Journal articles on the topic 'Antiferroelectric materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antiferroelectric materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lu, Xue-Zeng, and James M. Rondinelli. "Hybrid improper antiferroelectricity—New insights for novel device concepts." MRS Advances 5, no. 64 (2020): 3521–45. http://dx.doi.org/10.1557/adv.2020.450.
Full textYang, Dong, Jing Gao, Liang Shu, Yi-Xuan Liu, Jingru Yu, Yuanyuan Zhang, Xuping Wang, Bo-Ping Zhang, and Jing-Feng Li. "Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications." Journal of Materials Chemistry A 8, no. 45 (2020): 23724–37. http://dx.doi.org/10.1039/d0ta08345c.
Full textZhou, Long Jie, Georg Rixecker, André Zimmermann, and Fritz Aldinger. "Composition Dependent Fatigue in Antiferroelectric PZST Ceramics Induced by Bipolar Electric Cycling." Materials Science Forum 475-479 (January 2005): 1193–96. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1193.
Full textKho, Wonwoo, Hyunjoo Hwang, Jisoo Kim, Gyuil Park, and Seung-Eon Ahn. "Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures." Nanomaterials 13, no. 3 (January 21, 2023): 439. http://dx.doi.org/10.3390/nano13030439.
Full textCzuprynski, K., J. Gasowska, M. Tykarska, P. Kula, E. Sokól, W. Piecek, J. M. Oton, and M. P. L. Castillo. "Orthoconic antiferroelectric liquid crystalline materials." Journal of Optical Technology 72, no. 9 (September 1, 2005): 655. http://dx.doi.org/10.1364/jot.72.000655.
Full textChaudhary, Shristi, Sheela Devi, and Shilpi Jindal. "Antiferroelectric Lead based Perovskite Material properties andapplications: A Review." E3S Web of Conferences 509 (2024): 03002. http://dx.doi.org/10.1051/e3sconf/202450903002.
Full textYin, Jia-Hang, Guo-Long Tan, and Cong-Cong Duan. "Antiferroelectrics and Magnetoresistance in La0.5Sr0.5Fe12O19 Multiferroic System." Materials 16, no. 2 (January 4, 2023): 492. http://dx.doi.org/10.3390/ma16020492.
Full textHu, Tengfei, Zhengqian Fu, Zhenqing Li, Ziyi Yu, Linlin Zhang, Heliang Yao, Kun Zeng, et al. "Electric-induced devil’s staircase in perovskite antiferroelectric." Journal of Applied Physics 131, no. 21 (June 7, 2022): 214105. http://dx.doi.org/10.1063/5.0094919.
Full textShan, Pai, and Xifa Long. "Symmetry of antiferroelectric crystals crystallized in polar point groups." IUCrJ 9, no. 4 (June 28, 2022): 516–22. http://dx.doi.org/10.1107/s2052252522006017.
Full textChattopadhyay, Soma, Pushan Ayyub, R. Pinto, and M. S. Multani. "Synthesis of thin films of polycrystalline ferroelectric BiNbO4 on Si by pulsed laser ablation." Journal of Materials Research 13, no. 5 (May 1998): 1113–16. http://dx.doi.org/10.1557/jmr.1998.0155.
Full textAstafev, Pavel, Aleksey Pavelko, Konstantin Andryushin, Alexander Lerer, Jakov Reizenkind, and Larisa Reznichenko. "Microwave Electrodynamic Study on Antiferroelectric Materials in a Wide Temperature Range." Materials 15, no. 24 (December 10, 2022): 8834. http://dx.doi.org/10.3390/ma15248834.
Full textPan, Tianze, Ji Zhang, Dongxiao Che, Zhengyu Wang, Jiajia Wang, Jing Wang, and Yaojin Wang. "Improved capacitive energy storage in sodium niobate-based relaxor antiferroelectric ceramics." Applied Physics Letters 122, no. 7 (February 13, 2023): 072902. http://dx.doi.org/10.1063/5.0134282.
Full textViehland, Dwight, Z. Xu, and X. H. Dai. "TEM studies of modified lead zirconate titanate ceramics." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 552–53. http://dx.doi.org/10.1017/s0424820100170499.
Full textSoumahoro, K., and J. Pouget. "Electroacoustic properties for deformable antiferroelectric materials." Journal of the Acoustical Society of America 96, no. 6 (December 1994): 3558–67. http://dx.doi.org/10.1121/1.411458.
Full textDąbrowski, R., J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarska. "High tilted antiferroelectric liquid crystalline materials." Displays 25, no. 1 (May 2004): 9–19. http://dx.doi.org/10.1016/j.displa.2004.04.002.
Full textGao, Jing, Wei Li, Jue Liu, Qian Li, and Jing-Feng Li. "Local Atomic Configuration in Pristine and A-Site Doped Silver Niobate Perovskite Antiferroelectrics." Research 2022 (February 25, 2022): 1–10. http://dx.doi.org/10.34133/2022/9782343.
Full textWang, Erping, Liqin Yue, Yuanhong Chu, Caixia Sun, Jinyu Zhao, Siyu Zhang, Jiale Liu, Yangyang Zhang, and Ling Zhang. "High Energy Storage Performance in Pb1−xLax(Hf0.45Sn0.55)0.995O3 Antiferroelectric Ceramics." Crystals 14, no. 8 (August 17, 2024): 732. http://dx.doi.org/10.3390/cryst14080732.
Full textXu, Z., Dwight Viehland, and D. A. Payne. "An incommensurate-commensurate phase transformation in antiferroelectric tin-modified lead zirconate titanate." Journal of Materials Research 10, no. 2 (February 1995): 453–60. http://dx.doi.org/10.1557/jmr.1995.0453.
Full textAn, Kun, Xuechen Jin, Jiang Meng, Xiao Li, and Yifeng Ren. "Frequency Invariability of (Pb,La)(Zr,Ti)O3 Antiferroelectric Thick-Film Micro-Cantilevers." Sensors 18, no. 5 (May 13, 2018): 1542. http://dx.doi.org/10.3390/s18051542.
Full textYu, Huifen, Liang Chen, Chang Zhou, and He Qi. "Negative Thermal Expansion Caused by the Antiferroelectric Phase Transition in Lead-Free Perovskite Ceramics." Crystals 13, no. 5 (May 1, 2023): 751. http://dx.doi.org/10.3390/cryst13050751.
Full textNishiyama, Isa. "Antiferroelectric liquid crystals." Advanced Materials 6, no. 12 (December 1994): 966–70. http://dx.doi.org/10.1002/adma.19940061215.
Full textMa, Qingzhu, Xiang Li, Yanle Zhang, Zhijin Duo, Suwei Zhang, and Lei Zhao. "Dielectric and Antiferroelectric Properties of AgNbO3 Films Deposited on Different Electrodes." Coatings 12, no. 12 (November 25, 2022): 1826. http://dx.doi.org/10.3390/coatings12121826.
Full textApachitei, Geanina, Jonathan J. P. Peters, Ana M. Sanchez, Dong Jik Kim, and Marin Alexe. "Antiferroelectric Tunnel Junctions." Advanced Electronic Materials 3, no. 7 (May 15, 2017): 1700126. http://dx.doi.org/10.1002/aelm.201700126.
Full textBooth, Christopher J., David A. Dunmur, John W. Goodby, Julie Haley, and Kenneth J. Toyne. "Achiral swallow-tailed materials with ‘antiferroelectric-like’ structure and their potential use in antiferroelectric mixtures." Liquid Crystals 20, no. 4 (April 1996): 387–92. http://dx.doi.org/10.1080/02678299608032051.
Full textYang, Yu Hua, Zhen Yu Zhao, Xin Feng Guan, and Xiu Jian Chou. "Microcantilevers Fabrication Process of Silicon-Based (Pb, La)(Zr, Ti)O3 Antiferroelectric Thick Films for Microactuator Applications." Applied Mechanics and Materials 80-81 (July 2011): 13–17. http://dx.doi.org/10.4028/www.scientific.net/amm.80-81.13.
Full textCastillo, Pilar, Xabier Quintana, José Otón, Roman, and Marek Filipowicz. "Evaluation of Orthoconic Antiferroelectric Materials for Photonic Applications." Molecular Crystals and Liquid Crystals 422, no. 1 (January 2004): 65–71. http://dx.doi.org/10.1080/15421400490502076.
Full textAyyub, Pushan, Soma Chattopadhyay, R. Pinto, and M. S. Multani. "Ferroelectric behavior in thin films of antiferroelectric materials." Physical Review B 57, no. 10 (March 1, 1998): R5559—R5562. http://dx.doi.org/10.1103/physrevb.57.r5559.
Full textChattopadhyay, Soma. "Finite size effects in ferroelectric and antiferroelectric materials." Nanostructured Materials 9, no. 1-8 (January 1997): 551–54. http://dx.doi.org/10.1016/s0965-9773(97)00122-0.
Full textLi, Song, Hengchang Nie, Genshui Wang, Ningtao Liu, Mingxing Zhou, Fei Cao, and Xianlin Dong. "Novel AgNbO3-based lead-free ceramics featuring excellent pyroelectric properties for infrared detecting and energy-harvesting applications via antiferroelectric/ferroelectric phase-boundary design." Journal of Materials Chemistry C 7, no. 15 (2019): 4403–14. http://dx.doi.org/10.1039/c9tc01014a.
Full textTan, Qi, Z. Xu, and Dwight Viehland. "Effect of substituents with different valences on antiferroelectric stability of antiferroelectric lead zirconate ceramics." Journal of Materials Research 14, no. 11 (November 1999): 4251–58. http://dx.doi.org/10.1557/jmr.1999.0576.
Full textFu, Zhengqian, Xuefeng Chen, Henchang Nie, Linlin Zhang, Zhenqin Li, Ping Lu, Genshui Wang, Xianlin Dong, and Fangfang Xu. "Grinding strain induced antiferroelectric-ferroelectric-antiferroelectric sandwich structure in bulk ceramics." Scripta Materialia 182 (June 2020): 27–31. http://dx.doi.org/10.1016/j.scriptamat.2020.02.040.
Full textXu, Zhen, and Guo-Long Tan. "Full Antiferroelectric Performance and GMR Effect in Multiferroic La0.75Ba0.25Fe12O19 Ceramic." Applied Sciences 13, no. 9 (May 5, 2023): 5718. http://dx.doi.org/10.3390/app13095718.
Full textSaha, Rony, Chenrun Feng, Alexey Eremin, and Antal Jákli. "Antiferroelectric Bent-Core Liquid Crystal for Possible High-Power Capacitors and Electrocaloric Devices." Crystals 10, no. 8 (July 30, 2020): 652. http://dx.doi.org/10.3390/cryst10080652.
Full textWu, Longwen, Guitian Lan, Ziming Cai, Lihua Zhao, Jian Lu, and Xiaohui Wang. "Concurrent achievement of giant energy density and ultrahigh efficiency in antiferroelectric ceramics via core–shell structure design." Applied Physics Letters 120, no. 17 (April 25, 2022): 172902. http://dx.doi.org/10.1063/5.0088282.
Full textCORKOVIC, S., and Q. ZHANG. "CORRELATION BETWEEN CRITICAL COERCIVE FIELD AND RESIDUAL STRESS IN ANTIFERROELECTRIC PZT 95/05 FILMS." Functional Materials Letters 01, no. 01 (June 2008): 13–18. http://dx.doi.org/10.1142/s1793604708000046.
Full textTyunina, M., A. Dejneka, D. Rytz, I. Gregora, F. Borodavka, M. Vondracek, and J. Honolka. "Ferroelectricity in antiferroelectric NaNbO3crystal." Journal of Physics: Condensed Matter 26, no. 12 (March 4, 2014): 125901. http://dx.doi.org/10.1088/0953-8984/26/12/125901.
Full textKania, A., and J. Kwapulinski. "Ag1-xNaxNbO3(ANN) solid solutions: from disordered antiferroelectric AgNbO3to normal antiferroelectric NaNbO3." Journal of Physics: Condensed Matter 11, no. 45 (October 27, 1999): 8933–46. http://dx.doi.org/10.1088/0953-8984/11/45/316.
Full textHu, Tengfei, Zhengqian Fu, Zhenqin Li, Meng Liu, Linlin Zhang, Ziyi Yu, Xuefeng Chen, et al. "Decoding the Double/Multiple Hysteresis Loops in Antiferroelectric Materials." ACS Applied Materials & Interfaces 13, no. 50 (December 9, 2021): 60241–49. http://dx.doi.org/10.1021/acsami.1c19459.
Full textZhou, Ziyao, Qu Yang, Ming Liu, Zhiguo Zhang, Xinyang Zhang, Dazhi Sun, Tianxiang Nan, Nianxiang Sun, and Xing Chen. "Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures." SPIN 05, no. 01 (March 2015): 1530001. http://dx.doi.org/10.1142/s2010324715300017.
Full textSzarek, Michał, Ewa Topyła, Ewelina Dmochowska, and Michał Czerwiński. "Influence of the polymer network on the stability of the heliconical structure in the ferro- and antiferroelectric liquid crystalline phases." Bulletin of the Military University of Technology 72, no. 4 (December 30, 2023): 55–72. http://dx.doi.org/10.5604/01.3001.0054.7911.
Full textArtal, M. Carmen, M. Blanca Ros, José Luis Serrano, M. Rosario de la Fuente, and Miguel Angel Pérez-Jubindo. "Antiferroelectric Liquid-Crystal Gels." Chemistry of Materials 13, no. 6 (June 2001): 2056–67. http://dx.doi.org/10.1021/cm001254m.
Full textRudquist, Per. "Orthoconic antiferroelectric liquid crystals." Liquid Crystals 40, no. 12 (December 2013): 1678–97. http://dx.doi.org/10.1080/02678292.2013.828331.
Full textKłosowicz, Stanisław, and Krzysztof Czuprynski. "Electrooptics of Antiferroelectric PDLC." Molecular Crystals and Liquid Crystals 375 (2002): 195–204. http://dx.doi.org/10.1080/713738366.
Full textYang, Jae Ho, Hyo Jin Kim, Woong Kil Choo, and Chong Tak Lee. "Antiferroelectric superstructures of Pb2MgWO6." Ferroelectrics 152, no. 1 (February 1994): 243–48. http://dx.doi.org/10.1080/00150199408017627.
Full textKundu, Shyamal Kumar, Y. Aoki, and B. K. Chaudhuri. "Dielectric spectroscopy of an antiferroelectric liquid crystal showing an antiferroelectric–ferrielectric transition." Liquid Crystals 31, no. 6 (June 1, 2004): 787–90. http://dx.doi.org/10.1080/02678290410001666057.
Full textShen, Bingzhong, Yong Li, Ningning Sun, Ye Zhao, and Xihong Hao. "Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering." Nanoscale 12, no. 16 (2020): 8958–68. http://dx.doi.org/10.1039/c9nr10616b.
Full textGuo, Mengyao, Ming Wu, Weiwei Gao, Buwei Sun, and Xiaojie Lou. "Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range." Journal of Materials Chemistry C 7, no. 3 (2019): 617–21. http://dx.doi.org/10.1039/c8tc05108a.
Full textEliseev, E. A., M. D. Glinchuk, and A. N. Morozovska. "Antiferroelectric thin films phase diagrams." Phase Transitions 80, no. 1-2 (January 2007): 47–54. http://dx.doi.org/10.1080/01411590601092654.
Full textCzupryński, K., K. Skrzypek, M. Tykarska, and W. Piecek. "Properties of induced antiferroelectric phase." Phase Transitions 80, no. 6-7 (June 2007): 735–44. http://dx.doi.org/10.1080/01411590701340243.
Full textHanrahan, Brendan, Yomery Espinal, Shi Liu, Zeyu Zhang, Alireza Khaligh, Andrew Smith, and S. Pamir Alpay. "Combining inverse and conventional pyroelectricity in antiferroelectric thin films for energy conversion." Journal of Materials Chemistry C 6, no. 36 (2018): 9828–34. http://dx.doi.org/10.1039/c8tc02686f.
Full text