Journal articles on the topic 'Antibody'

To see the other types of publications on this topic, follow the link: Antibody.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antibody.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Panda, Manasi. "Rabies-Monoclonal Antibody - A Perspective." Journal of Communicable Diseases 54, no. 03 (September 30, 2022): 22–26. http://dx.doi.org/10.24321/0019.5138.202285.

Full text
Abstract:
Rabies is an acute viral zoonotic disease that affects the central nervous system (CNS) of all warm-blooded animals, including mammals. Research studies and experience from across the world have demonstrated that appropriate administration of a combination of (a) local wound treatment, (b) anti-rabies vaccination and (c) passive immunization have proved to be quite effective in preventing the occurrence of rabies. As far as passive immunization is concerned, polyclonal plasma-derived rabies immunoglobulins (RIG) pose a number of limitations with scarce supply, high cost, etc. amongst many others. On the contrary Rabies Monoclonal Antibodies (R-mAb) are much cheaper, permit longer-term storage, etc. and hence could offer a more standardized, accessible, affordable and equally efficacious and safer alternative to RIG. Accordingly, this article has tried to throw light on the transition from RIG to monoclonal antibody-based Post Exposure Prophylaxis (PEP) which has been recommended by the WHO strongly. The advantages, limitations and future scope of R-mAb have been discussed at length to give a comprehensive idea about this novel invention in the field of medicine.
APA, Harvard, Vancouver, ISO, and other styles
2

B, Aswin, Sumanth T, and Ravi Madhusudhana. "Pregnancy and Antiphospholipid Antibody Syndrome." Indian Journal of Anesthesia and Analgesia 9, no. 3 (June 15, 2022): 41–43. http://dx.doi.org/10.21088/ijaa.2349.8471.9322.14.

Full text
Abstract:
Introduction: ALPA is an autoimmune hypercoagulable state caused by antiphospholipid antibodies. It is characterized by thrombotic episodes in arteries, veins and pregnancy related complications like still birth, preterm delivery, miscarriage and severe preeclampsia. We report a case of APLA syndrome due to its rarity. Case Report: A 28 year old woman with a history of two previous abortions and positive serology for APLAs with 9 months gestation came to our hospital for safe confinement. She was diagnosed as primary APLA syndrome in view of bad obstetric history and positive lupus anticoagulant. She is a known hypothyroidism. She was on Injection Enoxaparin 0.6 ml OD for 1 year which was changed to unfractionated heparin 14000 units OD subcutaneously after admitting to our hospital. In view of bad obstetric history, an elective caesarean section was planned. Unfractionated heparin was stopped 24 hours before surgery. Preoperative investigations revealed a normal APTT, PT, INR. Spinal anesthesia given in L3–L4 inter-spinal space with 25G needle after preloading with 500 ml crystalloids and a sensory block up to T6 was attained. She delivered a single live male child with APGAR score 9. Injection Oxytocin 15 units was given intraoperatively. The further perioperative course was uneventful. She was restarted on Injection Enoxaparin 0.6ml OD for 6 weeks.
APA, Harvard, Vancouver, ISO, and other styles
3

Ta, Angeline N., and Brian R. McNaughton. "Antibody and antibody mimetic immunotherapeutics." Future Medicinal Chemistry 9, no. 12 (August 2017): 1301–4. http://dx.doi.org/10.4155/fmc-2017-0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tan, Lee K., and Sherie L. Morrison. "Antibody structure and antibody engineering." Advanced Drug Delivery Reviews 2, no. 2 (November 1988): 129–42. http://dx.doi.org/10.1016/0169-409x(88)90030-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kabat, EA. "Antibody complementarity and antibody structure." Journal of Immunology 141, no. 7 (October 1, 1988): 25–36. http://dx.doi.org/10.4049/jimmunol.141.7.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lockshin, Michael D. "Antiphospholipid antibody and antiphospholipid antibody syndrome." Current Opinion in Rheumatology 3, no. 5 (October 1991): 797–802. http://dx.doi.org/10.1097/00002281-199110000-00008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aryastami, Ni Ketut, Prisca Petty Arfines, Vivi Setiawaty, and Siti Isfandari. "Factors associated with measles antibody titers in children aged 12-36 months in Indonesia: an analysis of National Health Research 2013." Health Science Journal of Indonesia 12, no. 2 (December 16, 2021): 97–103. http://dx.doi.org/10.22435/hsji.v12i2.5356.

