To see the other types of publications on this topic, follow the link: Anti-Stokes photoluminescence.

Journal articles on the topic 'Anti-Stokes photoluminescence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Anti-Stokes photoluminescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Cao, Weitao, Weimin Du, Fuhai Su, and Guohua Li. "Anti-Stokes photoluminescence in ZnO microcrystal." Applied Physics Letters 89, no. 3 (July 17, 2006): 031902. http://dx.doi.org/10.1063/1.2222257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dantas, Noelio Oliveira, Fanyao Qu, R. S. Silva, and Paulo César Morais. "Anti-Stokes Photoluminescence in Nanocrystal Quantum Dots." Journal of Physical Chemistry B 106, no. 30 (August 2002): 7453–57. http://dx.doi.org/10.1021/jp0208743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pierret, Aurélie, Hans Tornatzky, and Janina Maultzsch. "Anti‐Stokes Photoluminescence of Monolayer WS 2." physica status solidi (b) 256, no. 12 (October 9, 2019): 1900419. http://dx.doi.org/10.1002/pssb.201900419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heimbrodt, Wolfram, Michael Happ, and Fritz Henneberger. "Giant anti-Stokes photoluminescence from semimagnetic heterostructures." Physical Review B 60, no. 24 (December 15, 1999): R16326—R16329. http://dx.doi.org/10.1103/physrevb.60.r16326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moadhen, A., H. Elhouichet, and M. Oueslati. "Stokes and anti-Stokes photoluminescence of Rhodamine B in porous silicon." Materials Science and Engineering: C 21, no. 1-2 (September 2002): 297–301. http://dx.doi.org/10.1016/s0928-4931(02)00084-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Poles, Ehud, Donald C. Selmarten, Olga I. Mićić, and Arthur J. Nozik. "Anti-Stokes photoluminescence in colloidal semiconductor quantum dots." Applied Physics Letters 75, no. 7 (August 16, 1999): 971–73. http://dx.doi.org/10.1063/1.124570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goto, T., G. Fujimoto, and T. Yao. "Ultraviolet anti-Stokes photoluminescence in GaN single crystals." Journal of Physics: Condensed Matter 18, no. 11 (March 2, 2006): 3141–49. http://dx.doi.org/10.1088/0953-8984/18/11/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rakovich, Yu P., S. A. Filonovich, M. J. M. Gomes, J. F. Donegan, D. V. Talapin, A. L. Rogach, and A. Eychm�ller. "Anti-Stokes Photoluminescence in II-VI Colloidal Nanocrystals." physica status solidi (b) 229, no. 1 (January 2002): 449–52. http://dx.doi.org/10.1002/1521-3951(200201)229:1<449::aid-pssb449>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fujiwara, K., A. Satake, N. Takata, U. Jahn, E. Luna, and H. T. Grahn. "Anti-Stokes and Stokes photoluminescence in non-uniform GaAs-based quantum wells." Physica E: Low-dimensional Systems and Nanostructures 42, no. 10 (September 2010): 2658–60. http://dx.doi.org/10.1016/j.physe.2010.02.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gruzintsev, A. N. "Two-photon excitation of anti-stokes photoluminescence in Y1.80Er0.10Yb0.10O2S." Inorganic Materials 50, no. 8 (July 18, 2014): 821–25. http://dx.doi.org/10.1134/s0020168514080081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yamamoto, Aishi, Tetsuya Sasao, Takenari Goto, Kenta Arai, Hyun-Yong Lee, Hisao Makino, and Takafumi Yao. "Anti-Stokes photoluminescence in CdSe self-assembled quantum dots." physica status solidi (c), no. 4 (July 2003): 1246–49. http://dx.doi.org/10.1002/pssc.200303059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Valakh, M. Ya, N. V. Vuychik, V. V. Strelchuk, S. V. Sorokin, T. V. Shubina, S. V. Ivanov, and P. S. Kop’ev. "Low-temperature anti-Stokes photoluminescence in CdSe/ZnSe nanostructures." Semiconductors 37, no. 6 (June 2003): 699–704. http://dx.doi.org/10.1134/1.1582538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Satake, Akihiro, Yasuaki Masumoto, Takao Miyajima, Tsunenori Asatsuma, and Tomonori Hino. "Ultraviolet anti-Stokes photoluminescence inInxGa1−xN/GaNquantum-well structures." Physical Review B 61, no. 19 (May 15, 2000): 12654–57. http://dx.doi.org/10.1103/physrevb.61.12654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jancik Prochazkova, Anna, Felix Mayr, Katarina Gugujonovic, Bekele Hailegnaw, Jozef Krajcovic, Yolanda Salinas, Oliver Brüggemann, Niyazi Serdar Sariciftci, and Markus C. Scharber. "Anti-Stokes photoluminescence study on a methylammonium lead bromide nanoparticle film." Nanoscale 12, no. 31 (2020): 16556–61. http://dx.doi.org/10.1039/d0nr04545d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Diener, J., D. Kovalev, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al L. Efros, and M. Rosen. "Strong low-temperature anti-Stokes photoluminescence from coupled silicon nanocrystals." Optical Materials 17, no. 1-2 (June 2001): 135–39. http://dx.doi.org/10.1016/s0925-3467(01)00036-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jollans, Thomas, Martín Caldarola, Yonatan Sivan, and Michel Orrit. "Effective Electron Temperature Measurement Using Time-Resolved Anti-Stokes Photoluminescence." Journal of Physical Chemistry A 124, no. 34 (July 28, 2020): 6968–76. http://dx.doi.org/10.1021/acs.jpca.0c06671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Valakh, M. Ya, N. O. Korsunska, Yu G. Sadofyev, V. V. Strelchuk, G. N. Semenova, L. V. Borkovska, V. V. Artamonov, and M. V. Vuychik. "Anti-Stokes photoluminescence and structural defects in CdSe/ZnSe nanostructures." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 255–58. http://dx.doi.org/10.1016/s0921-5107(02)00674-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kammerer, C., G. Cassabois, C. Voisin, C. Delalande, Ph Roussignol, and J. M. G�rard. "Anti-Stokes Photoluminescence in Self-Assembled InAs/GaAs Quantum Dots." physica status solidi (a) 190, no. 2 (April 2002): 505–9. http://dx.doi.org/10.1002/1521-396x(200204)190:2<505::aid-pssa505>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fujii, Katsushi, Takenari Goto, and Takafumi Yao. "Properties of ultraviolet anti-Stokes photoluminescence in ZnO single crystals." physica status solidi (a) 209, no. 4 (February 3, 2012): 761–65. http://dx.doi.org/10.1002/pssa.201127551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cong, Chunxiao, Jingzhi Shang, Lin Niu, Lishu Wu, Yu Chen, Chenji Zou, Shun Feng, et al. "Anti-Stokes Photoluminescence of van der Waals Layered Semiconductor PbI2." Advanced Optical Materials 5, no. 21 (September 1, 2017): 1700609. http://dx.doi.org/10.1002/adom.201700609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Halyan, V. V., A. H. Kevshin, G. Ye Davydyuk, and N. V. Shevchuk. "Mechanism of anti-stokes photoluminescence in Ag0.05Ga0.05Ge0.95S2-Er2S3 glassy alloys." Glass Physics and Chemistry 39, no. 1 (January 2013): 52–56. http://dx.doi.org/10.1134/s1087659613010069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Chunxia, Qi Li, and Guiguang Xiong. "Anti-Stokes photoluminescence in TiO2nano-particle films at room temperature." Journal of Materials Science 39, no. 16/17 (August 2004): 5581–82. http://dx.doi.org/10.1023/b:jmsc.0000039293.67074.56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Machida, S., T. Tadakuma, A. Satake, K. Fujiwara, J. R. Folkenberg, and J. M. Hvam. "Stokes and anti-Stokes photoluminescence towards five different Inx(Al0.17Ga0.83)1−xAs∕Al0.17Ga0.83As quantum wells." Journal of Applied Physics 98, no. 8 (October 15, 2005): 083527. http://dx.doi.org/10.1063/1.2121928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xiong, Yuda, Chao Liu, Jing Wang, Jianjun Han, and Xiujian Zhao. "Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses." Optics Express 25, no. 6 (March 15, 2017): 6874. http://dx.doi.org/10.1364/oe.25.006874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Szalkowski, Marcin, Karolina Sulowska, Martin Jönsson-Niedziółka, Kamil Wiwatowski, Joanna Niedziółka-Jönsson, Sebastian Maćkowski, and Dawid Piątkowski. "Photochemical Printing of Plasmonically Active Silver Nanostructures." International Journal of Molecular Sciences 21, no. 6 (March 16, 2020): 2006. http://dx.doi.org/10.3390/ijms21062006.

Full text
Abstract:
In this paper, we demonstrate plasmonic substrates prepared on demand, using a straightforward technique, based on laser-induced photochemical reduction of silver compounds on a glass substrate. Importantly, the presented technique does not impose any restrictions regarding the shape and length of the metallic pattern. Plasmonic interactions have been probed using both Stokes and anti-Stokes types of emitters that served as photoluminescence probes. For both cases, we observed a pronounced increase of the photoluminescence intensity for emitters deposited on silver patterns. By studying the absorption and emission dynamics, we identified the mechanisms responsible for emission enhancement and the position of the plasmonic resonance.
APA, Harvard, Vancouver, ISO, and other styles
26

Sun, Guan, Ruolin Chen, Yujie J. Ding, and Jacob B. Khurgin. "Upconversion Due to Optical-Phonon-Assisted Anti-Stokes Photoluminescence in Bulk GaN." ACS Photonics 2, no. 5 (May 7, 2015): 628–32. http://dx.doi.org/10.1021/acsphotonics.5b00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang Xin, Shan Gui-Ye, An Li-Min, Chao Ke-Fu, Zeng Qing-Hui, Chen Bao-Jiu, and Kong Xiang-Gui. "The study of anti-Stokes photoluminescence properties in the YZr2OZr3:Er3+ nanocrystals." Acta Physica Sinica 53, no. 6 (2004): 1972. http://dx.doi.org/10.7498/aps.53.1972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Roman, Benjamin J., and Matthew T. Sheldon. "Six-fold plasmonic enhancement of thermal scavenging via CsPbBr3 anti-Stokes photoluminescence." Nanophotonics 8, no. 4 (January 31, 2019): 599–605. http://dx.doi.org/10.1515/nanoph-2018-0196.

Full text
Abstract:
AbstractOne-photon up-conversion, also called anti-Stokes photoluminescence (ASPL), is the process whereby photoexcited carriers scavenge thermal energy and are promoted into a higher energy excited state before emitting a photon of greater energy than initially absorbed. Here, we examine how ASPL from CsPbBr3 nanoparticles is modified by coupling with plasmonically active gold nanoparticles deposited on a substrate. Two coupling regimes are examined using confocal fluorescence microscopy: three to four Au nanoparticles per diffraction limited region and monolayer Au nanoparticle coverage of the substrate. In both regimes, CsPbBr3 ASPL is blue-shifted relative to CsPbBr3 deposited on a bare substrate, corresponding to an increase in the thermal energy scavenged per emitted photon. However, with monolayer Au nanoparticle coverage, ASPL is enhanced relative to the conventional Stokes-shifted PL. Together, these phenomena result in a 6.7-fold increase in the amount of thermal energy extracted from the system during optical absorption and reemission.
APA, Harvard, Vancouver, ISO, and other styles
29

Kita, Takashi, Taneo Nishino, C. Geng, F. Scholz, and H. Schweizer. "Dynamic process of anti-Stokes photoluminescence at a long-range-orderedGa0.5In0.5P/GaAsheterointerface." Physical Review B 59, no. 23 (June 15, 1999): 15358–62. http://dx.doi.org/10.1103/physrevb.59.15358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schrottke, L., H. T. Grahn, and K. Fujiwara. "Enhanced anti-Stokes photoluminescence in aGaAs/Al0.17Ga0.83Assingle quantum well with growth islands." Physical Review B 56, no. 24 (December 15, 1997): R15553—R15556. http://dx.doi.org/10.1103/physrevb.56.r15553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Valakh, M. Ya. "Deep-level defects in CdSe/ZnSe QDs and giant anti-Stokes photoluminescence." Semiconductor Physics, Quantum Electronics and Optoelectronics 5, no. 3 (December 10, 2002): 254–57. http://dx.doi.org/10.15407/spqeo5.03.254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Laguta, Oleksii, Hicham El Hamzaoui, Mohamed Bouazaoui, Vladimir B. Arion, and Igor Razdobreev. "Anti-Stokes photoluminescence in Ga/Bi co-doped sol-gel silica glass." Optics Letters 40, no. 7 (March 31, 2015): 1591. http://dx.doi.org/10.1364/ol.40.001591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sitnikov, D. S., A. A. Yurkevich, M. S. Kotelev, M. Ziangirova, O. V. Chefonov, I. V. Ilina, V. A. Vinokurov, et al. "Ultrashort laser pulse-induced anti-Stokes photoluminescence of hot electrons in gold nanorods." Laser Physics Letters 11, no. 7 (May 28, 2014): 075902. http://dx.doi.org/10.1088/1612-2011/11/7/075902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kita, T., T. Nishino, C. Geng, F. Scholz, and H. Schweizer. "Time-resolved observation of anti-Stokes photoluminescence at ordered Ga0.5In0.5P and GaAs interfaces." Journal of Luminescence 87-89 (May 2000): 269–71. http://dx.doi.org/10.1016/s0022-2313(99)00311-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Xu, S. J., Q. Li, J. R. Dong, and S. J. Chua. "Interpretation of anomalous temperature dependence of anti-Stokes photoluminescence at GaInP2/GaAs interface." Applied Physics Letters 84, no. 13 (March 29, 2004): 2280–82. http://dx.doi.org/10.1063/1.1691496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vlasov, I. I., V. G. Ralchenko, and V. I. Konov. "UV and Anti-Stokes Photoluminescence of 3H Centre in Electron-Irradiated CVD Diamond." physica status solidi (a) 186, no. 2 (August 2001): 221–26. http://dx.doi.org/10.1002/1521-396x(200108)186:2<221::aid-pssa221>3.0.co;2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tran, Toan Trong, Blake Regan, Evgeny A. Ekimov, Zhao Mu, Yu Zhou, Wei-bo Gao, Prineha Narang, et al. "Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry." Science Advances 5, no. 5 (May 2019): eaav9180. http://dx.doi.org/10.1126/sciadv.aav9180.

Full text
Abstract:
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light-emitting diodes, and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescence properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite anti-Stokes process, where excitation is performed with lower-energy photons. We report that the process is sufficiently efficient to excite even a single quantum system—namely, the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method used to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems and harness it toward the realization of practical nanoscale thermometry and sensing.
APA, Harvard, Vancouver, ISO, and other styles
38

Kuningas, Katri, Terhi Rantanen, Ulla Karhunen, Timo Lövgren, and Tero Soukka. "Simultaneous Use of Time-Resolved Fluorescence and Anti-Stokes Photoluminescence in a Bioaffinity Assay." Analytical Chemistry 77, no. 9 (May 2005): 2826–34. http://dx.doi.org/10.1021/ac048186y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chine, Z., B. Piriou, M. Oueslati, T. Boufaden, and B. El Jani. "Anti-Stokes photoluminescence of yellow band in GaN: evidence of two-photon excitation process." Journal of Luminescence 82, no. 1 (July 1999): 81–84. http://dx.doi.org/10.1016/s0022-2313(99)00014-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tripathy, Suvranta K., Guibao Xu, Xiaodong Mu, Yujie J. Ding, Muhammad Jamil, Ronald A. Arif, Nelson Tansu, and Jacob B. Khurgin. "Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si (111) substrate." Applied Physics Letters 93, no. 20 (November 17, 2008): 201107. http://dx.doi.org/10.1063/1.3030883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Carattino, Aquiles, Veer Keizer, and Michel Orrit. "Background-Suppression in the Detection of Gold Nanoparticles in Cells through Anti-Stokes Photoluminescence." Biophysical Journal 110, no. 3 (February 2016): 486a. http://dx.doi.org/10.1016/j.bpj.2015.11.2598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Хайдуков, Е. В., К. Н. Болдырев, К. В. Хайдуков, И. В. Крылов, И. М. Ашарчук, А. Г. Савельев, В. В. Рочева, Д. Н. Каримов, А. В. Нечаев, and А. В. Звягин. "Отложенная регистрация фотолюминесценции нанофосфоров как платформа для оптического биоимиджинга-=SUP=-*-=/SUP=-." Журнал технической физики 126, no. 1 (2019): 90. http://dx.doi.org/10.21883/os.2019.01.47061.262-18.

Full text
Abstract:
AbstractDetection systems with deferred registration of luminescence signals are promising for performing complex tasks of imaging of biological objects due to their simplicity and low cost. In the present work, β‑NaYF_4:Tm^3+Yb^3+/NaYF_4 nanocrystals with anti-Stokes photoluminescence have been used in deferred registration systems. It has been shown that there is a significant time delay between the exciting laser pulse and luminescence signal, which makes it possible to use this class of nanoparticles in the creation of wide-field imaging systems with deferred registration. The possibility of using nanoparticles for detecting a photoluminescence signal in the second transparency window of biotissue has been demonstrated. This system can be based on the resonance excitation and detection of the photoluminescence signal of Yb^3 + ions.
APA, Harvard, Vancouver, ISO, and other styles
43

Deng, Fan, Megan S. Lazorski, and Felix N. Castellano. "Photon upconversion sensitized by a Ru(II)-pyrenyl chromophore." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2044 (June 28, 2015): 20140322. http://dx.doi.org/10.1098/rsta.2014.0322.

Full text
Abstract:
The near-visible-to-blue singlet fluorescence of anthracene sensitized by a ruthenium chromophore with a long-lived triplet-excited state, [Ru(5-pyrenyl-1,10-phenanthroline) 3 ](PF 6 ) 2 , in acetonitrile was investigated. Low intensity non-coherent green light was used to selectively excite the sensitizer in the presence of micromolar concentrations of anthracene generating anti-Stokes, singlet fluorescence in the latter, even with incident power densities below 500 μW cm −2 . The resultant data are consistent with photon upconversion proceeding from sensitized triplet–triplet annihilation (TTA) of the anthracene acceptor molecules, confirmed through transient absorption spectroscopy as well as static and dynamic photoluminescence experiments. Additionally, quadratic-to-linear incident power regimes for the upconversion process were identified for this composition under monochromatic 488 nm excitation, consistent with a sensitized TTA mechanism ultimately producing the anti-Stokes emission characteristic of anthracene singlet fluorescence.
APA, Harvard, Vancouver, ISO, and other styles
44

Machida, S., T. Tadakuma, and K. Fujiwara. "Anti-Stokes photoluminescence between Inx(Al0.17Ga0.83)1−xAs/Al0.17Ga0.83As quantum wells with different x values." Physica E: Low-dimensional Systems and Nanostructures 33, no. 1 (June 2006): 196–200. http://dx.doi.org/10.1016/j.physe.2006.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hohng, S. C., and D. S. Kim. "Two-color picosecond experiments on anti-Stokes photoluminescence in GaAs/AlGaAs asymmetric double quantum wells." Applied Physics Letters 75, no. 23 (December 6, 1999): 3620–22. http://dx.doi.org/10.1063/1.125407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ignatiev, Ivan V., Igor E. Kozin, Hong-Wen Ren, Shigeo Sugou, and Yasuaki Masumoto. "Anti-Stokes photoluminescence of InP self-assembled quantum dots in the presence of electric current." Physical Review B 60, no. 20 (November 15, 1999): R14001—R14004. http://dx.doi.org/10.1103/physrevb.60.r14001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Junnarkar, M. R., and E. Yamaguchi. "Anti-Stokes photoluminescence from Si modulation doped QW and Si double delta doped AlxGa1−xAs." Solid-State Electronics 40, no. 1-8 (January 1996): 665–71. http://dx.doi.org/10.1016/0038-1101(95)00383-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ding, Y. J., and J. B. Khurgin. "From anti-Stokes photoluminescence to resonant Raman scattering in GaN single crystals and GaN-based heterostructures." Laser & Photonics Reviews 6, no. 5 (February 7, 2012): 660–77. http://dx.doi.org/10.1002/lpor.201000028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gruzintsev, A. N., and D. N. Karimov. "Two-photon excitation of the anti-Stokes photoluminescence of Ca1–x Er x F2 + x crystals." Physics of the Solid State 59, no. 1 (January 2017): 120–25. http://dx.doi.org/10.1134/s1063783417010103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Wei, Jing Wang, Chao Liu, and Jianjun Han. "Photodarkening and anti‐Stokes photoluminescence from PbSe and Sr 2+ ‐doped PbSe quantum dots in silicate glasses." Journal of the American Ceramic Society 102, no. 6 (November 19, 2018): 3368–77. http://dx.doi.org/10.1111/jace.16185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography