Journal articles on the topic 'ANTICANCER METALLODRUG'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'ANTICANCER METALLODRUG.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sullivan, Matthew P., Michael Groessl, Samuel M. Meier, Richard L. Kingston, David C. Goldstone, and Christian G. Hartinger. "The metalation of hen egg white lysozyme impacts protein stability as shown by ion mobility mass spectrometry, differential scanning calorimetry, and X-ray crystallography." Chemical Communications 53, no. 30 (2017): 4246–49. http://dx.doi.org/10.1039/c6cc10150j.
Full textHartinger, Christian G., and Bernhard K. Keppler. "CE in anticancer metallodrug research – an update." ELECTROPHORESIS 28, no. 19 (October 2007): 3436–46. http://dx.doi.org/10.1002/elps.200700114.
Full textPáez-Franco, José C., Miriam R. Zermeño-Ortega, Carmen Myriam de la O-Contreras, Daniel Canseco-González, Jesus R. Parra-Unda, Alcives Avila-Sorrosa, Raúl G. Enríquez, Juan M. Germán-Acacio, and David Morales-Morales. "Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment." Pharmaceutics 14, no. 2 (February 11, 2022): 402. http://dx.doi.org/10.3390/pharmaceutics14020402.
Full textSteel, Tasha R., and Christian G. Hartinger. "Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs." Metallomics 12, no. 11 (2020): 1627–36. http://dx.doi.org/10.1039/d0mt00196a.
Full textDoroudian, Maryam, and Jürgen Gailer. "Integrative Metallomics Studies of Toxic Metal(loid) Substances at the Blood Plasma–Red Blood Cell–Organ/Tumor Nexus." Inorganics 10, no. 11 (November 7, 2022): 200. http://dx.doi.org/10.3390/inorganics10110200.
Full textKaras, Brittany F., Jordan M. Hotz, Brian M. Gural, Kristin R. Terez, Victoria L. DiBona, Leonor Côrte-Real, Andreia Valente, Brian T. Buckley, and Keith R. Cooper. "Anticancer Activity and In Vitro to In Vivo Mechanistic Recapitulation of Novel Ruthenium-Based Metallodrugs in the Zebrafish Model." Toxicological Sciences 182, no. 1 (April 3, 2021): 29–43. http://dx.doi.org/10.1093/toxsci/kfab041.
Full textMonti, Daria Maria, Domenico Loreto, Ilaria Iacobucci, Giarita Ferraro, Alessandro Pratesi, Luigi D’Elia, Maria Monti, and Antonello Merlino. "Protein-Based Delivery Systems for Anticancer Metallodrugs: Structure and Biological Activity of the Oxaliplatin/β-Lactoglobulin Adduct." Pharmaceuticals 15, no. 4 (March 30, 2022): 425. http://dx.doi.org/10.3390/ph15040425.
Full textHoltkamp, Hannah U., and Christian G. Hartinger. "Advanced metallomics methods in anticancer metallodrug mode of action studies." TrAC Trends in Analytical Chemistry 104 (July 2018): 110–17. http://dx.doi.org/10.1016/j.trac.2017.09.023.
Full textMonti, Dara Maria, Giarita Ferraro, and Antonello Merlino. "Ferritin-based anticancer metallodrug delivery: Crystallographic, analytical and cytotoxicity studies." Nanomedicine: Nanotechnology, Biology and Medicine 20 (August 2019): 101997. http://dx.doi.org/10.1016/j.nano.2019.04.001.
Full textArtner, Christian, Hannah U. Holtkamp, Wolfgang Kandioller, Christian G. Hartinger, Samuel M. Meier-Menches, and Bernhard K. Keppler. "DNA or protein? Capillary zone electrophoresis–mass spectrometry rapidly elucidates metallodrug binding selectivity." Chemical Communications 53, no. 57 (2017): 8002–5. http://dx.doi.org/10.1039/c7cc04582d.
Full textTimerbaev, A. R., K. Pawlak, C. Gabbiani, and L. Messori. "Recent progress in the application of analytical techniques to anticancer metallodrug proteomics." TrAC Trends in Analytical Chemistry 30, no. 7 (July 2011): 1120–38. http://dx.doi.org/10.1016/j.trac.2011.03.007.
Full textHackl, Carmen M., Beatrix Schoenhacker-Alte, Matthias H. M. Klose, Helena Henke, Maria S. Legina, Michael A. Jakupec, Walter Berger, et al. "Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates." Dalton Transactions 46, no. 36 (2017): 12114–24. http://dx.doi.org/10.1039/c7dt01767g.
Full textGroessl, Michael, and Christian G. Hartinger. "Anticancer metallodrug research analytically painting the “omics” picture—current developments and future trends." Analytical and Bioanalytical Chemistry 405, no. 6 (October 16, 2012): 1791–808. http://dx.doi.org/10.1007/s00216-012-6450-4.
Full textMiller, Maya, Anna Mellul, Maya Braun, Dana Sherill-Rofe, Emiliano Cohen, Zohar Shpilt, Irene Unterman, et al. "Titanium Tackles the Endoplasmic Reticulum: A First Genomic Study on a Titanium Anticancer Metallodrug." iScience 23, no. 7 (July 2020): 101262. http://dx.doi.org/10.1016/j.isci.2020.101262.
Full textDemoro, Bruno, Andreia Bento-Oliveira, Fernanda Marques, João Costa Pessoa, Lucía Otero, Dinorah Gambino, Rodrigo F. M. de Almeida, and Ana Isabel Tomaz. "Interaction with Blood Proteins of a Ruthenium(II) Nitrofuryl Semicarbazone Complex: Effect on the Antitumoral Activity." Molecules 24, no. 16 (August 7, 2019): 2861. http://dx.doi.org/10.3390/molecules24162861.
Full textOliveira, Katia M., João Honorato, Felipe C. Demidoff, Mario S. Schultz, Chaquip D. Netto, Marcia R. Cominetti, Rodrigo S. Correa, and Alzir A. Batista. "Lapachol in the Design of a New Ruthenium(II)-Diphosphine Complex as a Promising Anticancer Metallodrug." Journal of Inorganic Biochemistry 214 (January 2021): 111289. http://dx.doi.org/10.1016/j.jinorgbio.2020.111289.
Full textUgalde-Arbizu, Maider, John Jairo Aguilera-Correa, Victoria García-Almodóvar, Karina Ovejero-Paredes, Diana Díaz-García, Jaime Esteban, Paulina L. Páez, et al. "Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug." Pharmaceutics 15, no. 2 (February 7, 2023): 560. http://dx.doi.org/10.3390/pharmaceutics15020560.
Full textKljun, Jakob, and Iztok Turel. "β-Diketones as Scaffolds for Anticancer Drug Design - From Organic Building Blocks to Natural Products and Metallodrug Components." European Journal of Inorganic Chemistry 2017, no. 12 (February 16, 2017): 1655–66. http://dx.doi.org/10.1002/ejic.201601314.
Full textCôrte-Real, Leonor, António P. Matos, Irina Alho, Tânia S. Morais, Ana Isabel Tomaz, Maria Helena Garcia, Isabel Santos, Manuel P. Bicho, and Fernanda Marques. "Cellular Uptake Mechanisms of an Antitumor Ruthenium Compound: The Endosomal/Lysosomal System as a Target for Anticancer Metal-Based Drugs." Microscopy and Microanalysis 19, no. 5 (June 24, 2013): 1122–30. http://dx.doi.org/10.1017/s143192761300175x.
Full textJarosz, Maciej, Magdalena Matczuk, Katarzyna Pawlak, and Andrei R. Timerbaev. "Molecular mass spectrometry in metallodrug development: A case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug." Analytica Chimica Acta 851 (December 2014): 72–77. http://dx.doi.org/10.1016/j.aca.2014.08.031.
Full textCasini, Angela, Chiara Gabbiani, Guido Mastrobuoni, Luigi Messori, Gloriano Moneti, and Giuseppe Pieraccini. "Exploring Metallodrug–Protein Interactions by ESI Mass Spectrometry: The Reaction of Anticancer Platinum Drugs with Horse Heart Cytochrome c." ChemMedChem 1, no. 4 (April 10, 2006): 413–17. http://dx.doi.org/10.1002/cmdc.200500079.
Full textYu, Zhen, Menglu Han, and James A. Cowan. "Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper-Acridine-ATCUN Complex." Angewandte Chemie 127, no. 6 (December 12, 2014): 1921–25. http://dx.doi.org/10.1002/ange.201410434.
Full textYu, Zhen, Menglu Han, and James A. Cowan. "Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper-Acridine-ATCUN Complex." Angewandte Chemie International Edition 54, no. 6 (December 11, 2014): 1901–5. http://dx.doi.org/10.1002/anie.201410434.
Full textMarson Armando, Renan Augusto, Marina Paiva Abuçafy, Angelica Ellen Graminha, Roberto Santana da Silva, and Regina Célia Galvão Frem. "Ru-90@bio-MOF-1: A ruthenium(II) metallodrug occluded in porous Zn-based MOF as a strategy to develop anticancer agents." Journal of Solid State Chemistry 297 (May 2021): 122081. http://dx.doi.org/10.1016/j.jssc.2021.122081.
Full textDantas, Kele Cristina Ferreira, Jânia dos Santos Rosário, and Priscila Pereira Silva-Caldeira. "Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements." Pharmaceutics 14, no. 7 (July 20, 2022): 1506. http://dx.doi.org/10.3390/pharmaceutics14071506.
Full textNešić, Maja D., Tanja Dučić, Manuel Algarra, Iva Popović, Milutin Stepić, Mara Gonçalves, and Marijana Petković. "Lipid Status of A2780 Ovarian Cancer Cells after Treatment with Ruthenium Complex Modified with Carbon Dot Nanocarriers: A Multimodal SR-FTIR Spectroscopy and MALDI TOF Mass Spectrometry Study." Cancers 14, no. 5 (February 24, 2022): 1182. http://dx.doi.org/10.3390/cancers14051182.
Full textLiang, Wei, Junfeng Shi, Haiyan Xia, and Xiaowei Wei. "A Novel Ruthenium-Fluvastatin Complex Downregulates SNCG Expression to Modulate Breast Carcinoma Cell Proliferation and Apoptosis via Activating the PI3K/Akt/mTOR/VEGF/MMP9 Pathway." Oxidative Medicine and Cellular Longevity 2021 (June 6, 2021): 1–34. http://dx.doi.org/10.1155/2021/5537737.
Full textNeuditschko, Benjamin, Anton A. Legin, Dina Baier, Arno Schintlmeister, Siegfried Reipert, Michael Wagner, Bernhard K. Keppler, Walter Berger, Samuel M. Meier‐Menches, and Christopher Gerner. "Inside Cover: Interaction with Ribosomal Proteins Accompanies Stress Induction of the Anticancer Metallodrug BOLD‐100/KP1339 in the Endoplasmic Reticulum (Angew. Chem. Int. Ed. 10/2021)." Angewandte Chemie International Edition 60, no. 10 (February 2021): 4954. http://dx.doi.org/10.1002/anie.202100977.
Full textKomeda, Seiji, and Angela Casini. "Next-Generation Anticancer Metallodrugs." Current Topics in Medicinal Chemistry 12, no. 3 (February 1, 2012): 219–35. http://dx.doi.org/10.2174/156802612799078964.
Full textPoursharifi, Mina, Marek T. Wlodarczyk, and Aneta J. Mieszawska. "Nano-Based Systems and Biomacromolecules as Carriers for Metallodrugs in Anticancer Therapy." Inorganics 7, no. 1 (December 20, 2018): 2. http://dx.doi.org/10.3390/inorganics7010002.
Full textSabounchei, Seyyed Javad, Marjan Hosseinzadeh, Sadegh Salehzadeh, Farahnaz Maleki, and Robert W. Gable. "Mononuclear palladium(ii) and platinum(ii) complexes of P,C-donor ligands: synthesis, crystal structures, cytotoxicity, and mechanistic studies of a highly stereoselective Mizoroki–Heck reaction." Inorganic Chemistry Frontiers 4, no. 12 (2017): 2107–18. http://dx.doi.org/10.1039/c7qi00568g.
Full textBroomfield, L. M., C. Alonso-Moreno, E. Martin, A. Shafir, I. Posadas, V. Ceña, and J. A. Castro-Osma. "Aminophosphine ligands as a privileged platform for development of antitumoral ruthenium(ii) arene complexes." Dalton Transactions 46, no. 46 (2017): 16113–25. http://dx.doi.org/10.1039/c7dt03369a.
Full textMáliková, Klaudia, Lukáš Masaryk, and Pavel Štarha. "Anticancer Half-Sandwich Rhodium(III) Complexes." Inorganics 9, no. 4 (April 8, 2021): 26. http://dx.doi.org/10.3390/inorganics9040026.
Full textSchmidlehner, Melanie, Lea S. Flocke, Alexander Roller, Michaela Hejl, Michael A. Jakupec, Wolfgang Kandioller, and Bernhard K. Keppler. "Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics." Dalton Transactions 45, no. 2 (2016): 724–33. http://dx.doi.org/10.1039/c5dt02722e.
Full textHanif, Muhammad, and Christian G. Hartinger. "Anticancer metallodrugs: where is the next cisplatin?" Future Medicinal Chemistry 10, no. 6 (March 2018): 615–17. http://dx.doi.org/10.4155/fmc-2017-0317.
Full textAhmedova, Anife, Rositsa Mihaylova, Denitsa Momekova, Pavletta Shestakova, Silviya Stoykova, Joana Zaharieva, Masahiro Yamashina, Georgi Momekov, Munetaka Akita, and Michito Yoshizawa. "M2L4 coordination capsules with tunable anticancer activity upon guest encapsulation." Dalton Transactions 45, no. 33 (2016): 13214–21. http://dx.doi.org/10.1039/c6dt01801g.
Full textSpisz, Paulina, Agnieszka Chylewska, Aleksandra Królicka, Sandra Ramotowska, Aleksandra Dąbrowska, and Mariusz Makowski. "Stimulation of Sulfonamides Antibacterial Drugs Activity as a Result of Complexation with Ru(III): Physicochemical and Biological Study." International Journal of Molecular Sciences 22, no. 24 (December 15, 2021): 13482. http://dx.doi.org/10.3390/ijms222413482.
Full textOrtega, Enrique, Gloria Vigueras, Francisco José Ballester, and José Ruiz. "Targeting translation: a promising strategy for anticancer metallodrugs." Coordination Chemistry Reviews 446 (November 2021): 214129. http://dx.doi.org/10.1016/j.ccr.2021.214129.
Full textBagowski, Christoph P., Ya You, Heike Scheffler, Danielle H. Vlecken, Daan J. Schmitz, and Ingo Ott. "Naphthalimide gold(i) phosphine complexes as anticancer metallodrugs." Dalton Transactions, no. 48 (2009): 10799. http://dx.doi.org/10.1039/b912378d.
Full textErxleben, Andrea. "Mitochondria-Targeting Anticancer Metal Complexes." Current Medicinal Chemistry 26, no. 4 (April 1, 2019): 694–728. http://dx.doi.org/10.2174/0929867325666180307112029.
Full textAli, Imran, Waseem A. Wani, Kishwar Saleem, and Ming-Fa Hsieh. "Anticancer metallodrugs of glutamic acid sulphonamides: in silico, DNA binding, hemolysis and anticancer studies." RSC Adv. 4, no. 56 (2014): 29629–41. http://dx.doi.org/10.1039/c4ra02570a.
Full textSun, Wen, Xiaolong Zeng, and Si Wu. "Photoresponsive ruthenium-containing polymers: potential polymeric metallodrugs for anticancer phototherapy." Dalton Transactions 47, no. 2 (2018): 283–86. http://dx.doi.org/10.1039/c7dt03390g.
Full textContel, María. "Unconventional Anticancer Metallodrugs and Strategies to Improve Their Pharmacological Profile." Inorganics 7, no. 7 (July 10, 2019): 88. http://dx.doi.org/10.3390/inorganics7070088.
Full textZaki, Mehvash, Suboot Hairat, and Elham S. Aazam. "Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies." RSC Advances 9, no. 6 (2019): 3239–78. http://dx.doi.org/10.1039/c8ra07926a.
Full textAbás, Elisa, Diego Aguirre-Ramírez, Mariano Laguna, and Laura Grasa. "Selective Anticancer and Antimicrobial Metallodrugs Based on Gold(III) Dithiocarbamate Complexes." Biomedicines 9, no. 12 (November 26, 2021): 1775. http://dx.doi.org/10.3390/biomedicines9121775.
Full textArshad, Jahanzaib, Kelvin K. H. Tong, Sanam Movassaghi, Tilo Söhnel, Stephen M. F. Jamieson, Muhammad Hanif, and Christian G. Hartinger. "Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-carbothioamide." Molecules 26, no. 4 (February 5, 2021): 833. http://dx.doi.org/10.3390/molecules26040833.
Full textTolbatov, Iogann, Alessandro Marrone, Cecilia Coletti, and Nazzareno Re. "Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey." Molecules 26, no. 24 (December 15, 2021): 7600. http://dx.doi.org/10.3390/molecules26247600.
Full textBarry, Nicolas P. E., and Peter J. Sadler. "100 years of metal coordination chemistry: from Alfred Werner to anticancer metallodrugs." Pure and Applied Chemistry 86, no. 12 (December 1, 2014): 1897–910. http://dx.doi.org/10.1515/pac-2014-0504.
Full textCisnetti, Federico, and Arnaud Gautier. "Metal/N-Heterocyclic Carbene Complexes: Opportunities for the Development of Anticancer Metallodrugs." Angewandte Chemie International Edition 52, no. 46 (October 2, 2013): 11976–78. http://dx.doi.org/10.1002/anie.201306682.
Full textZhang, Ya, Xiangchun Zhang, Qing Yuan, Wenchao Niu, Chunyu Zhang, Jiaojiao Li, Zhesheng He, et al. "Peptide-Templated Gold Clusters as Enzyme-Like Catalyst Boost Intracellular Oxidative Pressure and Induce Tumor-Specific Cell Apoptosis." Nanomaterials 8, no. 12 (December 12, 2018): 1040. http://dx.doi.org/10.3390/nano8121040.
Full text