Full text
Abstract:
Background: The immunization program in Indonesia has been implemented since 1956 started to eradicate smallpox and expanded until 1980, including Measles. The timely and complete implementation of basic immunization is the main strategy to protect the population, including outbreak prevention. The purpose of this study is to determine the level immunity of Measles antibody as the outcome of completed basic immunization and its contributors in children aged 12-36 months. Methods: This study is a secondary data analysis of the Indonesia Basic Health Survey (RISKESDAS) 2013. The analysis was carried out on a serological sample of the antibody titer of children aged 12-36 months, totaling 229 samples. The sample inclusion criteria were children who had complete sociodemographics data, basic immunization records and Measles antibody titer data. Measles examination was carried out using the Enzyme-Linked Immunosorbent Assay (ELISA) method. Results: Incomplete immunization, being a boy, and lack of cleanliness in the family room were significantly associated with lower measles antibody levels in children. Having each variable controlled, completeness of immunization (OR=1,99; p=0.018; 95% CI=1.124-3.544) and gender of boy (OR=2.0; p=0.016; 95% CI=1.137-3.515) remain as significant variables for antibody’s titer. Conclusion: The completeness of immunization has a significant association towards titer antibody of Measles in children. Immunization completeness is an actual effort to reach herd immunity in children and to prevent measles outbreak in the community. Adequate health promotion is needed to change people's behavior to believe in the safety and importance of implementing complete basic immunization for children even in pandemic conditions. Keywords: antibody titer, immunization, children aged 12-36 months, Indonesia, measles Abstrak Latar belakang: Program imunisasi di Indonesia telah dilaksanakan sejak tahun 1956 yang dimulai dengan pemberantasan cacar yang diperluas hingga tahun 1980, termasuk campak. Pelaksanaan imunisasi dasar yang tepat waktu dan lengkap merupakan strategi utama untuk perlindungan penduduk, termasuk pencegahan Kejadian Luar Biasa (KLB). Tujuan dari penelitian ini untuk mengetahui tingkatan kekebalan antibodi Campak sebagai hasil dari kelengkapan imunisasi dasar dan faktor yang berkontribusi pada anak usia 12-36 bulan. Metode: Penelitian ini merupakan analisis data sekunder Riset Kesehatan Dasar Indonesia (RISKESDAS) 2013. Analisis dilakukan pada sampel serologi titer antibodi anak usia 12-36 bulan yang berjumlah 229 sampel. Kriteria inklusi sampel adalah anak yang memiliki data sosiodemografi lengkap, catatan imunisasi dasar dan data titer antibodi Campak. Pemeriksaan campak dilakukan dengan metode Enzyme-Linked Immunosorbent Assay (ELISA). Hasil: Imunisasi yang tidak lengkap, berjenis kelamin laki-laki, dan kurangnya kebersihan di ruang keluarga berhubungan bermakna dengan rendahnya tingkat antibodi campak pada anak. Setelah masing-masing variabel terkontrol, kelengkapan imunisasi (OR=1,99; p=0,018; 95% CI=1.124-3.544) dan jenis kelamin laki-laki (OR=2.0; p=0.016; 95% CI=1.137-3.515) merupakan variabel yang tetap berhubungan dengan titer antibodi secara signifikan. Kesimpulan: Kelengkapan imunisasi memiliki hubungan yang bermakna terhadap titer antibodi Campak pada anak. Kelengkapan imunisasi merupakan upaya nyata untuk mencapai herd immunity pada anak dan mencegah wabah campak di masyarakat. Promosi kesehatan yang memadai diperlukan untuk mengubah perilaku masyarakat agar percaya akan keamanan dan pentingnya pelaksanaan imunisasi dasar lengkap bagi anak meskipun dalam kondisi pandemi. Kata kunci: titer antibodi, imunisasi, anak usia 12-36 bulan, Indonesia, campak
APA, Harvard, Vancouver, ISO, and other styles
8

Rotty, Ivonne, Erwin G. Kristanto, Sekplin Sekeon, Neni Ekawardani, and Henny R. Liwe. "Formation of SARS-CoV-2 Specific Antibody after vaccination." e-CliniC 10, no. 1 (January 18, 2022): 16. http://dx.doi.org/10.35790/ecl.v10i1.37193.

Full text
Abstract:
Abstract: Vaccination is considered as the most effective solution for the SARS-COV-2 pandemic problem. Therefore, an understanding of the effectiveness of vaccination is now very important, both to design a better response to SARS-CoV-2, as well as to provide education for prospective vaccination participants. This study was aimed to obtain the description of specific antibody in SARS-CoV2 vaccinated individuals. This was a cohort-design study. SARS-CoV-2 specific antibody was measured wiht the Electro Chemiluminescence Immunoassay (ECLIA) method. This study was carried out at Prof. Dr. R. D. Kandou Hospital with 28 subjects; all were examined three times with an interval of three weeks. The first antibody examination revealed antibody formation (IgG) with a range of 3.6-1825 AU/mL with a median of 418.3 AU/mL and a mean of 525.6 AU/mL. In the second and third examinations, the median antibody titer value in the elderly group was recorded at 482.9 AU/mL and 631.3 AU/mL respectively, which were higher than the group of non-elderly subjects who were recorded to have a median of 391.9 AU/mL in the second examination and 401.6 AU/mL in the third examination. In conclusion, vaccination causes specific immunity, and the effectiveness of vaccination for the formation of specific antibodies (IgG) in the elderly group is good, although it takes a longer time compared to the non-elderly group. Moreover, the antibody formed after 63 days from the first vaccination in the elderly group is higher than in the non-elderly group.Keywords: SARS-COV-2; antibody; vaccination Abstrak: Penanggulangan pandemi SARS-COV-2 yang dianggap paling efektif hingga saat ini ialah vaksinasi, yang dilengkapi dengan penerapan protokol kesehatan. Pemahaman tentang efektivitas vaksinasi saat ini menjadi amat penting, baik untuk merancang penanggulangan SARS-CoV-2 yang lebih baik, maupun untuk memberikan edukasi bagi calon peserta vaksinasi. Penelitian ini bertujuan untuk mendapatkan gambaran antibodi spesifik yang terbentuk pada penerima vaksinasi SARS-CoV2 menggunakan desain cohort. Pengukuran antibodi spesifik SARS-CoV-2 menggunakan metode Electro Chemiluminescence Immunoassay (ECLIA). Penelitian dilaksanakan di RSUP Prof. Dr. R. D Kandou dengan jumlah subjek 28 orang, masing-masing diperiksa tiga kali dengan jeda waktu tiga minggu. Pada pemeriksaan antibodi pertama ditemukan pembentukan antibodi (IgG) dengan range 3,6-1825 AU/mL dengan median 418,3 AU/mL dan rerata 525,6 AU/mL. Pada pemeriksaan kedua dan ketiga, nilai median titer antibodi pada kelompok lanjut usia, berturut-turut tercatat 482,9 AU/mL dan 631,3 AU/mL pada pemeriksaan ketiga, lebih tinggi dibanding dibanding kelompok subjek non lansia yang tercatat memiliki median 391,9 AU/mL pada pemeriksaan kedua dan 401,6 AU/mL pada pemeriksaan ketiga. Simpulan penelitian ini ialah vaksinasi menimbulkan imunitas spesifik, dan efektivitas vaksinasi untuk pembentukan antibodi spesifik (IgG) pada kelompok lanjut usia baik, walau membutuhkan waktu yang lebih panjang dibanding kelompok non lanjut usia. Antibodi yang terbentuk pasca vaksinasi 63 hari setelah pemberian vaksinasi pertama pada kelompok lanjut usia lebih tinggi dibanding kelompok non usia lanjut.Kata kunci: SARS-CoV-2; antibodi; vaksinasi
APA, Harvard, Vancouver, ISO, and other styles
9

Nur Hasanah, Aliya. "Molekular Imprinting Polimer Sebagai "Antibody Mimic" dalam Pengujian Klinik." Farmasetika.com (Online) 1, no. 2 (October 3, 2016): 4. http://dx.doi.org/10.24198/farmasetika.v1i2.9705.

Full text
Abstract:
45 tahun lalu merupakan pertama kali imprinting diperkenalkan dalam dunia polimer organik oleh Gunter Wulff’s. Molekular imprinting polimer adalah material yang disiapkan dengan keberadaan suatu molekul sebagai cetakan untuk pembentukan sisi ikatan komplementer dengan molekul cetakan. Molekular imprinting polimer dapat menjadi model buatan untuk sisi ikatan biologi yang umumnya ditemukan pada reseptor dan antibodi. Molekular imprinting polimer juga dapat digunakan untuk sistem deteksi yang mengikuti alur sisi ikatan biologi. Molekular imprinting polimer memiliki karakter yang lebih baik dibanding antibodi dalam hal stabilitas fisikokimia, mekanik dan ketahanan terhadap panas. Tetapi, dibalik banyaknya keuntungan yang ditawarkan oleh molekular imprinting polimer sebagai “plastic antibody” atau “antibody mimic”, masih banyak hal yang harus diperbaiki agar material ini dapat betul-betul menggantikan antibodi sehingga bisa digunakan secara luas dalam immunoassay.
APA, Harvard, Vancouver, ISO, and other styles
10

Karaveli, Guner, Ebru Gok Oguz, Tolga Yildirim, Zafer Ercan, Ozgur Merhametsiz, Ayhan Haspulat, and Deniz Ayli. "Plasmapheresis in Chronic Active Antibody-Mediated Rejection." Turkish Nephrology Dialysis Transplantation 24, no. 01 (January 26, 2015): 123–25. http://dx.doi.org/10.5262/tndt.2015.1001.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Francis Lonth, Steffy, Anju Krishna K, and Amith N. "Antiphospholipid Antibody Syndrome: An Unusual Early Manifestation." International Journal of Science and Research (IJSR) 13, no. 5 (May 5, 2024): 170–72. http://dx.doi.org/10.21275/sr24502125441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Voskuil, Jan L. A., Anita Bandrowski, C. Glenn Begley, Andrew R. M. Bradbury, Andrew D. Chalmers, Aldrin V. Gomes, Travis Hardcastle, et al. "The Antibody Society’s antibody validation webinar series." mAbs 12, no. 1 (January 1, 2020): 1794421. http://dx.doi.org/10.1080/19420862.2020.1794421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Weizhi, Yang Yuan, and Xiqun Jiang. "Antibody and antibody fragments for cancer immunotherapy." Journal of Controlled Release 328 (December 2020): 395–406. http://dx.doi.org/10.1016/j.jconrel.2020.08.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Graff, Ralph, Huiling Xiao, Mark Schnitzler, Janet Tuttle-Newhall, and Krista Lentine. "16-P: Good Antibody or Bad Antibody?" Human Immunology 71 (September 2010): S30. http://dx.doi.org/10.1016/j.humimm.2010.06.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Richards, Daniel A. "Exploring alternative antibody scaffolds: Antibody fragments and antibody mimics for targeted drug delivery." Drug Discovery Today: Technologies 30 (December 2018): 35–46. http://dx.doi.org/10.1016/j.ddtec.2018.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

WHITEHEAD, N. E. "AN ANTIBOY ANTIBODY? RE-EXAMINATION OF THE MATERNAL IMMUNE HYPOTHESIS." Journal of Biosocial Science 39, no. 6 (November 2007): 905–21. http://dx.doi.org/10.1017/s0021932007001903.

Full text
Abstract:
SummaryThe maternal immune hypothesis (MIH) argues same sex attraction (SSA) results from maternal immune attack on fetal male-specific brain structures and involves the previous biological influence of elder brothers. One of the surveys supporting this is shown to be based on an unsuitable sample and to contain some strong contrary evidence. The hypothesis relies on at least four speculative ideas and there is evidence against each. (1) Likely immune response prevalence is too low compared with calculated SSA prevalence resulting from the fraternal birth order effect. (2) Testis immune attack would be more likely than brain attack but is not known. (3) Fetal brain structures are practically indistinguishable at birth and subsequent brain anatomical gender differentiation only occurs after birth when no attack is occurring. (4) The hypothesis also predicts unfavourable biology for late birth-order males but in fact the reverse is generally true, and neurological effects are very minor. Studies show aborted fetuses caused by likely maternal immune attack are predominantly girls rather than boys, which also argues against the theory. Studies on identical twins show that common factors such as uterine environment are only a small influence on SSA and post-natal idiosyncratic reactions and non-shared environmental factors are much larger influences.
APA, Harvard, Vancouver, ISO, and other styles
17

Febrianti, Iryani Endah, Yayuk Fatmawati, Intan Ria Neliana, Widhi Dyah Sawitri, Erlia Narulita, and Bambang Sugiharto. "Produksi Antibodi Poliklonal Menggunakan Protein Rekombinan RBD-spike Untuk Deteksi SARS-CoV-2." Al-Kauniyah: Jurnal Biologi 16, no. 2 (October 27, 2023): 336–46. http://dx.doi.org/10.15408/kauniyah.v16i2.25664.

