To see the other types of publications on this topic, follow the link: Antibacterial agents.

Journal articles on the topic 'Antibacterial agents'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antibacterial agents.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bremner, John B. "Some approaches to new antibacterial agents." Pure and Applied Chemistry 79, no. 12 (January 1, 2007): 2143–53. http://dx.doi.org/10.1351/pac200779122143.

Full text
Abstract:
Bacteria use a number of resistance mechanisms to counter the antibacterial challenge, and one of these is the expression of transmembrane protein-based efflux pumps which can pump out antibacterials from within the cells, thus lowering the antibacterial concentration to nonlethal levels. For example, in S. aureus, the NorA pump can pump out the antibacterial alkaloid berberine and ciprofloxacin. One general strategy to reduce the health threat of resistant bacteria is to block a major bacterial resistance mechanism at the same time as interfering with another bacterial pathway or target site. New developments of this approach in the context of dual-action prodrugs and dual-action (or hybrid) drugs in which one action is targeted at blocking the NorA efflux pump and the second action at an alternative bacterial target site (or sites) for the antibacterial action are discussed. The compounds are based on a combination of 2-aryl-5-nitro-1H-indole derivatives (as the NorA efflux pump blocking component) and derivatives of berberine. General design principles, syntheses, antibacterial testing, and preliminary work on modes of action studies are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Verma, Tarawanti, and Nitin Bansal. "Triazinone Derivatives as Antibacterial and Antimalarial Agents." Asian Pacific Journal of Health Sciences 6, no. 2 (June 2019): 1–20. http://dx.doi.org/10.21276/apjhs.2019.6.2.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaye, Elaine T., and Kenneth M. Kaye. "TOPICAL ANTIBACTERIAL AGENTS." Infectious Disease Clinics of North America 9, no. 3 (September 1995): 547–59. http://dx.doi.org/10.1016/s0891-5520(20)30685-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thorsteinsson, T., T. Loftsson, and M. Masson. "Soft Antibacterial Agents." Current Medicinal Chemistry 10, no. 13 (July 1, 2003): 1129–36. http://dx.doi.org/10.2174/0929867033457520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brickner, Steven J. "Oxazolidinone Antibacterial Agents." Current Pharmaceutical Design 2, no. 2 (April 1996): 175–94. http://dx.doi.org/10.2174/1381612802666220921173820.

Full text
Abstract:
The oxazolidinones are a new class of synthetic antibacterial agents. These compounds demonstrate potent in vitro and in vivo activity against important human pathogens, including multiple antibiotic-resistant strains of gram positive organisms including the staphylococci, streptococci, and enterococci. The oxazolidinones have a novel mechanism of action, inhibiting bacterial protein synthesis at a very early step prior to initiation. Literature disclosures have described the inability to detect in vitro bacterial resistance development to the oxazolidinones. Only the (S)-enantiomer is active; a new synthetic route yielding oxazolidinones with high optical purity has been reported. This paper will review the spectrum of activity, mechanism of action studies, toxicity issues, and structure activity relationships of the oxazolidinones.
APA, Harvard, Vancouver, ISO, and other styles
6

Telford, Mark. "Releasing antibacterial agents." Materials Today 7, no. 12 (December 2004): 10. http://dx.doi.org/10.1016/s1369-7021(04)00613-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hussar, Daniel A. "New Antibacterial Agents." American Pharmacy 33, no. 1 (January 1993): 41–46. http://dx.doi.org/10.1016/s0160-3450(15)30889-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaye, Elaine T. "TOPICAL ANTIBACTERIAL AGENTS." Infectious Disease Clinics of North America 14, no. 2 (June 2000): 321–39. http://dx.doi.org/10.1016/s0891-5520(05)70250-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lio, Peter A., and Elaine T. Kaye. "Topical Antibacterial Agents." Medical Clinics of North America 95, no. 4 (July 2011): 703–21. http://dx.doi.org/10.1016/j.mcna.2011.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lio, Peter A., and Elaine T. Kaye. "Topical antibacterial agents." Infectious Disease Clinics of North America 18, no. 3 (September 2004): 717–33. http://dx.doi.org/10.1016/j.idc.2004.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lio, Peter A., and Elaine T. Kaye. "Topical Antibacterial Agents." Infectious Disease Clinics of North America 23, no. 4 (December 2009): 945–63. http://dx.doi.org/10.1016/j.idc.2009.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Korzeniowski, Oksana M. "ANTIBACTERIAL AGENTS IN PREGNANCY." Infectious Disease Clinics of North America 9, no. 3 (September 1995): 639–51. http://dx.doi.org/10.1016/s0891-5520(20)30690-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

LiPuma, John J., and Terrence L. Stull. "ANTIBACTERIAL AGENTS IN PEDIATRICS." Infectious Disease Clinics of North America 9, no. 3 (September 1995): 561–74. http://dx.doi.org/10.1016/s0891-5520(20)30686-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Labro, Marie Thérèse. "Immunomodulation by Antibacterial Agents." Drugs 45, no. 3 (March 1993): 319–28. http://dx.doi.org/10.2165/00003495-199345030-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

&NA;, &NA;. "Antibacterial agents: viral/ parasitic." Current Opinion in Infectious Diseases 9, no. 6 (December 1996): B235—B251. http://dx.doi.org/10.1097/00001432-199612000-00020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Crunkhorn, Sarah. "Predicting novel antibacterial agents." Nature Reviews Drug Discovery 19, no. 4 (March 9, 2020): 238. http://dx.doi.org/10.1038/d41573-020-00033-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Melander, Roberta J., Daniel V. Zurawski, and Christian Melander. "Narrow-spectrum antibacterial agents." MedChemComm 9, no. 1 (2018): 12–21. http://dx.doi.org/10.1039/c7md00528h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

TOTSUKA, KYOICHI. "Pharmacokinetics of antibacterial agents." Rinsho yakuri/Japanese Journal of Clinical Pharmacology and Therapeutics 25, no. 1 (1994): 385–87. http://dx.doi.org/10.3999/jscpt.25.385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shavely, S. R., and G. R. Hodges. "NEUROTOXICITY OF ANTIBACTERIAL AGENTS." Pediatric Infectious Disease Journal 4, no. 2 (March 1985): 219. http://dx.doi.org/10.1097/00006454-198503000-00047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

San Joaquin, Venusto H., and Terrence L. Stull. "ANTIBACTERIAL AGENTS IN PEDIATRICS." Infectious Disease Clinics of North America 14, no. 2 (June 2000): 341–55. http://dx.doi.org/10.1016/s0891-5520(05)70251-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ford, Charles W., Judith C. Hamel, Douglas Stapert, Judy K. Moerman, Douglas K. Hutchinson, Michael R. Barbachyn, and Gary E. Zurenko. "Oxazolidinones: New antibacterial agents." Trends in Microbiology 5, no. 5 (May 1997): 196–200. http://dx.doi.org/10.1016/s0966-842x(97)01032-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jungheim, L. N., R. J. Ternansky, and R. E. Holmes. "Bicyclic pyrazolidinone antibacterial agents." Drugs of the Future 15, no. 2 (1990): 149. http://dx.doi.org/10.1358/dof.1990.015.02.114554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bowlware, Karen L., and Terrence Stull. "Antibacterial agents in pediatrics." Infectious Disease Clinics of North America 18, no. 3 (September 2004): 513–31. http://dx.doi.org/10.1016/j.idc.2004.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chavez-Bueno, Susana, and Terrence L. Stull. "Antibacterial Agents in Pediatrics." Infectious Disease Clinics of North America 23, no. 4 (December 2009): 865–80. http://dx.doi.org/10.1016/j.idc.2009.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Quesnelle, Claude A., Patrice Gill, Stephan Roy, Marco Dodier, Anne Marinier, Alain Martel, Lawrence B. Snyder, et al. "Biaryl isoxazolinone antibacterial agents." Bioorganic & Medicinal Chemistry Letters 15, no. 11 (June 2005): 2728–33. http://dx.doi.org/10.1016/j.bmcl.2005.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Meneghetti, Fiorella, and Daniela Barlocco. "Novel Antibacterial Agents 2022." Pharmaceuticals 17, no. 3 (March 13, 2024): 370. http://dx.doi.org/10.3390/ph17030370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gupta, Richa K., Ganesh M. S. Thakuri, Gan B. Bajracharya, and Ram Narayan Jha. "Synthesis of antioxidative anthraquinones as potential anticancer agents." BIBECHANA 18, no. 2 (June 9, 2021): 143–53. http://dx.doi.org/10.3126/bibechana.v18i2.31234.

Full text
Abstract:
Antioxidant and antibacterial activities of natural anthraquinones namely chrysophanol (1) and emodin (2), and synthesized anthraquinones viz. 2-methylanthraquinone (3), anthraquinone (4), 2-bromoanthraquinone (5), rubiadin (6), chrysophanol diacetate (7), rubiadin diacetate (8) and 1,8-dimethoxy-3-methylanthraquinone (9) were investigated. Anthraquinones 9, 3, 6, 5 and 2 exhibited a high DPPH• radical scavenging capacity (IC50 = <500 μg/mL) showing their therapeutic potentiality for the treatment of cancers. These anthraquinones 1-9 have also displayed a weak to moderate antibacterial activity against Bacillus subtilis. Chrysophanol diacetate (7) including emodin (2) have been appeared as the valuable antibacterials. BIBECHANA 18 (2) (2021) 143-153
APA, Harvard, Vancouver, ISO, and other styles
28

Tavakolian, Mandana, Mira Okshevsky, Theo G. M. van de Ven, and Nathalie Tufenkji. "Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents." ACS Applied Materials & Interfaces 10, no. 40 (September 12, 2018): 33827–38. http://dx.doi.org/10.1021/acsami.8b08770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kumaraswamy, D., and D. Prashanth. "SYNTHESIS AND EVALUATION OF PYRAZOLINE DERIVATIVES AS ANTIBACTERIAL AGENTS." International Journal of Pharmacy and Biological Sciences 7, no. 1 (January 1, 2017): 84–93. http://dx.doi.org/10.21276/ijpbs.2017.7.1.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Belete, Tafere Mulaw. "Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents." Human Microbiome Journal 11 (March 2019): 100052. http://dx.doi.org/10.1016/j.humic.2019.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hupp, James R. "Antibacterial, Antiviral, and Antifungal Agents." Oral and Maxillofacial Surgery Clinics of North America 3, no. 2 (May 1991): 273–85. http://dx.doi.org/10.1016/s1042-3699(20)30498-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Livornese, Lawrence L., Mark J. Ingerman, Robert L. Benz, and Jerome Santoro. "ANTIBACTERIAL AGENTS IN RENAL FAILURE." Infectious Disease Clinics of North America 9, no. 3 (September 1995): 591–614. http://dx.doi.org/10.1016/s0891-5520(20)30688-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rubino, Christopher M., and John S. Bradley. "Optimizing Therapy with Antibacterial Agents." Pediatric Drugs 9, no. 6 (2007): 361–69. http://dx.doi.org/10.2165/00148581-200709060-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Keniche, Assia, Samia Bellifa, Hafida Hassaine, and Joseph Kajima Mulengi. "Development of new antibacterial agents." Medical Technologies Journal 1, no. 2 (June 8, 2017): 31–32. http://dx.doi.org/10.26415/2572-004x-vol1iss2p31-32.

Full text
Abstract:
Background: Antibiotics, as miraculous drugs, have been used extensively to confront fatal infection, even without prescriptions. However, the inappropriate and disproportionate use of antibiotics have led to the emergence of new drug-resistant bacteria1, which causes a high risk of serious diseases and dramatically aggravates the clinical complications in hospitals. Methods: By using the peptide coupling protocol, a simple straightforward synthesis of functionalized aziridines has been developed. By means of this synthetic strategy from readily available N-phtaloyl acide and 2-methylbenzosulfonate aziridine using DCC as coupling agent, new tosylates aziridines could be obtained. The coupling reactions occurred without a ring opening of the three membered ring. Results: This work describes new results of our ongoing research targeting new derivatives of biological interests. All the compounds were screened for their antibacterial activity; they all showed comparable moderate to good growth inhibitory activity with reference to tetracyclin and gentamicin. Conclusion: In conclusion, we reported the synthesis and a preliminary antibacterial evaluation of novel functionalized tosylaziridines. The synthetic strategy relies on the coupling reactions between tosylaziridines and amino acids. Moreover, and besides showing interesting antibacterial activities, the series of novel compounds can be further improved to serve as potential drug against nosocomial diseases.
APA, Harvard, Vancouver, ISO, and other styles
35

Mittapally, Sirisha, Ruheena Taranum, and Sumaiya Parveen. "Metal ions as antibacterial agents." Journal of Drug Delivery and Therapeutics 8, no. 6-s (December 15, 2018): 411–19. http://dx.doi.org/10.22270/jddt.v8i6-s.2063.

Full text
Abstract:
Metals like mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years. The use of metals in treatment was mentioned in Ebers Papyrus (1500BC); i.e, copper to decrease inflammation & iron to overcome anemia. Copper has been registered at the U.S. Environmental Protection Agency as the earliest solid antimicrobial material. Copper is used for the treatment of different E. coli, MRSA, Pseudomonas infections. Advantage of use of silver is it has low toxicity to human’s cells than bacteria.It is less susceptible to gram +ve bacteria than gram –bacteria due to its thicker cell wall. Zinc is found to be active against Streptococcus pneumonia, Campylobacter jejuni. Silver & zinc act against vibrio cholera & enterotoxic E. coli. The use of metals as antibacterial got reduce with discovery of antibiotics in twentieth century, immediately after that antibiotic resistance was seen due to transfer of antibiotic resistance genes by plasmids also known as Resistance Transfer Factors or R-factors. Metal complexes are used to show synergistic activity against bacteria’s like copper & chlorhexidine on dental plaque bacteria, silver nanoparticles & cephalexin against E. coli & S. aureus. Keywords: Metals, Oligodynamic effect, Copper, Silver
APA, Harvard, Vancouver, ISO, and other styles
36

Kong, Qidi, and Yushe Yang. "Recent advances in antibacterial agents." Bioorganic & Medicinal Chemistry Letters 35 (March 2021): 127799. http://dx.doi.org/10.1016/j.bmcl.2021.127799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Meneghetti, Fiorella, and Daniela Barlocco. "Special Issue “Novel Antibacterial Agents”." Pharmaceuticals 14, no. 4 (April 19, 2021): 382. http://dx.doi.org/10.3390/ph14040382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wainwright, Nicholas J., Paul Collins, and James Ferguson. "Photosensitivity Associated with Antibacterial Agents." Drug Safety 9, no. 6 (December 1993): 437–40. http://dx.doi.org/10.2165/00002018-199309060-00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pasquale, T. R., and J. S. Tan. "Nonantimicrobial Effects of Antibacterial Agents." Clinical Infectious Diseases 40, no. 1 (January 1, 2005): 127–35. http://dx.doi.org/10.1086/426545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Singal, Anjum, and Gurvinder P. Thami. "Topical Antibacterial Agents in Dermatology." Journal of Dermatology 30, no. 9 (September 2003): 644–48. http://dx.doi.org/10.1111/j.1346-8138.2003.tb00452.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

&NA;. "Nonantimicrobial Effects of Antibacterial Agents." Pediatric Infectious Disease Journal 24, no. 4 (April 2005): 395. http://dx.doi.org/10.1097/01.inf.0000159186.41813.c1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Joseph A., Witkowski, and Charles Parish Lawrence. "Cutaneous Reactions to Antibacterial Agents." SKINmed: Dermatology for the Clinician 1, no. 5 (September 2002): 33–44. http://dx.doi.org/10.1111/j.1540-9740.2002.01856.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Couloigner, Evanne, Dominique Cartier, and Roger Labie. "Synthesis of pyrazolidinone antibacterial agents." Bioorganic & Medicinal Chemistry Letters 9, no. 15 (August 1999): 2205–6. http://dx.doi.org/10.1016/s0960-894x(99)00352-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Thorarensen, Atli, Gary E. Zurenko, Michael T. Sweeney, Keith R. Marotti, and Timothy P. Boyle. "Enols as Potent Antibacterial Agents." Bioorganic & Medicinal Chemistry Letters 11, no. 22 (November 2001): 2931–34. http://dx.doi.org/10.1016/s0960-894x(01)00587-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Luke F., Teena Chopra, and Keith S. Kaye. "Pathogens Resistant to Antibacterial Agents." Medical Clinics of North America 95, no. 4 (July 2011): 647–76. http://dx.doi.org/10.1016/j.mcna.2011.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kaye, Keith S., and Donald Kaye. "Antibacterial Therapy and Newer Agents." Medical Clinics of North America 95, no. 4 (July 2011): xi—xii. http://dx.doi.org/10.1016/j.mcna.2011.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Labro, Marie Thérèse. "Immunomodulatory Actions of Antibacterial Agents." Clinical Immunotherapeutics 6, no. 6 (December 1996): 454–64. http://dx.doi.org/10.1007/bf03259367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kern, Thomas J. "Antibacterial agents for ocular therapeutics." Veterinary Clinics of North America: Small Animal Practice 34, no. 3 (May 2004): 655–68. http://dx.doi.org/10.1016/j.cvsm.2003.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chiu, Loretta M., and Guy W. Amsden. "Intrapulmonary Pharmacokinetics of Antibacterial Agents." American Journal of Respiratory Medicine 1, no. 3 (June 2002): 201–9. http://dx.doi.org/10.1007/bf03256610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ballal, VasudevN, and Jothi Varghese. "Antibacterial action of herbal agents." Saudi Endodontic Journal 5, no. 1 (2015): 65. http://dx.doi.org/10.4103/1658-5984.149095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography