genom att använda syntetiserade mjölk- och ölprodukter i laboratorieskala, för kvantitativa och statistiska undersökningar av dessa egenskaper. Flera olika experimentella metoder användes (FTIR, viktförändring, ytjämnhet, ytenergi). Det bekräftades att tillväxten på ytorna var olinjärt oavsett tid och lösningens koncentration. Bildandet och tillväxt av oönskade beläggningar kan minskas med hjälp av mera hydrofila ytor eller genom att minska ytans ojämnhet. Steriska hinder, elektrostatisk laddning och vattenbarriär eller hydratiseringsskal kan användas för att modifiera ytan och därmed fördröja bildandet av oönskade beläggningar. För att förhindra påväxt belades ytan med PMMA (organisk) och volframoxid (oorganisk). PMMA deponerades genom en doppbeläggningsteknik med användning av (6%, 10% och 12%) PMMA-lösning och volframoxidbeläggningen utfördes med ett elektrokemiskt tvåelektrodssystem med olika spänningar (3,5V och 4,5V) och tider (5min, 10min och 20min). Ytbeläggningarna karakteriserades genom att använda olika tekniker och deras förmåga att förhindra snabb påväxt studerades i modellösningar av mjölk och öl.
Campbell, Stewart James. "A study of triorganotin biocides in antifouling coatings." Thesis, Sheffield Hallam University, 1990. http://shura.shu.ac.uk/19421/.
Full textBeltran, Osuna Angela Aurora. "Evaluation of Antifouling Materials Based on Silica Gels." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1323359814.
Full textBohn, Clayton Claverie. "Dynamic antifouling structures and actuators using EAP composites." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006640.
Full textBailey, Stephen. "The fate of organotin biocides in marine antifouling elastomers." Thesis, Sheffield Hallam University, 1987. http://shura.shu.ac.uk/19301/.
Full textBooks on the topic "Antifouling"
Fusetani, Nobuhiro, and Anthony S. Clare, eds. Antifouling Compounds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b95795.
Full text1943-, Fusetani Nobuhiro, and Clare Anthony S, eds. Antifouling compounds. Berlin: Springer, 2006.
Find full textZhou, Feng, ed. Antifouling Surfaces and Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45204-2.
Full textArai, Takaomi, Hiroya Harino, Madoka Ohji, and William John Langston, eds. Ecotoxicology of Antifouling Biocides. Tokyo: Springer Japan, 2009. http://dx.doi.org/10.1007/978-4-431-85709-9.
Full textWashington (State). Pesticide Management Division. and Washington State Library. Electronic State Publications., eds. Aquatic antifouling fact sheet. [Olympia, Wash.]: Washington State Dept. of Agriculture, Pesticide Management Division, 2001.
Find full textFinlay, John Ashton. Alkyl amines as antifouling biocides. Birmingham: University of Birmingham, 1994.
Find full textUnited States. Congress. House. Committee on Merchant Marine and Fisheries. Organotin Antifouling Paint Control Act of 1987: Report (to accompany H.R. 2210) (including cost estimate of the Congressional Budget Office). [Washington, D.C.?: U.S. G.P.O., 1987.
Find full textUnited States. Congress. Senate. Committee on Environment and Public Works. Organotin Antifouling Paint Control Act of 1987: Report (to accompany S. 1788). [Washington, D.C.?: U.S. G.P.O., 1987.
Find full textGreat Britain. Central Directorate on Environmental Pollution., ed. Organotin in antifouling paints: Environmental considerations. London: H.M.S.O., 1986.
Find full textUnited States. Congress. House. Committee on Merchant Marine and Fisheries. Subcommittee on Oversight and Investigations. Tributyltin in the marine environment: Hearing before the Subcommittee on Oversight and Investigations of the Committee on Merchant Marine and Fisheries, House of Representatives, Ninety-ninth Congress, second session ... September 30, 1986. Washington: U.S. G.P.O., 1987.
Find full textBook chapters on the topic "Antifouling"
Sell, David. "Antifouling Techniques." In Advances in Underwater Technology, Ocean Science and Offshore Engineering, 29–40. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4203-5_5.
Full textGooch, Jan W. "Antifouling Composition." In Encyclopedic Dictionary of Polymers, 42–43. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_696.
Full textde Nys, R., M. Givskov, N. Kumar, S. Kjelleberg, and P. D. Steinberg. "Furanones." In Antifouling Compounds, 55–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30016-3_2.
Full textDahlstrÖm, M., and H. Elwing. "Adrenoceptor and Other Pharmacoactive Compounds as Putative Antifoulants." In Antifouling Compounds, 171–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30016-3_7.
Full textJiang, Zhongyi, Jinming Peng, Xueting Zhao, Yanlei Su, and Hong Wu. "Antifouling Membrane Surface." In Encyclopedia of Membranes, 83–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1279.
Full textSaxena, Varun, Martyn G. L. Merrilees, and King Hang Aaron Lau. "Antifouling Peptoid Biointerfaces." In Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery, 55–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4790-4_3.
Full textJiang, Zhongyi, Jinming Peng, Xueting Zhao, Yanlei Su, and Hong Wu. "Antifouling Membrane Surface." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1279-6.
Full textBenetti, Edmondo M., and Nicholas D. Spencer. "Are Lubricious Polymer Brushes Antifouling? Are Antifouling Polymer Brushes Lubricious?" In Polymer and Biopolymer Brushes, 421–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119455042.ch15.
Full textBlunden, Stephen J., and Robin Hill. "Organotin-Based Antifouling Systems." In Surface Coatings—1, 17–67. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3441-2_2.
Full textGu, Yunjiao, and Shuxue Zhou. "Novel Marine Antifouling Coatings." In Functional Polymer Coatings, 296–337. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118883051.ch11.
Full textConference papers on the topic "Antifouling"
Liu, Yi, Xiaoqi Shao, Jing Huang, and Hua Li. "Flame Sprayed Environmentally Friendly High Density Polyethylene (PE) and Capsaicin Composite Coatings for Marine Antifouling Applications." In ITSC2018, edited by F. Azarmi, K. Balani, H. Li, T. Eden, K. Shinoda, T. Hussain, F. L. Toma, Y. C. Lau, and J. Veilleux. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.itsc2018p0732.
Full textSeabrook, S. G. "Environmentally Friendly Marine Antifouling Additive." In Advanced Marine Materials & Coatings. RINA, 2006. http://dx.doi.org/10.3940/rina.amm.2006.4.
Full textJoshi, Madhu, S. C. Misra, U. S. Ramesh, and A. Mukherjee. "Natural Biocides in Antifouling Paints." In ICSOT India: Technical Innovation in Shipbuilding. RINA, 2013. http://dx.doi.org/10.3940/rina.icsotin.2013.13.
Full textWen, Jianxin, Ziheng Song, Xiuyong Chen, and Hua Li. "Fabrication of Porous Aluminum Coating by Cored Wire Arc Spray for Anchoring Antifouling Hydrogel Layer." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0454.
Full textAnderson, C., and R. Dalley. "Use of Organotins in Antifouling Paints." In OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160344.
Full textChamp, M., and W. Pugh. "Tributyltin Antifouling Paints: Introduction and Overview." In OCEANS '87. IEEE, 1987. http://dx.doi.org/10.1109/oceans.1987.1160644.
Full textRadenovic, Jakov, Kim Flugt Sørensen, Anders Blom, and Dorthe Hillerup. "Fusion of Biocide and Hydrogel-based Technologies Impact on Biofouling Prevention." In SNAME Maritime Convention. SNAME, 2014. http://dx.doi.org/10.5957/smc-2014-p19.
Full textMotozawa, Masaaki, Toshihisa Ito, Ayumu Matsumoto, Hirotomo Ando, Toshihiko Ashida, Tetsuya Senda, and Yasuo Kawaguchi. "Turbulent Drag Reduction by Polymer Containing Paint: Simultaneous Measurement of Skin Friction and Release Rate." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23197.
Full textHe, Wenzheng, Changdong Zhou, Yang Lin, Yuxin Tian, Liying Liu, Qifu Zhang, Xiongying Ye, and Tianhong Cui. "Antifouling for Electrochemically Biosensing in Body Fluids." In 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2023. http://dx.doi.org/10.1109/mems49605.2023.10052511.
Full textLiu, Y., X. Suo, Z. Wang, Y. Gong, X. Wang, and H. Li. "Liquid Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications." In ITSC2017, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0969.
Full textReports on the topic "Antifouling"
Haslbeck, Elizabeth G. Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada603499.
Full textOber, Christopher K. Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada547015.
Full textHanninen, Oskari. NORDIC ANTIFOULING PROJECT A follow-up of the MAMPEC workshop from 2017. Nordic Council of Ministers, May 2019. http://dx.doi.org/10.6027/na2019-908.
Full textMcCarthy, Gregory J., Thomas E. Ready, Dean C. Webster, Seok-Bong Choi, and Philip Boudjouk. Advanced Marine Coatings for Naval Vessels - Phase 1. Antifouling and Fouling Release Coatings. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada417348.
Full textKain, Robert M. Seawater Crevice Corrosion Resistance of Stainless Steels Coated with Silane and Antifouling Paint Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada406277.
Full textGormley, G. J. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6730616.
Full textGormley, G. J. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/10131299.
Full textMoore, Jeff, Hassan Aref, Ron Adrian, Deborah Leckband, and David J. Beebe. Engineering Solutions for Robust and Efficient Microfluidic Biomolecular Systems: Mixing, Fabrication, Diagnostics, Modeling, Antifouling and Functional Materials. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada411413.
Full textTian, Wei. Synthesis of polyurethane coatings modified by OH-PDMS and their properties of anti-cavitation, antifouling and anticorrosion. Peeref, June 2023. http://dx.doi.org/10.54985/peeref.2306p2540098.
Full textHusson, Scott M., Viatcheslav Freger, and Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Full text