Full text
Abstract:
AbstrakSARS-CoV-2 merupakan virus yang menyebabkan Coronavirus Disease 2019 (COVID-19) di seluruh dunia dan sampai saat ini kasus terbaru masih terus dilaporkan. Diagnostic test merupakan hal yang krusial untuk dikembangkan. Prinsip diagnostic test COVID-19 berbasis antigen, yaitu mendeteksi virus SARS-CoV-2 melalui respon antibodi dari penderita. Penelitian ini bertujuan untuk memproduksi antibodi poliklonal menggunakan protein rekombinan RBD-Spike untuk mendeteksi virus SARS-CoV-2 berbasis antibodi. Penelitian dimulai dengan penentuan domain RBD-Spike menggunakan pensejajaran asam amino, dan konstruksi DNA untuk RBD-Spike pada vektor ekspresi pET28a menggunakan sintetik nukleotida. Produksi protein rekombinan RBD-Spike diekspresikan pada sel bakteri Escherichia coli. Purifikasi dilakukan untuk memperoleh protein RBD-Spike dan selanjutnya digunakan sebagai antigen untuk induksi antibodi poliklonal pada kelinci. Hasil penelitian menunjukkan bahwa ekspresi protein rekombinan RBD-Spike SARS-CoV-2 memerlukan induksi IPTG 0,1 mM dan terekspresi dalam bentuk inclusion bodies dengan ukuran 39 kDa. Purifikasi protein RBD-Spike dilakukan menggunaan resin afinitas NiNTA, elektroelusi, dan dialisis. Total protein RBD-Spike yang diperoleh sebanyak 4 mL dengan konsentrasi 10 mg/mL. Analisa Ouchterlony menunjukkan bahwa antibodi poliklonal terdeteksi pada minggu kedua setelah injeksi booster dan analisa spesifitas antibodi terhadap antigen menunjukkan bahwa antibodi poliklonal dapat mendeteksi protein RBD-Spike pada konsentrasi 0,1 µg. Selanjutnya diharapkan antibodi poliklonal dapat digunakan untuk deteksi keberadaan virus SARS-CoV-2 dan dapat dikembangkan untuk kit deteksi berbasis antibodi.AbstractSARS-CoV-2 is the virus that causes Coronavirus Disease 2019 (COVID-19) worldwide and the latest cases are still being reported until now. The diagnostic test is a crucial to be developed. The principle of the antigen-based COVID-19 diagnostic test is to detect the SARS-CoV-2 virus through antibody response from the patients. This study was conducted to produce polyclonal antibodies using recombinant protein RBD-Spike. The research was carried out by determining the RBD-Spike domain using amino acid alignment and constructing the DNA of RBD-Spike to the expression vector of pET28a using nucleotide synthesis. Production of RBD-Spike recombinant protein was expressed in Escherichia coli. Purification was carried out to obtain RBD-Spike protein and used to induce polyclonal antibody ina rabbit. The results showed that the expression of RBD-Spike recombinant protein required induction of IPTG 0.1 mM and was expressed in inclusion bodies with molecular size of 39 kDa. The purification of RBD-Spike protein was carried out using resin affinity, electroelution, and dialysis. The total protein of RBD-Spike obtained was 4 mL with a concentration of 10 mg/mL. Ouchterlony analysis revealed that polyclonal antibody was detected in the second week after booster injection and analysis of antibody specificity showed that polyclonal antibodies detected RBD-Spike protein at the concentration of 0.1µg of RBD-Spike protein. Moreover, it is expected that our polyclonal antibody detect the SARS-CoV-2 virus and can be developed for antibody-based detection kits.
APA, Harvard, Vancouver, ISO, and other styles
18

Wake, Hidenori. "Antibody medicine." Okayama Igakkai Zasshi (Journal of Okayama Medical Association) 121, no. 2 (2009): 119–22. http://dx.doi.org/10.4044/joma.121.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

ARATA, Yoji, Tetsuo NAGANO, and Atsushi MITSUMOTO. "Catalytic antibody." Journal of Synthetic Organic Chemistry, Japan 48, no. 6 (1990): 482–93. http://dx.doi.org/10.5059/yukigoseikyokaishi.48.482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sasaki, Shigeru, Yasuhisa Shinomura, and Kozo Imai. "Antibody treatment." Drug Delivery System 30, no. 1 (2015): 16–24. http://dx.doi.org/10.2745/dds.30.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Seppa, Nathan. "Antibody Warfare." Science News 161, no. 7 (February 16, 2002): 99. http://dx.doi.org/10.2307/4013008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bordeaux, Jennifer, Allison W. Welsh, Seema Agarwal, Elizabeth Killiam, Maria T. Baquero, Jason A. Hanna, Valsamo K. Anagnostou, and David L. Rimm. "Antibody validation." BioTechniques 48, no. 3 (March 2010): 197–209. http://dx.doi.org/10.2144/000113382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Jones, P. T. "Antibody engineering." Biochemical Society Transactions 20, no. 1 (February 1, 1992): 203–7. http://dx.doi.org/10.1042/bst0200203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

KITAZUME, Tomoya. "Catalitic Antibody." Journal of Japan Oil Chemists' Society 41, no. 9 (1992): 774–78. http://dx.doi.org/10.5650/jos1956.41.774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Maynard, Jennifer, and George Georgiou. "Antibody Engineering." Annual Review of Biomedical Engineering 2, no. 1 (August 2000): 339–76. http://dx.doi.org/10.1146/annurev.bioeng.2.1.339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Joss, A. W., and M. M. Steven. "Anticardiolipin antibody." BMJ 300, no. 6721 (February 10, 1990): 399. http://dx.doi.org/10.1136/bmj.300.6721.399-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Honorat, Josephe A., Lars Komorowski, Keith A. Josephs, Kai Fechner, Erik K. St Louis, Shannon R. Hinson, Sabine Lederer, et al. "IgLON5 antibody." Neurology - Neuroimmunology Neuroinflammation 4, no. 5 (July 18, 2017): e385. http://dx.doi.org/10.1212/nxi.0000000000000385.

Full text
Abstract:
Objective:To describe the phenotypes, treatment response, and outcome of IgLON5 autoimmunity.Methods:Archived serum and CSF specimens from 367 patients known to harbor unclassified antibodies which stained neural synapses diffusely (mimicking amphiphysin-IgG) were reevaluated by indirect immunofluorescence assay (IFA) using a composite of mouse tissues and recombinant IgLON5-transfected cell-based assay (CBA, Euroimmun).Results:Available specimens (serum, 25; CSF, 9) from 26/367 patients (7%) had identical IFA appearance and robust IgLON5 CBA positivity. Clinical information was available for 20/26 patients; 13 were women. Median disease-onset age was 62 years (range, 46–75 years). Most patients had insidious onset and progression of neurological symptoms affecting movement and sleep predominantly. Sleep disorders were sleep-disordered breathing (11) and parasomnias (3). Brainstem disorders were gait instability (14), dysphagia (10), abnormal eye movements (7), respiratory dysfunction (6), ataxia (5), craniocervical dystonia (3), and dysarthria (3). Findings compatible with hyperexcitability included myoclonus (3), cramps (3), fasciculations (2), and exaggerated startle (2). Neuropsychiatric disorders included cognitive dysfunction (6), psychiatric symptoms (5), and seizures (1). Dysautonomia, in 9, affected bladder function (7), gastrointestinal motility (3), thermoregulation (3), and orthostatic tolerance (1). Just 2 patients had coexisting autoimmune disease. Brain MRI findings were nonspecific and CSF was noninflammatory in all tested. Seven of 9 immunotherapy-treated patients improved: 6 of those 7 were stable at last follow-up. Three untreated patients died. Each IgLON5-IgG subclass (1–4) was readily detectable in ≥80% of specimens using CBA.Conclusions:IgLON5-IgG is diagnostic of a potentially treatable neurological disorder, where autoimmune clues are otherwise lacking.
APA, Harvard, Vancouver, ISO, and other styles
28

Mazoujian, Gwen. "Antibody Sources." American Journal of Surgical Pathology 15, no. 12 (December 1991): 1207–8. http://dx.doi.org/10.1097/00000478-199112000-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Martin, Alberto, and Matthew D. Scharff. "Antibody alterations." Nature 412, no. 6850 (August 2001): 870–71. http://dx.doi.org/10.1038/35091184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Morris, Peter J., and Anthony P. Monaco. "Antibody Revisited." Transplantation Journal 78, no. 2 (July 2004): 179–80. http://dx.doi.org/10.1097/01.tp.0000136579.49054.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sinclair, Meeghan. "Antibody arrays." Nature Biotechnology 18, no. 9 (September 2000): 914. http://dx.doi.org/10.1038/79350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wells, William. "Antibody arrays." Genome Biology 1 (2000): spotlight—20000906–03. http://dx.doi.org/10.1186/gb-spotlight-20000906-03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

WASSERMAN, RICHARD L. "Antibody deficiency." Pediatric Infectious Disease Journal 9, no. 6 (June 1990): 424–33. http://dx.doi.org/10.1097/00006454-199006000-00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chong Kwan, D. "Antibody testing." British Dental Journal 228, no. 11 (June 2020): 812. http://dx.doi.org/10.1038/s41415-020-1728-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Weitzman, Jonathan B. "Antibody fingerprint." Genome Biology 4 (2003): spotlight—20030102–01. http://dx.doi.org/10.1186/gb-spotlight-20030102-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Grandstaff Moulds, Marilyn K. "Antibody identification." Transfusion and Apheresis Science 40, no. 3 (June 2009): 195–97. http://dx.doi.org/10.1016/j.transci.2009.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Delves, P. J. "Antibody Applications." Journal of Steroid Biochemistry and Molecular Biology 64, no. 5-6 (March 1998): 313–14. http://dx.doi.org/10.1016/s0960-0760(96)00241-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Dall'Acqua, William, and Paul Carter. "Antibody engineering." Current Opinion in Structural Biology 8, no. 4 (August 1998): 443–50. http://dx.doi.org/10.1016/s0959-440x(98)80121-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Davies, David R., and Susan Chacko. "Antibody structure." Accounts of Chemical Research 26, no. 8 (August 1993): 421–27. http://dx.doi.org/10.1021/ar00032a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hayden, Martha S., Lisa K. Gilliland, and Jeffrey A. Ledbetter. "Antibody engineering." Current Opinion in Immunology 9, no. 2 (April 1997): 201–12. http://dx.doi.org/10.1016/s0952-7915(97)80136-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

BAUM, RUDY. "CATALYTIC ANTIBODY." Chemical & Engineering News 72, no. 34 (August 22, 1994): 6–7. http://dx.doi.org/10.1021/cen-v072n034.p006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bonifacio, E., P. N. Hollingsworth, and R. L. Dawkins. "Antinuclear antibody." Journal of Immunological Methods 91, no. 2 (July 1986): 249–55. http://dx.doi.org/10.1016/0022-1759(86)90486-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

PRESTA, L. "Antibody engineering." Current Biology 2, no. 9 (September 1992): 494. http://dx.doi.org/10.1016/0960-9822(92)90680-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

&NA;. "Antibody Therapy." Journal of Immunotherapy 26, no. 6 (November 2003): S37—S39. http://dx.doi.org/10.1097/00002371-200311000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

McCafferty, John, Hennie Hoogenboom, Dave Chiswell, and Katalin Mikecz. "ANTIBODY ENGINEERING." Shock 7, no. 2 (February 1997): 154. http://dx.doi.org/10.1097/00024382-199702000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

George, Andrew J. T. "Antibody engineering." Endeavour 18, no. 1 (January 1994): 27–31. http://dx.doi.org/10.1016/0160-9327(94)90117-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hong, Hyo Jeong, and Sun Taek Kim. "Antibody engineering." Biotechnology and Bioprocess Engineering 7, no. 3 (June 2002): 150–54. http://dx.doi.org/10.1007/bf02932912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nelson, Aaron L. "Antibody fragments." mAbs 2, no. 1 (January 2010): 77–83. http://dx.doi.org/10.4161/mabs.2.1.10786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lefranc, Marie-Paule. "Antibody nomenclature." mAbs 3, no. 1 (January 2011): 1–2. http://dx.doi.org/10.4161/mabs.3.1.14151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hilvert, D. "Antibody catalysis." Pure and Applied Chemistry 64, no. 8 (January 1, 1992): 1103–8. http://dx.doi.org/10.1351/pac199264081103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography