Journal articles on the topic 'Antibody recognition'

To see the other types of publications on this topic, follow the link: Antibody recognition.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antibody recognition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Janin, J., J. Cherfils, and S. Duquerroy. "Simulating antigen-antibody recognition." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (August 21, 1993): c148. http://dx.doi.org/10.1107/s0108767378095793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MacRaild, Christopher A., Jack S. Richards, Robin F. Anders, and Raymond S. Norton. "Antibody Recognition of Disordered Antigens." Structure 24, no. 1 (January 2016): 148–57. http://dx.doi.org/10.1016/j.str.2015.10.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haji-Ghassemi, Omid, Ryan J. Blackler, N. Martin Young, and Stephen V. Evans. "Antibody recognition of carbohydrate epitopes." Glycobiology 25, no. 9 (June 1, 2015): 920–52. http://dx.doi.org/10.1093/glycob/cwv037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, T., D. H. Hamer, W. A. Hendrickson, Q. J. Sattentau, and P. D. Kwong. "Interfacial metal and antibody recognition." Proceedings of the National Academy of Sciences 102, no. 41 (September 29, 2005): 14575–80. http://dx.doi.org/10.1073/pnas.0507267102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nauchitel, Vladimir V., and Rajmund L. Somorjai. "Antigen-antibody recognition. Model calculations." Biophysical Chemistry 51, no. 2-3 (August 1994): 337–47. http://dx.doi.org/10.1016/0301-4622(94)00054-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nandakumar, Kutty Selva. "Pathogenic antibody recognition of cartilage." Cell and Tissue Research 339, no. 1 (June 9, 2009): 213–20. http://dx.doi.org/10.1007/s00441-009-0816-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Smith, Thomas J. "Introduction: Antibody recognition of viruses." Seminars in Virology 6, no. 4 (August 1995): 217–18. http://dx.doi.org/10.1006/smvy.1995.0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thornthwaite, Jerry T., Emily C. McDuffee, Robert B. Harris, Julie R. Secor McVoy, and I. W. Lane. "The cancer recognition (CARE) antibody test." Cancer Letters 216, no. 2 (December 2004): 227–41. http://dx.doi.org/10.1016/s0304-3835(03)00161-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Nicholas C., and Ian A. Wilson. "Influenza Hemagglutinin Structures and Antibody Recognition." Cold Spring Harbor Perspectives in Medicine 10, no. 8 (December 23, 2019): a038778. http://dx.doi.org/10.1101/cshperspect.a038778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KOBAYASHI, Norihiro, and Junichi GOTO. "Antibody Engineering for Advanced Molecular Recognition." YAKUGAKU ZASSHI 127, no. 1 (January 1, 2007): 41–42. http://dx.doi.org/10.1248/yakushi.127.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Raab, Anneliese, Wenhai Han, Dirk Badt, Sandra J. Smith-Gill, Stuart M. Lindsay, Hansgeorg Schindler, and Peter Hinterdorfer. "Antibody recognition imaging by force microscopy." Nature Biotechnology 17, no. 9 (September 1999): 901–5. http://dx.doi.org/10.1038/12898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Peroni, Elisa, Feliciana Real Fernández, Caterina Gheri, Francesca Nuti, Anne-Claire Mitaine-Offer, Francesco Lolli, Marie-Aleth Lacaille-Dubois, and Anna-Maria Papini. "Natural Triterpene Glycosides for Antibody Recognition." Planta Medica Letters 3, no. 01 (February 5, 2016): e2-e7. http://dx.doi.org/10.1055/s-0035-1568263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Huber, R. "Structural basis for antigen-antibody recognition." Science 233, no. 4765 (August 15, 1986): 702–3. http://dx.doi.org/10.1126/science.2426777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ahluwalia, A., D. De Rossi, and A. Schirone. "Antigen recognition properties of antibody monolayers." Thin Solid Films 210-211 (April 1992): 726–29. http://dx.doi.org/10.1016/0040-6090(92)90386-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Van Regenmortel, M. H. V. "Structural aspects of antigen-antibody recognition." Journal of Molecular Graphics 4, no. 4 (December 1986): 229–30. http://dx.doi.org/10.1016/0263-7855(86)80060-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Makabe, Koki. "Molecular basis of flexible peptide recognition by an antibody." Journal of Biochemistry 167, no. 4 (February 6, 2020): 343–45. http://dx.doi.org/10.1093/jb/mvaa017.

Full text
Abstract:
Abstract Antibodies can recognize various types of antigens with high specificity and affinity and peptide is one of their major targets. Understanding an antibody’s molecular recognition mechanism for peptide is important for developing clones with a higher specificity and affinity. Here, the author reviews recent progresses in flexible peptide recognition by an antibody using several biophysical techniques, including X-ray crystallography, molecular dynamics simulations and calorimetric measurements. A set of two reports highlight the importance of intramolecular hydrogen bonds that form in an unbound flexible state. Such intramolecular hydrogen bonds restrict the fluctuation of the peptide and reduce the conformational entropy, resulting in the destabilization of the unbound state and increasing the binding affinity by increasing the free energy change. These detailed analyses will aid in the antibody design in the future.
APA, Harvard, Vancouver, ISO, and other styles
17

Reindl, Maximilian, and Anja Hoffmann-Roder. "Antibody Recognition of Fluorinated Haptens and Antigens." Current Topics in Medicinal Chemistry 14, no. 7 (March 31, 2014): 840–54. http://dx.doi.org/10.2174/1568026614666140202203811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sun, M., L. Li, Q. S. Gao, and S. Paul. "Antigen recognition by an antibody light chain." Journal of Biological Chemistry 269, no. 1 (January 1994): 734–38. http://dx.doi.org/10.1016/s0021-9258(17)42411-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mariuzza, R. A., S. E. V. Phillips, and R. J. Poljak. "The Structural Basis of Antigen-Antibody Recognition." Annual Review of Biophysics and Biophysical Chemistry 16, no. 1 (June 1987): 139–59. http://dx.doi.org/10.1146/annurev.bb.16.060187.001035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Krauss, Isaac J. "Antibody recognition of HIV and dengue glycoproteins." Glycobiology 26, no. 8 (March 3, 2016): 813–19. http://dx.doi.org/10.1093/glycob/cww031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Oberbillig, Thomas, Christian Mersch, Sarah Wagner, and Anja Hoffmann-Röder. "Antibody recognition of fluorinated MUC1 glycopeptide antigens." Chem. Commun. 48, no. 10 (2012): 1487–89. http://dx.doi.org/10.1039/c1cc15139h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Olivier, Gloria K., Andrew Cho, Babak Sanii, Michael D. Connolly, Helen Tran, and Ronald N. Zuckermann. "Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition." ACS Nano 7, no. 10 (September 18, 2013): 9276–86. http://dx.doi.org/10.1021/nn403899y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nguyen, Hoa P., Nina O. L. Seto, C. Roger MacKenzie, Lore Brade, Paul Kosma, Helmut Brade, and Stephen V. Evans. "Germline antibody recognition of distinct carbohydrate epitopes." Nature Structural & Molecular Biology 10, no. 12 (November 16, 2003): 1019–25. http://dx.doi.org/10.1038/nsb1014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Air, G. M., W. G. Laver, R. G. Webster, M. C. Els, and M. Luo. "Antibody Recognition of the Influenza Virus Neuraminidase." Cold Spring Harbor Symposia on Quantitative Biology 54 (January 1, 1989): 247–55. http://dx.doi.org/10.1101/sqb.1989.054.01.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Peroni, E., F. Real Fernández, C. Gheri, F. Nuti, AC Mitaine-Offer, F. Lolli, MA Lacaille-Dubois, and AM Papini. "Triterpene glycosides from plants for antibody recognition." Planta Medica 81, S 01 (December 14, 2016): S1—S381. http://dx.doi.org/10.1055/s-0036-1596483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Walker-Simmons, Mary K., Martin J. T. Reaney, Stephen A. Quarrie, Pierdomenico Perata, Paolo Vernieri, and Suzanne R. Abrams. "Monoclonal Antibody Recognition of Abscisic Acid Analogs." Plant Physiology 95, no. 1 (January 1, 1991): 46–51. http://dx.doi.org/10.1104/pp.95.1.46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Targoff, Ira N., Arthur E. Johnson, and Frederick W. Miller. "Antibody to signal recognition particle in polymyositis." Arthritis & Rheumatism 33, no. 9 (September 1990): 1361–70. http://dx.doi.org/10.1002/art.1780330908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Davies, Julian, and Lutz Riechmann. "Antibody VH Domains as Small Recognition Units." Nature Biotechnology 13, no. 5 (May 1995): 475–79. http://dx.doi.org/10.1038/nbt0595-475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Addis, Philip W., Catherine J. Hall, Shaun Bruton, Vaclav Veverka, Ian C. Wilkinson, Frederick W. Muskett, Philip S. Renshaw, et al. "Conformational Heterogeneity in Antibody-Protein Antigen Recognition." Journal of Biological Chemistry 289, no. 10 (January 16, 2014): 7200–7210. http://dx.doi.org/10.1074/jbc.m113.492215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Robinson, M. T., V. N. Schumaker, R. Butler, K. Berg, and L. K. Curtiss. "Ag(c): recognition by a monoclonal antibody." Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 6, no. 3 (May 1986): 341–44. http://dx.doi.org/10.1161/01.atv.6.3.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lara-Ochoa, Francisco, Juan C. Almagro, Enrique Vargas-Madrazo, and Michael Conrad. "Antibody-antigen recognition: A canonical structure paradigm." Journal of Molecular Evolution 43, no. 6 (December 1996): 678–84. http://dx.doi.org/10.1007/bf02202116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Passalacqua, Karla D., and Mary X. O’Riordan. "MRSA in Stealth Mode Evades Antibody Recognition." Trends in Immunology 40, no. 2 (February 2019): 85–87. http://dx.doi.org/10.1016/j.it.2018.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Joshi, Rajani R. "A probabilistic approach to antigen-antibody recognition." Mathematical and Computer Modelling 15, no. 12 (1991): 91–102. http://dx.doi.org/10.1016/0895-7177(91)90044-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Skerra, Arne. "Alternative non-antibody scaffolds for molecular recognition." Current Opinion in Biotechnology 18, no. 4 (August 2007): 295–304. http://dx.doi.org/10.1016/j.copbio.2007.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Mingzhen, Jie Zheng, Ruth Nussinov, and Buyong Ma. "Molecular Recognition between Aβ-Specific Single-Domain Antibody and Aβ Misfolded Aggregates." Antibodies 7, no. 3 (July 13, 2018): 25. http://dx.doi.org/10.3390/antib7030025.

Full text
Abstract:
Aβ is the toxic amyloid polypeptide responsible for Alzheimer’s disease (AD). Prevention and elimination of the Aβ misfolded aggregates are the promising therapeutic strategies for the AD treatments. Gammabody, the Aβ-Specific Single-domain (VH) antibody, recognizes Aβ aggregates with high affinity and specificity and reduces their toxicities. Employing the molecular dynamics simulations, we studied diverse gammabody-Aβ recognition complexes to get insights into their structural and dynamic properties and gammabody-Aβ recognitions. Among many heterogeneous binding modes, we focused on two gammabody-Aβ recognition scenarios: recognition through Aβ β-sheet backbone and on sidechain surface. We found that the gammabody primarily uses the complementarity-determining region 3 (CDR3) loop with the grafted Aβ sequence to interact with the Aβ fibril, while CDR1/CDR2 loops have very little contact. The gammabody-Aβ complexes with backbone binding mode are more stable, explaining the gammabody’s specificity towards the C-terminal Aβ sequence.
APA, Harvard, Vancouver, ISO, and other styles
36

Pierce, Brian G., Zhen-Yong Keck, Patrick Lau, Catherine Fauvelle, Ragul Gowthaman, Thomas F. Baumert, Thomas R. Fuerst, Roy A. Mariuzza, and Steven K. H. Foung. "Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design." Proceedings of the National Academy of Sciences 113, no. 45 (October 26, 2016): E6946—E6954. http://dx.doi.org/10.1073/pnas.1614942113.

Full text
Abstract:
The E2 envelope glycoprotein is the primary target of human neutralizing antibody response against hepatitis C virus (HCV), and is thus a major focus of vaccine and immunotherapeutics efforts. There is emerging evidence that E2 is a highly complex, dynamic protein with residues across the protein that are modulating antibody recognition, local and global E2 stability, and viral escape. To comprehensively map these determinants, we performed global E2 alanine scanning with a panel of 16 human monoclonal antibodies (hmAbs), resulting in an unprecedented dataset of the effects of individual alanine substitutions across the E2 protein (355 positions) on antibody recognition. Analysis of shared energetic effects across the antibody panel identified networks of E2 residues involved in antibody recognition and local and global E2 stability, as well as predicted contacts between residues across the entire E2 protein. Further analysis of antibody binding hotspot residues defined groups of residues essential for E2 conformation and recognition for all 14 conformationally dependent E2 antibodies and subsets thereof, as well as residues that enhance antibody recognition when mutated to alanine, providing a potential route to engineer E2 vaccine immunogens. By incorporating E2 sequence variability, we found a number of E2 polymorphic sites that are responsible for loss of neutralizing antibody binding. These data and analyses provide fundamental insights into antibody recognition of E2, highlighting the dynamic and complex nature of this viral envelope glycoprotein, and can serve as a reference for development and rational design of E2-targeting vaccines and immunotherapeutics.
APA, Harvard, Vancouver, ISO, and other styles
37

YASUKAWA, Tomoyuki. "Biosensors Using an Antibody as a Recognition Element." Analytical Sciences 35, no. 4 (April 10, 2019): 359–60. http://dx.doi.org/10.2116/analsci.highlights1904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Perl-Treves, Daniele, Naama Kessler, David Izhaky, and Lia Addadi. "Monoclonal antibody recognition of cholesterol monohydrate crystal faces." Chemistry & Biology 3, no. 7 (July 1996): 567–77. http://dx.doi.org/10.1016/s1074-5521(96)90148-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Soliman, Caroline, Gerald B. Pier, and Paul A. Ramsland. "Antibody recognition of bacterial surfaces and extracellular polysaccharides." Current Opinion in Structural Biology 62 (June 2020): 48–55. http://dx.doi.org/10.1016/j.sbi.2019.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fraser, P. E., L. K. Duffy, M. B. O'Malley, J. Nguyen, H. Inouye, and D. A. Kirschner. "Morphology and antibody recognition of synthetic ?-amyloid peptides." Journal of Neuroscience Research 28, no. 4 (April 1991): 474–85. http://dx.doi.org/10.1002/jnr.490280404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Van Regenmortel, Marc H. V. "Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition." Journal of Molecular Recognition 27, no. 11 (September 8, 2014): 627–39. http://dx.doi.org/10.1002/jmr.2394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kado, Yuji, Eiichi Mizohata, Satoru Nagatoishi, Mariko Iijima, Keiko Shinoda, Takamitsu Miyafusa, Taisuke Nakayama, et al. "Epiregulin Recognition Mechanisms by Anti-epiregulin Antibody 9E5." Journal of Biological Chemistry 291, no. 5 (December 1, 2015): 2319–30. http://dx.doi.org/10.1074/jbc.m115.656009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Haji-Ghassemi, Omid, Sven Müller-Loennies, Teresa Rodriguez, Lore Brade, Paul Kosma, Helmut Brade, and Stephen V. Evans. "Structural Basis for Antibody Recognition of Lipid A." Journal of Biological Chemistry 290, no. 32 (June 17, 2015): 19629–40. http://dx.doi.org/10.1074/jbc.m115.657874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Persson, Helena, Johan Lantto, and Mats Ohlin. "A Focused Antibody Library for Improved Hapten Recognition." Journal of Molecular Biology 357, no. 2 (March 2006): 607–20. http://dx.doi.org/10.1016/j.jmb.2006.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sai, Na, Zhong Sun, Yuntang Wu, and Guowei Huang. "Antibody recognition by a novel microgel photonic crystal." Bioorganic Chemistry 84 (March 2019): 389–93. http://dx.doi.org/10.1016/j.bioorg.2018.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Murase, Tomohiko, Ruixiang Blake Zheng, Maju Joe, Yu Bai, Sandra L. Marcus, Todd L. Lowary, and Kenneth K. S. Ng. "Structural Insights into Antibody Recognition of Mycobacterial Polysaccharides." Journal of Molecular Biology 392, no. 2 (September 2009): 381–92. http://dx.doi.org/10.1016/j.jmb.2009.06.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lee, Chang Hwan, Yoonhyoung Lee, and Kyungil Kim. "The Role of Antibody in Korean Word Recognition." Journal of Psycholinguistic Research 39, no. 5 (June 30, 2010): 457–64. http://dx.doi.org/10.1007/s10936-010-9154-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sohma, Yoshinori, Ryoji Fujita, Shigeo Katoh, and Eizo Sada. "Recognition of liposome-bound antigens by antipeptide antibody." Applied Biochemistry and Biotechnology 38, no. 3 (March 1993): 179–88. http://dx.doi.org/10.1007/bf02916399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tramontano, Alfonso. "Immune recognition, antigen design, and catalytic antibody production." Applied Biochemistry and Biotechnology 47, no. 2-3 (May 1994): 257–75. http://dx.doi.org/10.1007/bf02787939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ferrigno, Paul Ko. "Non-antibody protein-based biosensors." Essays in Biochemistry 60, no. 1 (June 30, 2016): 19–25. http://dx.doi.org/10.1042/ebc20150003.

Full text
Abstract:
Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite specificity. Unfortunately antibodies can often fail when immobilised on inorganic surfaces, and alternative biological recognition elements are needed. This article reviews the available non-antibody-binding proteins that have been successfully used in electrical and micro-mechanical biosensor platforms.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography