Academic literature on the topic 'Antiferroelectric Liquid Crystal'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiferroelectric Liquid Crystal.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antiferroelectric Liquid Crystal"

1

Artal, M. Carmen, M. Blanca Ros, José Luis Serrano, M. Rosario de la Fuente, and Miguel Angel Pérez-Jubindo. "Antiferroelectric Liquid-Crystal Gels." Chemistry of Materials 13, no. 6 (June 2001): 2056–67. http://dx.doi.org/10.1021/cm001254m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, P. A., and V. G. K. M. Pisipati. "A Novel Antiferroelectric Liquid Crystal with two Asymmetric Centres." Zeitschrift für Naturforschung A 57, no. 3-4 (April 1, 2002): 199–201. http://dx.doi.org/10.1515/zna-2002-3-413.

Full text
Abstract:
An antiferroelectric liquid crystal material, (S)-4-(2-chloro-3-phenyl-1-(2-methylbutyloxy)carbomato- 4ʹ-n-dodecyloxy biphenylcarboxylate (CPCDBD), has been synthesized by using (S)-2-amino- 3-(4-hydroxy)phenyl propionic acid (L-tyrosine) as one the optically active ingredients. Preliminary investigations on this material reveal high spontaneous polarization (~ 145 nC/cm2) in the antiferroelectric Sm-CA* phase. Possible structural contributions towards the appearance of antiferroelectric ordering are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Galerne, Yves, and Lionel Liebert. "Antiferroelectric chiral smectic-O*liquid crystal." Physical Review Letters 66, no. 22 (June 3, 1991): 2891–94. http://dx.doi.org/10.1103/physrevlett.66.2891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vorflusev, Valery, and Satyendra Kumar. "Multistable antiferroelectric liquid-crystal optical modulator." Applied Physics Letters 73, no. 22 (November 30, 1998): 3211–13. http://dx.doi.org/10.1063/1.122721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Otón, José Manuel, Francisco José López, Virginia Urruchi, José Luis Gayo, and Xabier Quintana. "Induced Asymmetric Antiferroelectric Liquid Crystal Response." Ferroelectrics 268, no. 1 (January 2002): 107–12. http://dx.doi.org/10.1080/713715994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Norio, Nobuaki Koshoubu, Kahoru Mori, Kohji Nakamura, and Yuichiro Yamada. "Full-color antiferroelectric liquid crystal display." Ferroelectrics 149, no. 1 (December 1993): 295–304. http://dx.doi.org/10.1080/00150199308217301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saha, Rony, Chenrun Feng, Alexey Eremin, and Antal Jákli. "Antiferroelectric Bent-Core Liquid Crystal for Possible High-Power Capacitors and Electrocaloric Devices." Crystals 10, no. 8 (July 30, 2020): 652. http://dx.doi.org/10.3390/cryst10080652.

Full text
Abstract:
We present small-angle X-ray scattering, polarized optical microscopy and electric current measurements of a sulfur-containing bent-core liquid crystal material for characterization of the layer and director structures, thermally and electrically driven transitions between antiferroelectric and ferroelectric structures and switching properties. It was found that the material has polarization-modulated homochiral synclinic ferroelectric (SmCsPFmod), homochiral anticlinic antiferroelectric (SmCaPA) and racemic synclininc antiferroelectric (SmCsPA) structures that can be reversibly switched between each other either thermally and/or electrically. High switching polarization combined with softness of the liquid crystalline structure makes this compound a good candidate for applications in high-power capacitors and electrocaloric devices.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Lan Li, Bao Gai Zhai, and Yuan Ming Huang. "Photostability of an Antiferroelectric Banana-Shaped Liquid Crystal." Key Engineering Materials 428-429 (January 2010): 194–97. http://dx.doi.org/10.4028/www.scientific.net/kem.428-429.194.

Full text
Abstract:
We have investigated the photostability of an antiferroelectric banana-shaped liquid crystal 4-chloro-1,3-phenylene bis [4-(4-n-tetradecyl) phenylimino methyl] benzoate by measuring its polarization as a function of photo-irradiation duration. Upon intense photo-irradiation for three hours, the banana-shaped liquid crystal exhibits a significant photostability although it bears the linkages of –COO– and –CH=N–.
APA, Harvard, Vancouver, ISO, and other styles
9

Éber, N., and L. Bata. "Electromechanical effect in an antiferroelectric liquid crystal." Liquid Crystals 14, no. 2 (January 1993): 453–61. http://dx.doi.org/10.1080/02678299308027660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moritake, Hiroshi, Sungkeun Cho, Masanori Ozaki, and Katsumi Yoshino. "Transient Light Scattering in Antiferroelectric Liquid Crystal." Japanese Journal of Applied Physics 32, Part 2, No. 10B (October 15, 1993): L1549—L1552. http://dx.doi.org/10.1143/jjap.32.l1549.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Antiferroelectric Liquid Crystal"

1

Debnath, Asim. "Formulation and characterization of room temperature ferroelectric and antiferroelectric liquid crystal mixtures." Thesis, University of North Bengal, 2018. http://hdl.handle.net/123456789/2783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pringle, Steven. "Antiferroelectric and ferroelectric smectic C side chain liquid crystal polymers." Thesis, University of Hull, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parghi, Deven D. "Antiferroelectric liquid crystals : hosts and binary mixtures." Thesis, University of Hull, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dey, Kartick Chandra. "Investigation on some antiferroelectric liquid crystals and their mixtures." Thesis, University of North Bengal, 2020. http://ir.nbu.ac.in/handle/123456789/4030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Seung-Eun. "Antiferroelectric and ferroelectric liquid crystals in terphenyl systems." Thesis, University of Hull, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cosimbescu, Lelia. "From nematic to ferroelectric/antiferroelectric fluorinated tolane liquid crystals with electrooptic properties /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Parry-Jones, Lesley Anne. "Field induced helix distortion and switching in antiferroelectric liquid crystals." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Patel, Neha Mehul. "Electrooptic Studies of Liquid Crystalline Phases and Magnetically Levitated Liquid Bridges." Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1080932723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pedreira, Aline Moojen. "Estudo estrutural e eletro-óptico da fase B2 de materiais com moléculas de banana." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20102006-121009/.

Full text
Abstract:
Com base em resultados de DSC, análise estrutural por difração de raios X e observações de textura, analisamos os efeitos da mistura do solvente apolar hexadecano com cristais líquidos formados pelas moléculas banana 1,3-fenilenobis[4-(4-tetradecilfeniliminometil)benzoato] (MB14) e 4-cloro-1,3-fenilenobis[4-(4-tetradecilfeniliminometil) benzoato] (MB14Cl). Propusemos um modelo estrutural para explicar as modificações causadas no arranjo molecular da fase B2 pelo acréscimo gradual do solvente. Observamos a diminuição da temperatura de transição entre esta fase e a fase isotrópica, porém a transição entre a fase B2 e a fase a temperaturas mais baixas não sofre alteração significativa. Para concentrações em massa de hexadecano de 45 % no MB14 e de 55 % no MB14Cl, a fase B2 já não é mais observada. Para o MB14Cl, resultados de difração de raios X revelaram que as moléculas de hexadecano penetram entre as camadas esméticas, aumentando a distância intercamada em torno de 3 Å. Acima de 5 % de concentração do solvente, o aumento da distância intercamada satura e ocorre segregação de fases em escala nanométrica. O comportamento da fase B2 sob a ação de um campo elétrico variável também foi analisado para o MB14 puro. Apresentamos um modelo para a linha de base do sinal de corrente de polarização, que leva em conta a não linearidade da condutividade para valores altos de campo aplicado, devido à movimentação iônica na amostra. Para o cálculo da viscosidade, consideramos a não linearidade da constante dielétrica com o campo aplicado, e adaptamos outro modelo, inicialmente utilizado para cristais líquidos ferroelétricos sob a ação de um campo quadrado, para o caso de um cristal líquido antiferroelétrico sob um campo triangular. Quanto aos dois tipos de arranjo molecular da fase B2, o arranjo homoquiral se mostrou bem mais estável que o racêmico, mesmo sob aplicação de campo triangular, quando este último é inicialmente favorecido. O arranjo racêmico se apresentou mais viscoso que o arranjo homoquiral, contrariando nossas previsões.
Based on DSC results, structural analysis by X-ray diffraction and texture observations, we observed the effects of mixing the nonpolar solvent hexadecane with the banana molecules liquid crystals ,3-phenilenebis[4-(4-tetradecilpheniliminometil)benzoate] (MB14) and 4-chloro-1,3-phenilenebis[4-(4-tetradecilpheniliminometil) benzoate] (MB14Cl). We propose a structural model to explain the changes in the molecular ordering of the B2 phase caused by the gradual increase of the solvent. We observed a decreasing of the transition temperature between B2 and isotropic phases, however the transition between B2 and lower temperature phases did not change significantly. For hexadecane concentrations above 45 wt% in MB14 and 55 wt% in MB14Cl, the B2 phase is no longer present. In MB14Cl, X-ray diffraction results showed that the hexadecane molecules penetrate between the smectic layers, increasing the interlayer spacing by about 3 Å. Above 5 wt% of solvent concentration, the increasing of the interlayer spacing saturates, and a phase segregation in nanometric scale occurs. The behavior of the B2 phase under variable electric field was also analysed for the pure MB14. We present a model for the baseline of the polarization current signal, which considers the non-linearity of the conductivity for high values of applied field, due to the presence of ions in the sample. In order to calculate the viscosity, we considered the non-linearity of the dielectric constant with the applied field, and adapted another model, initially used in ferroelectric liquid crystals under rectangular field, for the case of an antiferroelectric liquid crystal under triangular field. Concerning the two kind of molecular ordering in the B2 phase, the homoquiral ordering proved to be far more stable than the racemic, even under triangular field, when the latest is favored. Our measurements resulted in a racemic ordering more viscous than the homoquiral, going against our predictions.
APA, Harvard, Vancouver, ISO, and other styles
10

Ghosh, Sharmistha. "DIELECTRIC RELAXATION SPECTROSCOPY AND ELECTRO-OPTICAL STUDIES OF ANTIFERROELECTRIC AND FERROELECTRIC LIQUID CRYSTALS AND LIQUID CRYSTAL NANO-COMPOSITES." Thesis, 2019. http://hdl.handle.net/10821/8328.

Full text
Abstract:
Blending nanomaterials with liquid crystal (LC) is considered to be a prospective method to enhance the electro-optical properties of the host. Threshold voltage, driving voltage, residual dc, response time and rotational viscosity etc. are found to decrease in nano doped LC system and in turn the anisotropic order of the liquid crystalline host imparts order in the nano-sized guest particles. Proper selection of size, shape and crystallographic phase of nanomaterial is important to achieve desired improvements of the host. This dissertation presents results of doping different type of nanomaterials in nematic, ferro- and antiferroelectric liquid crystal medium. Conducting polymer nanotubes in nematic LC exhibits remarkable reduction in the threshold and driving voltage which is good from application point of view. The residual dc is also reduced significantly in the doped cell and the reduction is even more than that observed in the carbon nanotube doped same LC system. The influence of multiferroic bismuth ferrite nanoparticles on the electro-optical and dielectric properties of an antiferroelectric LC mixture is investigated in planar cells. It is shown that dispersion of nanoparticles lead to modifications of response time, spontaneous polarization, rotational viscosity and voltage required for switching the molecules between two ferroelectric states in the antiferroelectric phase. The large electric field exerted by the nanoparticles on LC molecules and probable charge transfer among them, causes weakening of the interlayer and intermolecular interactions of LC molecules in the antiferroelectric and ferroelectric phases, respectively. In a ferroelectric LC/ conducting polymer nanotubes composite system electrooptic study reveals a lower electrical response time, rotational viscosity and spontaneous polarization. By fitting the capacitance with voltage in a Preisach model, four dipolar species in both pure and nanocomposite system have been obtained. The orientation of the four dipolar species in the composites system is such that the effective dipole moment in the transverse direction of the FLC molecule is less than that in FLC compound. Another aspect of this dissertation is to study a newly synthesized orthoconic antiferroelectric liquid crystal which provides an excellent dark state because of its high tilt. A detailed investigation of the dielectric, electro-optical properties and X-ray studies of the partially fluorinated high-tilt antiferroelectric LC material revealed that the SmA* phase of this material is of de Vries type. Double-peak polarization current response and tristable-optical-switching studies have revealed an antiferroelectric molecular ordering in the de Vries SmA* phase of this material. Two distinct dielectric relaxation peaks in the SmA* phase also complement the antiferroelectric-like ordering of the molecule in the SmA* phase.
The research was conducted under the supervision of Prof. Subir Kumar Roy of the Spectroscopy division under SPS [School of Physical Sciences]
The research was carried out under IACS fellowship and DST research grant
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Antiferroelectric Liquid Crystal"

1

Ferroelectric and antiferroelectric liquid crystals. Weinheim: Wiley-VCH, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Blinc, and Žekš B, eds. The Physics of ferroelectric and antiferroelectric liquid crystals. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, Wendy Kay. Physical properties of novel ferroelectric and antiferroelectric liquid crystals. Manchester: University of Manchester, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lagerwall, Sven T. Ferroelectric and Antiferroelectric Liquid Crystals. Wiley & Sons, Limited, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lagerwall, Sven T. Ferroelectric and Antiferroelectric Liquid Crystals. Wiley & Sons, Incorporated, John, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Antiferroelectric Liquid Crystal"

1

Dabrowski, R., H. Zhang, H. Pauwels, J. L. Gayo, V. Urruchi, X. Quintana, and J. M. Otón. "Characterizing Antiferroelectric Liquid Crystal Materials for Display Applications." In Functional Materials, 121–26. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607420.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dey, Kartick Ch, Pradip Kumar Mandal, and Roman Dabrowski. "Influence of Bias on Dielectric Properties of Mesophases of a Laterally Fluorinated Antiferroelectric Liquid Crystal." In Springer Proceedings in Physics, 475–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44890-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Žekš, B., M. Čepič, S. A. Pikin, M. Glogarová, I. Rychetský, E. Gorecka, D. Pociecha, et al. "Ferro- and Antiferroelectric Liquid Crystals." In Relaxation Phenomena, 257–510. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-09747-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panarin, Yu P., and J. K. Vij. "The Structure and Properties of Antiferroelectric Liquid Crystals." In Advances in Chemical Physics, 271–316. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470141724.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pandey, Manoj Bhushan, Roman Dabrowski, and Ravindra Dhar. "Antiferroelectric Liquid Crystals: Smart Materials for Future Displays." In Advanced Energy Materials, 389–431. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118904923.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rudquist, Per. "Chapter 11. Polymer-stabilized Antiferroelectric Liquid Crystals and Their Applications." In Soft Matter Series, 243–77. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788013321-00243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kocot, A., J. K. Vij, and T. S. Perova. "Orientational Effects in Ferroelectric and Antiferroelectric Liquid Crystals using Infrared Spectroscopy." In Advances in Chemical Physics, 203–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470141724.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Takatoh, Kohki, and Mitsuhiro Koden. "Applications of Ferroelectric and Antiferroelectric Liquid Crystals." In Alignment Technology and Applications of Liquid Crystal Devices, 187–255. CRC Press, 2005. http://dx.doi.org/10.1201/9781420023015.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"IV: Ferroelectric and antiferroelectric mesophases." In Liquid Crystals, 825–86. CRC Press, 2018. http://dx.doi.org/10.1201/9781482275285-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Ferroelectric and antiferroelectric mesophases." In Smectic and Columnar Liquid Crystals. CRC Press, 2005. http://dx.doi.org/10.1201/9781420036343.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Antiferroelectric Liquid Crystal"

1

Rastegar, A., Igor Musevic, Martin Copic, and Theo Rasing. "Dynamic light scattering study of SmA-SmC* A transition in an antiferroelectric liquid crystal." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Yuan Ming. "Photosensitive banana-shaped antiferroelectric liquid crystal." In Photorefractive Effects, Materials, and Devices. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/pemd.2005.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Geday, M. A., V. Urruchi, N. Bennis, A. Spadlo, E. Martinelli, G. Galli, X. Quintana, and J. M. Oton. "Highly asymmetric antiferroelectric liquid crystal displays." In 2007 Spanish Conference on Electron Devices. IEEE, 2007. http://dx.doi.org/10.1109/sced.2007.384047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rozanski, Stanislaw A., Hua Zhang, and Herman Pauwels. "Electro-optical properties of antiferroelectric liquid crystal displays." In XIII International Conference on Liquid Crystals: Chemistry, Physics, and Applications, edited by Stanislaw J. Klosowicz, Jolanta Rutkowska, Jerzy Zielinski, and Jozef Zmija. SPIE, 2000. http://dx.doi.org/10.1117/12.385665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oton, Jose M., Roman S. Dabrowski, Xabier Quintana, V. Urruchi, and J. L. Gayo. "Antiferroelectric and V-shape liquid crystal on silicon microdisplays." In XIV Conference on Liquid Crystals, Chemistry, Physics, and Applications, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, and Jerzy Zielinski. SPIE, 2002. http://dx.doi.org/10.1117/12.472132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Quintana, Xabier, P. L. Castillo, Jose Oton, N. Bennis, A. Lara, V. Urruchi, and Roman S. Dabrowski. "Novel addressing scheme for passive antiferroelectric liquid crystal displays." In SPIE Proceedings, edited by Jozef Zmija. SPIE, 2004. http://dx.doi.org/10.1117/12.581124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quintana, X., J. M. Oton, N. Bennis, H. De Smet, H. De Pauw, R. Dabrowski, P. Kula, and M. A. Geday. "See-through Passive Antiferroelectric Helmet-Mounted Liquid Crystal Display." In 2007 Spanish Conference on Electron Devices. IEEE, 2007. http://dx.doi.org/10.1109/sced.2007.384044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Underwood, Ian, David G. Vass, M. I. Newsam, William J. Hossack, Georg K. Bodammer, Vidar K. Nilsen, J. Tom M. Stevenson, et al. "Antiferroelectric liquid crystal on CMOS technology for microdisplays and microphotonics." In International Symposium on Optical Science and Technology, edited by Pierre Ambs and Fred R. Beyette, Jr. SPIE, 2001. http://dx.doi.org/10.1117/12.451148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohmi, Shinya, Yuichiro Yamada, Norio Yamamoto, and Ryo Sato. "Antiferroelectric Liquid Crystal Display with Wide Viewing Angle for Automotive Application." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lum, Chia-Yuee, Lye-Hock Ong, and Mojca Čepič. "Quadrupolar Effect on Two Layered Thin Film Antiferroelectric Smectic Liquid Crystal." In MALAYSIA ANNUAL PHYSICS CONFERENCE 2010 (PERFIK-2010). AIP, 2011. http://dx.doi.org/10.1063/1.3573695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography