To see the other types of publications on this topic, follow the link: Antiferroelectric Liquid Crystal.

Journal articles on the topic 'Antiferroelectric Liquid Crystal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antiferroelectric Liquid Crystal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Artal, M. Carmen, M. Blanca Ros, José Luis Serrano, M. Rosario de la Fuente, and Miguel Angel Pérez-Jubindo. "Antiferroelectric Liquid-Crystal Gels." Chemistry of Materials 13, no. 6 (June 2001): 2056–67. http://dx.doi.org/10.1021/cm001254m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, P. A., and V. G. K. M. Pisipati. "A Novel Antiferroelectric Liquid Crystal with two Asymmetric Centres." Zeitschrift für Naturforschung A 57, no. 3-4 (April 1, 2002): 199–201. http://dx.doi.org/10.1515/zna-2002-3-413.

Full text
Abstract:
An antiferroelectric liquid crystal material, (S)-4-(2-chloro-3-phenyl-1-(2-methylbutyloxy)carbomato- 4ʹ-n-dodecyloxy biphenylcarboxylate (CPCDBD), has been synthesized by using (S)-2-amino- 3-(4-hydroxy)phenyl propionic acid (L-tyrosine) as one the optically active ingredients. Preliminary investigations on this material reveal high spontaneous polarization (~ 145 nC/cm2) in the antiferroelectric Sm-CA* phase. Possible structural contributions towards the appearance of antiferroelectric ordering are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Galerne, Yves, and Lionel Liebert. "Antiferroelectric chiral smectic-O*liquid crystal." Physical Review Letters 66, no. 22 (June 3, 1991): 2891–94. http://dx.doi.org/10.1103/physrevlett.66.2891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vorflusev, Valery, and Satyendra Kumar. "Multistable antiferroelectric liquid-crystal optical modulator." Applied Physics Letters 73, no. 22 (November 30, 1998): 3211–13. http://dx.doi.org/10.1063/1.122721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Otón, José Manuel, Francisco José López, Virginia Urruchi, José Luis Gayo, and Xabier Quintana. "Induced Asymmetric Antiferroelectric Liquid Crystal Response." Ferroelectrics 268, no. 1 (January 2002): 107–12. http://dx.doi.org/10.1080/713715994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Norio, Nobuaki Koshoubu, Kahoru Mori, Kohji Nakamura, and Yuichiro Yamada. "Full-color antiferroelectric liquid crystal display." Ferroelectrics 149, no. 1 (December 1993): 295–304. http://dx.doi.org/10.1080/00150199308217301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saha, Rony, Chenrun Feng, Alexey Eremin, and Antal Jákli. "Antiferroelectric Bent-Core Liquid Crystal for Possible High-Power Capacitors and Electrocaloric Devices." Crystals 10, no. 8 (July 30, 2020): 652. http://dx.doi.org/10.3390/cryst10080652.

Full text
Abstract:
We present small-angle X-ray scattering, polarized optical microscopy and electric current measurements of a sulfur-containing bent-core liquid crystal material for characterization of the layer and director structures, thermally and electrically driven transitions between antiferroelectric and ferroelectric structures and switching properties. It was found that the material has polarization-modulated homochiral synclinic ferroelectric (SmCsPFmod), homochiral anticlinic antiferroelectric (SmCaPA) and racemic synclininc antiferroelectric (SmCsPA) structures that can be reversibly switched between each other either thermally and/or electrically. High switching polarization combined with softness of the liquid crystalline structure makes this compound a good candidate for applications in high-power capacitors and electrocaloric devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Lan Li, Bao Gai Zhai, and Yuan Ming Huang. "Photostability of an Antiferroelectric Banana-Shaped Liquid Crystal." Key Engineering Materials 428-429 (January 2010): 194–97. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.194.

Full text
Abstract:
We have investigated the photostability of an antiferroelectric banana-shaped liquid crystal 4-chloro-1,3-phenylene bis [4-(4-n-tetradecyl) phenylimino methyl] benzoate by measuring its polarization as a function of photo-irradiation duration. Upon intense photo-irradiation for three hours, the banana-shaped liquid crystal exhibits a significant photostability although it bears the linkages of –COO– and –CH=N–.
APA, Harvard, Vancouver, ISO, and other styles
9

Éber, N., and L. Bata. "Electromechanical effect in an antiferroelectric liquid crystal." Liquid Crystals 14, no. 2 (January 1993): 453–61. http://dx.doi.org/10.1080/02678299308027660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moritake, Hiroshi, Sungkeun Cho, Masanori Ozaki, and Katsumi Yoshino. "Transient Light Scattering in Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 32, Part 2, No. 10B (October 15, 1993): L1549—L1552. http://dx.doi.org/10.1143/jjap.32.l1549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ozaki, Masanori, Hiroshi Moritake, Keizo Nakayama, and Katsumi Yoshino. "Smectic Layer Rotation in Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 33, Part 2, No. 11B (November 15, 1994): L1620—L1623. http://dx.doi.org/10.1143/jjap.33.l1620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pauwels, Herman, and Artur Adamski. "Energy Relations in Antiferroelectric Liquid Crystal Displays." Ferroelectrics 312, no. 1 (January 2004): 71–79. http://dx.doi.org/10.1080/00150190490511563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Otón, J. M., J. M. S. Pena, X. Quintana, J. L. Gayo, and V. Urruchi. "Asymmetric switching of antiferroelectric liquid-crystal cells." Applied Physics Letters 78, no. 17 (April 23, 2001): 2422–24. http://dx.doi.org/10.1063/1.1365945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Jian-Feng, X. Y. Wang, E. Kangas, P. L. Taylor, Charles Rosenblatt, Yoshi-Ichi Suzuki, and P. E. Cladis. "Solitary Waves in an Antiferroelectric Liquid Crystal." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 288, no. 1 (September 1996): 73–82. http://dx.doi.org/10.1080/10587259608034585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Puértolas, J. A., M. Castro, M. R. De La Fuente, M. A. Pérez Jubindo, H. Dreyfus, D. Guillon, and Y. González. "Thermal Study of an Antiferroelectric Liquid Crystal." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 287, no. 1 (August 1996): 69–82. http://dx.doi.org/10.1080/10587259608038744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Judge, L. A., R. Beccherelli, and S. J. Elston. "Unstable states of antiferroelectric liquid crystal devices." Journal of Applied Physics 87, no. 12 (June 15, 2000): 8433–39. http://dx.doi.org/10.1063/1.373559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Muševič, I., R. Blinc, B. Žekš, M. Čopič, M. M. Wittebrood, Th Rasing, H. Orihara, and Y. Ishibashi. "Gapless phason in an antiferroelectric liquid crystal." Physical Review Letters 71, no. 8 (August 23, 1993): 1180–83. http://dx.doi.org/10.1103/physrevlett.71.1180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yamamoto, Norio, Yuichiro Yamada, Nobuaki Koshobu, Kahoru Mori, Kohji Nakamura, Hiroshi Orihara, Yoshihiro Ishibashi, Yoshiichi Suzuki, and Ichiro Kawamura. "Multiplexing Performance of Antiferroelectric Liquid Crystal Device." Japanese Journal of Applied Physics 31, Part 1, No. 9B (September 30, 1992): 3186–88. http://dx.doi.org/10.1143/jjap.31.3186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fujioka, Takayuki, Kotaro Kajikawa, Hideo Takezoe, Atsuo Fukuda, Tetsuo Kusumoto, and Tamejiro Hiyama. "Second-Harmonic Generation in Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 32, Part 1, No. 10 (October 15, 1993): 4589–93. http://dx.doi.org/10.1143/jjap.32.4589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fornier, Johan, Arnout De Meyere, and Herman Pauwels. "Homogeneous switching in antiferroelectric liquid crystal displays." Ferroelectrics 178, no. 1 (April 1996): 17–25. http://dx.doi.org/10.1080/00150199608008344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dardas, Dorota, Sebastian Lalik, Zuzanna Nowacka, Tetiana Yevchenko, and Monika Marzec. "Electro-Optic Effect of Laser Photobleaching on Viscoelastic Properties of Chiral Liquid Crystals." Crystals 13, no. 2 (January 17, 2023): 164. http://dx.doi.org/10.3390/cryst13020164.

Full text
Abstract:
Viscoelastic properties are one of the most fundamental properties of chiral liquid crystals. In general, their determination is not a straightforward task. The main problem is the multitude of physical parameters needed to determine the value of the elasticity and viscosity constants. It is also necessary to consider the character of a respective phase. This problem is particularly important in the case of chiral phases such as ferroelectric and antiferroelectric phases or in the blue phases. There are several experimental methods to measure viscosity and elasticity constants in chiral phases. These methods use various phenomena to detect deformation, e.g., light transmission, polarization current, light modulation, dielectric constant and helix deformation or helix unwinding. Commonly, an external electric field is used to induce deformation, the homogeneity of which inside the cell is essential. This study is focused on the analysis of the effect of laser photobleaching on the electro-optic properties of the antiferroelectric liquid crystal and on the homogeneity of the electric field. The results obtained by confocal microscopy as a function of the cell depth are presented. The influence of the stabilization procedure of the isolated region performed by controlled laser photobleaching on the electro-optic properties has been studied. The observation was conducted using a polarizing microscope, and numerical analysis of two-dimensional colored textures was performed. The obtained results suggest that laser photobleaching can produce an anchoring effect, which has a positive effect on the electro-optic properties of antiferroelectric liquid crystal.
APA, Harvard, Vancouver, ISO, and other styles
22

Kundu, Shyamal Kumar, Y. Aoki, and B. K. Chaudhuri. "Dielectric spectroscopy of an antiferroelectric liquid crystal showing an antiferroelectric–ferrielectric transition." Liquid Crystals 31, no. 6 (June 1, 2004): 787–90. http://dx.doi.org/10.1080/02678290410001666057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhai, Bao Gai, Lan Li Chen, and Yuan Ming Huang. "Photochemistry in an Azo-Containing Banana-Shaped Liquid Crystal." Key Engineering Materials 428-429 (January 2010): 202–5. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.202.

Full text
Abstract:
By triangular wave method, the polarization currents of an azo-containing banana-shaped antiferroelectric liquid crystal were investigated as a function of the time of 365-nm ultraviolet irradiation. Under the 365-nm irradiation, the polarization currents were observed to evolve with the time of ultraviolet irradiation until they diminished. The roles of photoisomerization, photolysis and thermolysis were discussed for the azo-containing banana-shaped liquid crystal.
APA, Harvard, Vancouver, ISO, and other styles
24

Drzewicz, Anna, Małgorzata Jasiurkowska-Delaporte, Ewa Juszyńska-Gałązka, Mirosław Gałązka, Wojciech Zając, and Przemysław Kula. "Effect of high pressure on relaxation dynamics and crystallization kinetics of chiral liquid crystal in its smectic phase." Physical Chemistry Chemical Physics 23, no. 32 (2021): 17466–78. http://dx.doi.org/10.1039/d1cp01751a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Huang, Yuan Ming, and Bao Gai Zhai. "Optical Switching Properties of an Azo-Containing Banana-Shaped Liquid Crystal." Key Engineering Materials 428-429 (January 2010): 297–300. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.297.

Full text
Abstract:
By triangular wave method, the switching currents of an azo-containing banana-shaped antiferroelectric liquid crystal were investigated as a function of temperature. As the temperature increases from 150 to 175oC, the switching currents of the banana-shaped liquid crystal were observed to decrease linearly with the temperature. The unusual temperature-dependent polarization was discussed in the light of Landau-de Gennes theory.
APA, Harvard, Vancouver, ISO, and other styles
26

Kolek, Łukasz, Małgorzata Jasiurkowska-Delaporte, Ewa Juszyńska-Gałązka, and Tomasz Rozwadowski. "Isothermal cold crystallization of antiferroelectric liquid crystal 3F5BFBiHex." Journal of Molecular Liquids 339 (October 2021): 117076. http://dx.doi.org/10.1016/j.molliq.2021.117076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fukui, Minoru, Hiroshi Orihara, Atsushi Suzuki, Yoshihiro Ishibashi, Yuichiro Yamada, Norio Yamamoto, Kaoru Mori, Koji Nakamura, Yoshiichi Suzuki, and Ichiro Kawamura. "Dielectric Dispersion in the Antiferroelectric Liquid Crystal MHPOBC." Japanese Journal of Applied Physics 29, Part 2, No. 2 (February 20, 1990): L329—L332. http://dx.doi.org/10.1143/jjap.29.l329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fujikawa, Tetsuya, Hiroshi Orihara, Yoshihiro Ishibashi, Yuichiro Yamada, Norio Yamamoto, Kahoru Mori, Koji Nakamura, Yoshiichi Suzuki, Takashi Hagiwara, and Ichiro Kawamura. "Phase Transitions in an Antiferroelectric Liquid Crystal TFMHPOBC." Japanese Journal of Applied Physics 30, Part 1, No. 11A (November 15, 1991): 2826–31. http://dx.doi.org/10.1143/jjap.30.2826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ogrodnik, K., P. Perkowski, Z. Raszewski, W. Piecek, M. Żurowska, R. Dąbrowski, and L. Jaroszewicz. "Dielectric Measurements of Orthoconic Antiferroelectric Liquid Crystal Mixtures." Molecular Crystals and Liquid Crystals 547, no. 1 (June 30, 2011): 54/[1744]—64/[1754]. http://dx.doi.org/10.1080/15421406.2011.572515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pena, J. M. S., I. Pérez, I. Rodríguez, C. Vázquez, V. Urruchi, X. Quintana, J. De Frutos, and J. M. Otón. "Electrical Model for Thresholdless Antiferroelectric Liquid Crystal Cells." Ferroelectrics 271, no. 1 (January 2002): 149–54. http://dx.doi.org/10.1080/713716195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Orihara, Hiroshi, Kiyomi Kawada, Naoshi Yamada, and Yoshihiro Ishibashi. "Electro-Optic Effect in an Antiferroelectric Liquid Crystal." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 303, no. 1 (September 1997): 159–64. http://dx.doi.org/10.1080/10587259708039420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Uehara, Hiroyuki, and Jun Hatano. "Pressure–Temperature Phase Diagram of Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 46, no. 10B (October 22, 2007): 7125–27. http://dx.doi.org/10.1143/jjap.46.7125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gayo, J. L., X. Quintana, N. Bennis, J. M. Otón, and V. Urruchi. "Addressing Waveforms for Asymmetric Antiferroelectric Liquid Crystal Displays." Molecular Crystals and Liquid Crystals 410, no. 1 (January 2004): 451–56. http://dx.doi.org/10.1080/15421400490433497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Jian-feng, Xin-Yi Wang, Erik Kangas, P. L. Taylor, Charles Rosenblatt, Yoshi-ichi Suzuki, and P. E. Cladis. "Reversible propagating fingers in an antiferroelectric liquid crystal." Physical Review B 52, no. 18 (November 1, 1995): R13075—R13078. http://dx.doi.org/10.1103/physrevb.52.r13075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, Young‐Joo, Jeong‐Seon Yu, Jeong‐Geun Yoo, Dong‐Jin Jeong, Sung‐Chon Park, Su‐Yong Chae, and Hong‐Geun Yang. "Antiferroelectric liquid crystal display with high image quality." Journal of Information Display 3, no. 4 (January 2002): 1–3. http://dx.doi.org/10.1080/15980316.2002.9651900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Torres Zafra, Juan Carlos. "Electrical modeling of tristate antiferroelectric liquid crystal devices." Optical Engineering 50, no. 8 (August 1, 2011): 081206. http://dx.doi.org/10.1117/1.3564817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hatano, Jun, Masato Harazaki, Mihoko Sato, Ken'ichi Iwauchi, Shin'ichi Saito, and Katsuyuki Murashiro. "Field-Induced Phase Transitions in Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 32, Part 1, No. 9B (September 30, 1993): 4344–47. http://dx.doi.org/10.1143/jjap.32.4344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hatano, Jun, Masato Harazaki, Mihoko Sato, and Kin'ichi Iwauchi. "Ferrielectric sub-phases in antiferroelectric liquid crystal, MHPOBC." Ferroelectrics 156, no. 1 (June 1994): 179–84. http://dx.doi.org/10.1080/00150199408215947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ema, Kenji, Haruhiko Yao, and Keizou Itoh. "Critical heat capacity of antiferroelectric liquid crystal 12BIMF10." Ferroelectrics 178, no. 1 (April 1996): 221–27. http://dx.doi.org/10.1080/00150199608008363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lagerwall, S. T., K. D'havé, and P. Rudquist. "10.1: Invited Paper: Future Antiferroelectric Liquid Crystal Displays." SID Symposium Digest of Technical Papers 32, no. 1 (2001): 120. http://dx.doi.org/10.1889/1.1831777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pauwels, H., B. Verweire, K. D'havé, and J. Fornier. "Analytical model for thresholdless antiferroelectric liquid crystal displays." SID Symposium Digest of Technical Papers 29, no. 1 (1998): 1175. http://dx.doi.org/10.1889/1.1833698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dłubacz, A., M. Marzec, D. Dardas, and M. Żurowska. "New antiferroelectric liquid crystal for use in LCD." Phase Transitions 89, no. 4 (December 11, 2015): 349–58. http://dx.doi.org/10.1080/01411594.2015.1116531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

de la Fuente, M. Rosario, Santos Merino, Yolanda González, Miguel A. Pérez Jubindo, Blanca Ros, José A. Puértolas, and Miguel Castro. "Dielectric relaxation processes in an antiferroelectric liquid crystal." Advanced Materials 7, no. 6 (June 1995): 564–68. http://dx.doi.org/10.1002/adma.19950070612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

GÉRARD, LEROY, GEST JOËL, and TABOURIER PIERRE. "NOISE MEASUREMENTS FOR MATERIAL DIELECTRIC CHARACTERIZATION: APPLICATION TO A LIQUID CRYSTAL." Fluctuation and Noise Letters 01, no. 03 (September 2001): L125—L130. http://dx.doi.org/10.1142/s0219477501000329.

Full text
Abstract:
In this paper, we show how noise measurements can be used for the characterization of a dielectric material. This nonperturbative technique allows the determination of the real and imaginary parts of the complex permittivity from current and voltage noise measurements. This technique is illustrated hereafter for the case of an antiferroelectric liquid crystal.
APA, Harvard, Vancouver, ISO, and other styles
45

Yamaguchi, Takeshi, Yujiro Hara, Hisao Fujiwara, Goh Itoh, and Haruhiko Okumura. "Equivalent Circuit Model for Thresholdless Antiferroelectric Liquid Crystal Displays." Japanese Journal of Applied Physics 38, Part 1, No. 7A (July 15, 1999): 4127–31. http://dx.doi.org/10.1143/jjap.38.4127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tatemori, Syuichi, Hiroyuki Uehara, Jun Hatano, Hideo Saito, Shin'ichi Saito, and Eiji Okabe. "Ferrielectricity in Chiral Smectic Cβof an Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 38, Part 1, No. 9B (September 30, 1999): 5657–59. http://dx.doi.org/10.1143/jjap.38.5657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lee, Chong-Kwang, Jae-Hoon Kim, E.-Joon Choi, Wang-Cheol Zin, and Liang-Chy Chien. "Antiferroelectric liquid crystal from a banana-shaped achiral molecule." Liquid Crystals 28, no. 12 (December 2001): 1749–54. http://dx.doi.org/10.1080/02678290110078711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shibahara, Seiji, Yoichi Takanishi, Ken Ishikawa, Hideo Takezoe, Jun Yamamoto, and Hajime Tanaka. "Layer compression modulus of the antiferroelectric liquid crystal MHPBC." Ferroelectrics 244, no. 1 (May 2000): 159–65. http://dx.doi.org/10.1080/00150190008228426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Marino, L., E. Bruno, M. P. De Santo, F. Ciuchi, S. Marino, and N. Scaramuzza. "Dielectric Characterisation of an Orthoconic Antiferroelectric Liquid Crystal Mixture." Molecular Crystals and Liquid Crystals 558, no. 1 (May 30, 2012): 120–26. http://dx.doi.org/10.1080/15421406.2011.653717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kimura, Munehiro, Daeseung Kang, and Charles Rosenblatt. "Anticlinic coupling between layers of an antiferroelectric liquid crystal." Physical Review E 60, no. 2 (August 1, 1999): 1867–71. http://dx.doi.org/10.1103/physreve.60.1867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography