Academic literature on the topic 'Anti-corrosive'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anti-corrosive.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anti-corrosive"
MATSUMOTO, Tsuyoshi, and Tsuyoshi MIYASHITA. "Anti-Corrosive Property using Coating." Journal of the Japan Society of Colour Material 91, no. 9 (September 20, 2018): 316–23. http://dx.doi.org/10.4011/shikizai.91.316.
Full textVorobyova, Victoria, Olena Chygyrynets’, Margarita Skiba, and Tatiana Overchenko. "Experimental and Theoretical Investigations of Anti-Corrosive Properties of Thymol." Chemistry & Chemical Technology 13, no. 2 (June 10, 2019): 261–68. http://dx.doi.org/10.23939/chcht13.02.261.
Full textNISHIKAWA, Toshio. "Anti-corrosive treatment for automobiles. Dacrotizing." Jitsumu Hyomen Gijutsu 32, no. 6 (1985): 272–79. http://dx.doi.org/10.4139/sfj1970.32.272.
Full textNorton, Brian. "Facets of anti‐corrosive coating technology." Anti-Corrosion Methods and Materials 42, no. 6 (June 1995): 28–29. http://dx.doi.org/10.1108/eb007379.
Full textZhu, Li Juan, Chun Feng, Hong Jiang Ge, Ya Qiong Cao, Li Hong Han, and Bin Xie. "Research Progress on Anti-Corrosive Properties of Graphene Modified Coatings." Materials Science Forum 993 (May 2020): 1140–47. http://dx.doi.org/10.4028/www.scientific.net/msf.993.1140.
Full textTrivedi, Palak A., Preeti R. Parmar, and Parimal A. Parikh. "Spent FCC catalyst: Potential anti-corrosive and anti-biofouling material." Journal of Industrial and Engineering Chemistry 20, no. 4 (July 2014): 1388–96. http://dx.doi.org/10.1016/j.jiec.2013.07.023.
Full textGOTO, Kenichi. "Outline of anti-corrosive treatment for automobiles." Jitsumu Hyomen Gijutsu 32, no. 6 (1985): 258–63. http://dx.doi.org/10.4139/sfj1970.32.258.
Full textFUKUCHI, Minoru. "Lead and Chromium Free Anti-Corrosive Pigments." Journal of the Japan Society of Colour Material 88, no. 4 (2015): 117–20. http://dx.doi.org/10.4011/shikizai.88.117.
Full textPetkov, P., N. Benova, and D. Mincov. "Anti-Corrosive Properties of Spent Motor Oils." Key Engineering Materials 20-28 (January 1991): 729–34. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.729.
Full textJohari, N. A., J. Alias, A. Zanurin, N. S. Mohamed, N. A. Alang, and M. Z. M. Zain. "Anti-corrosive coatings of magnesium: A review." Materials Today: Proceedings 48 (2022): 1842–48. http://dx.doi.org/10.1016/j.matpr.2021.09.192.
Full textDissertations / Theses on the topic "Anti-corrosive"
Woodcock, Christopher Paul. "A review and development of accelerated test methods for anti-corrosive organic coatings." Thesis, University of Northampton, 2007. http://nectar.northampton.ac.uk/2665/.
Full textMiranda, Joana Maia. "Synthesis, characterization and performance evaluation of nanostructured additives with anti-corrosive properties in reinforced concrete." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22520.
Full textEste trabalho tem como objetivo aplicar hidróxidos duplos lamelares (LDHs) intercalados com inibidores de corrosão em betão armado por forma a proteger as estruturas de aço da corrosão e aumentar a longevidade do mesmo. Para tal, foram sintetizados LDH-NO3 e LDH-NO2. A partir da suspensão de LDH-NO3, procedeu-se à intercalação com iões citrato e tartarato. Todas as amostras foram caracterizadas utilizando técnicas como espetroscopia de FT-IR, X-RD, potencial zeta, DLS, SEM/TEM e ICP. Realizaram-se estudos de libertação, colocando, em agitação, alíquotas de soluções aquosas de cloreto de sódio (NaCl) às concentrações de 5, 50 e 500 mM com LDH em pó. Recolheram-se alíquotas durante um mês e analisaram-se as amostras por cromatografia líquida (HPLC), para determinar as concentrações dos inibidores em solução ao longo do tempo. Procedeu-se, ainda, a estudos de impedância eletroquímica para avaliação do desempenho dos materiais na prevenção do ataque corrosivo ao aço. Para tal, expôs-se uma placa de aço a suspensões de diferentes concentrações de espécie agressiva (ião cloreto) com LDHs e mediram-se os valores de impedância ao longo do tempo. Com este trabalho conseguiu-se avaliar o desempenho anticorrosivo de diferentes aniões, além dos já conhecidos, e perceber quais trariam vantagens com o seu uso. Observou-se que nas suspensões com maior concentração de espécie agressiva, a libertação de inibidor foi superior. Através dos espetros de FT-IR e imagens de SEM/TEM, depreendeu-se que a encapsulação decorreu com sucesso. Apesar de não se ter tido oportunidade de testar o desempenho dos materiais encapsulados, seria um ponto vantajoso no desenvolvimento do trabalho.
This work consisted in the preparation and characterization of layered double hydroxides (LDHs) intercalated with corrosion inhibitors with the purpose of including them in concrete, to protect steel from corrosion and increase concrete’s longevity. LDH-NO3 and LDH-NO2 were synthesized and, using, LDH-NO3 suspension, intercalation with citrate and tartrate ions was performed. All samples were characterized using FT-IR spectroscopy, X-RD, Zeta potential measurements, DLS, SEM/TEM and ICP. Release studies were performed, mixing NaCl solution at different concentrations (5, 50, 500 mM) with each LDH sample. Several aliquots were collected over a month and analysed by HPLC to determine the concentration of inhibitors released over time. Electrochemical impedance studies were performed to evaluate the performance of LDHs intercalated with inhibitors against steel corrosion. Thus, a carbon steel board was exposed to a suspension with the aggressive specie (chloride ion) at different concentrations and LDHs. Impedance data was collected over time. Therefore, it was possible to analyse the pertinence of the inclusion of the tested materials into concrete’s mixture, when comparing their action against the corrosive process. It was verified that for suspensions with higher concentrations in aggressive specie, the release of the inhibitor was superior. Through FT-IR spectra and SEM/TEM images, it was concluded that the encapsulation occurred successfully. Even though the performance of the functionalized materials was not tested, it would be advantageous for the on-going development of the work.
Haase, Martin F. "Modification of nanoparticle surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5541/.
Full textIm Rahmen dieser Arbeit wurden drei Oberflächenmodifikationen zur Hydrophobierung von ursprünglich hydrophilen Feststoffpartikeln entwickelt. Die so modifizierten Partikel werden dann zur Stabilisierung von Öl-in-Wasser Emulsionen verwendet. Für sämtliche entwickelte Methoden sind elektrostatische Wechselwirkungen zwischen stark oder schwach dissoziierten chemischen Gruppen essentiell. (i) Kurzkettige Alkyltrimethylammonium Bromide (C4-C12) adsorbieren auf entgegengesetzt geladenen Partikeln. Makroskopische Kontaktwinkelmessungen von Wasser Tropfen in Luft und Hexan auf flachen Siliziumoxid Oberflächen mit variabler Oberflächenladungsdichte und Alkylkettenlänge ermöglichen die Berechnung der Oberflächenenergie und geben Einblicke in die Emulgationseigenschaften von so modifizierten Feststoffpartikeln. Die Messungen zeigen einen Anstieg des Kontakwinkels mit steigender Oberflächenladungsdichte, bedingt durch die verstärkte Adsorption von entgegengesetzt geladenen Alkyltrimethylammonium Bromiden. Die Kontaktwinkel sind zudem größer für längerkettige Alkyltrimethylammonium Bromide. Die Berechnungen der Oberflächenenergie zeigen, dass besonders die Feststoff-Hexan oder Feststoff-Luft Grenzflächenenergie durch die Adsorption verringert wird, wohingegen die Feststoff-Wasser Oberflächenenergie nur bei längeren Alkylkettenlängen und hohen Oberflächenladungsdichten signifikant ansteigt. (ii) Die Schichtdicke und Ladungsdichte von adsorbierten schwachen Polyelektrolyten (z.B. PMAA, PAH) beeinflusst die Benetzbarkeit von Nanopartikeln (z.B. Aluminiumoxid, Siliziumoxid). Der isoelektrische Punkt und der pH Bereich für kolloidale Stabilität solcher Polyelektrolyt modifizierter Partikel hängt von der Dicke der Polyelektrolytschicht ab. Siliziumoxid und Aluminiumoxid Nanopartikel mit adsorbierten PAH bzw. PMAA werden Grenzflächenaktiv und dadurch befähigt Öl-in-Wasser Emulsionen zu stabilisieren, wenn der Dissoziationsgrad der Polyelektrolytschicht geringer als 80 % ist. Die durchschnittliche Tropfengröße von Dodecan-in-Wasser Emulsionen ist abhängig von der Polyelektrolytschichtdicke und dem Dissoziationsgrad. Die Visualisierung von Partikel stabilisierten Öl-in-Wasser Emulsionen durch kryogene REM zeigt, dass im Falle von kolloidal stabilen Aluminiumoxid-PMAA Partikeln die Öl-Tröpfchen mit einer dichtgepackten Partikelhülle belegt sind, während für kolloidal destabilisierte Partikel eine Hülle aus aggregierten Partikeln gefunden wird. (iii) Durch das Emulgieren einer Lösung des Korrosionsinhibitors 8-Hydroxychinolins (8HQ) in Styrol mit Siliziumoxid Nanopartikeln können stabile Öl-in-Wasser Emulsionen in einem pH Fenster von 4 - 6 hergestellt werden. Der amphoterische Charakter von 8HQ ermöglicht eine pH abhängige elektrostatische Wechselwirkung mit den Siliziumdioxid Nanopartikeln, welche diese Grenzflächenaktiv werden lässt. In Abhängigkeit der Konzentration und des Dissoziationsgrads von 8HQ folgt die Adsorption auf Siliziumdioxid aus elektrostatischen oder aromatischen Wechselwirkungen zwischen 8HQ und der Partikeloberfläche. Bei mittleren adsorbierten Mengen wird die Öl Benetzbarkeit der Partikel ausreichend erhöht um Öl-in-Wasser Emulsionen zu stabilisieren. Kryogene REM zeigt, dass die Partikel dann in dicht gepackte Hüllen, mit teilweise aggregierten Domänen auf der Öltröpfchenoberfläche vorliegen. Durch weiter ansteigende adsorbierte 8HQ Mengen wird die Öl-Benetzbarkeit wieder zurückgesetzt und die Emulgationsfähigkeit der Partikel aufgehoben. Durch die Zugabe von Hexadecan zur Öl Phase kann die Tropfengröße durch Erhöhung des Siliziumdioxid Anteils auf 200 nm herabgesetzt werden. Anschließende Polymerisation des Styrols generiert Korrosionsinhibitor gefüllte (20 Gew-%) Polystyrol-Silizumoxid Komposite. Die Messung der Freisetzungsrate von 8HQ zeigt einen schnellen Anstieg der 8HQ Konzentration in einer gerührten wässrigen Lösung innerhalb von 5 Minuten. Die Verkapselungsmethode wird auch für andere organische Korrosionsinhibitoren erweitert. Die Komposite werden dann in einer wasserbasierten Alkydpräpolymeremulsion dispergiert und diese Mischung wird zur Beschichtung von flachen Aluminiumplatten genutzt. Nach Trocknung und Quervernetzung des Films wird Konfokale Laser Mikroskopie dazu verwendet um die räumliche Verteilung der Composite im Film zu visualisieren. Elektrochemische Impedanzspektroskopie zeigt, dass die Barriereeigenschaften des Films durch die Anwesenheit der Komposite verbessert sind. Raster Vibrationselektroden Messungen zeigen, dass die Korrosionsrate in einem Kratzer des Films durch die Anwesenheit der Inhibitor efüllten Komposite reduziert ist. Durch die Ablagerung von 6 Polyelektroytschichten auf Feststoffstabilisierten Emulsionströpfchen verändert sich deren Oberflächenmorphologie deutlich (gezeigt durch REM). Wenn die Ölbenetzbarkeit der äußeren Polyelektrolytschicht ansteigt, dann können solche Polyelektolytbeschichteten Feststoffstabilisierte Emulsionströpfchen selber als Emulsionsstabilisatoren verwendet werden. Diese lagern sich dann in einer dicht gepackten Schicht auf der Oberfläche von größeren Emulsionstropfen ab. In der Gegenwart von 3 mM LaCl3 aggregieren 8HQ modifizierte Siliziumoxid Partikel stark auf der Öl-Wasser Grenzfläche. Der Einsatz von Ultraschall kann aggregierte Schalenbestandteile von der Tropfenoberfläche wegreißen. Diese Wracks können bis zu einem Viertel der Kugelhülle ausmachen und liegen dann als kolloidale Schalen im Wasser vor.
Haase, Martin F. [Verfasser], and HELMUTH [Akademischer Betreuer] MOEHWALD. "Modification of nanoparticle-surfaces for emulsion stabilization and encapsulation of active molecules for anti-corrosive coatings / Martin F. Haase. Betreuer: Helmuth Möhwald." Potsdam : Universitätsbibliothek der Universität Potsdam, 2011. http://d-nb.info/1017895872/34.
Full textColin, Alexis. "Vieillissement thermique de peintures anticorrosion : corrélations entre les évolutions de la chimie, de l'architecture macromoléculaire et des propriétés fonctionnelles." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22640.
Full textAnti-corrosive multilayer coatings, or anti-corrosive paints, are used in several industrial applications such as metallic package protection used for transportation or storage of radioactive materials. In working conditions, functional properties of these paints could be degraded under the influence heat or environmental conditions (light, oxygen, moisture …). Such evolutions had been attributed to the aging of the different paint layers that constituted the anticorrosive coating (acrylic-siloxane topcoat, epoxy resin with amine hardener undercoats). In order to properly carry out this study, a « bottom-up multiscale approach » has been developed. This methodology, initially focused on the physico-chemical modifications of neat polymers that constituted each layer of the coating (from chemical structure and macromolecular architecture evolutions to functional properties), is then complexified by adding filers to the paint formulations (pigments, barrier or anti-corrosive particles …). The complete multilayer coating analyses are the last steps of that methodology. The aim of this thesis is to identify and correlate the evolution of anti-corrosive multilayer coating functional properties to the chemical and architectural modifications in each different layer
Kuo, Ming-tong, and 郭明同. "Fabrication and Anti-Corrosive Properties of Electroless Ni-Fe-P Alloys." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/15311773213781240426.
Full text國立成功大學
化學工程學系碩博士班
95
Electroless Ni-Fe-P alloys have been deposited from a basic plating bath having sodium citrate as a complexing agent. Effects of added reducing agents (sodium hypophosphite and hydrazine hydrate) and pH values of plating bath were studied. The surface morphology and microstructures were examined under a scanning electron microscope equipped with an energy dispersive spectrometer (EDS). The electroless plating using hydrazine hydrate as reductants was found with many crackings on it from SEM photos. The electroless alloys using sodium hypophosphite as reductants and ammonium sulfate as a buffer agent does not contain any crackings. The deposition rate is approximately 10-14 μm/hr. In addition, the percentage of iron and phosphorus in deposits are respectively approximately 2-6 wt.% and 8-10 wt.%. Moreover, composition and the deposition rate of the electroless Ni-Fe-P alloys depend on pH in the bath. The structure of as-plated alloys at all conditions is mainly amorphous. The crystallization behavior of Ni-P-Fe alloys with heat treatment were studied by using X-ray diffractometry. Moreover, the anti-corrosive properties of Ni-Fe-P alloys were measured with a potentiostat.
Chen, Guey-Shin, and 陳貴新. "Effect of Glass Flake Content on Properties of Anti-Corrosive Coating." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/30376117207490403434.
Full textLin, Yi-Wei, and 林逸瑋. "Corrosion properties of stainless steels and anti-corrosive high-entropy alloys." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/63676880818403269759.
Full textcheng, chih-wen, and 鄭智文. "Environmental protection endures the anti-corrosive coating of nano-particles to study." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/59956703953412296231.
Full text國防大學中正理工學院
應用化學研究所
95
In order to protect the environment, a water-borne inorganic Zinc-rich silicate paint is developed in this study. Nano-sized zinc dust (ca. 35 nm) is used in this recipe instead of and mix of micro-sized zinc particle (ca. 7.5 μm). The film formations are accomplished by either coating or spray painting. The influence of Zinc particle sizes (nano or micro scale) on anticorrosion performance and film morphology are compared and the process parameters are thus obtained. Our results show that the effect of H14N on the dispersion degree can be effective. After exposure time of 690 hr, the presence of local rusts areas for all of the samples with or without H14N anionic dispersant are over 30%. It is obvious that the effect of H14N on the anticorrosion is negligible. The nano-sized Zinc particles and water-bone inorganic silicate paint were mixed with a wet grinding machine, and than were sprayed painting coated samples. Our SEM results show that the nano-sized Zinc particles of all samples disperse very well. It is also found that the dispersion degree can be effectively verified by wet grinding and spraying machines and dispersion analyzer. The EIS data show that the anticorrosion mechanisms are different between paints with nano-sized Zinc and those with micro-sized Zinc. Nano-sized Zinc paint protects the metallic surface by acting as a physical barrier, the appearance of sample does not change, the rust only presents on the carved part. Micro-sized Zinc paint protects the metallic substrate by sacrificial cathode protection mechanism. The adhesion between paint and substrate for nano-sized Zinc paint is superior to micro-sized Zinc paint. The adhesion datum determined according to the ASTM 3359 Standard for nano-sized Zinc paint is 5B.
KURITA, Koji, Yoshito ITOH, and Mikihito HIROHATA. "Deterioration Characteristics of Anti-corrosive Metallic Coatings under Acid Rain and Application of Paint Repair." 2011. http://hdl.handle.net/2237/18876.
Full textBooks on the topic "Anti-corrosive"
Zhang, Renhui, Lei Guo, and Ime Bassey Obot. Anti-Corrosive Nanomaterials. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124.
Full textUnited States. National Aeronautics and Space Administration., ed. New anti-corrosive coatings with resin-bonded polyaniline and related electroactive groups: Final report, grant no. NAG10-0174. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. New anti-corrosive coatings with resin-bonded polyaniline and related electroactive groups: Final report, grant no. NAG10-0174. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. New anti-corrosive coatings with resin-bonded polyaniline and related electroactive groups: Final report, grant no. NAG10-0174. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textHandling hazardous materials: Corrosive, 8. Neenah, Wisconsin: J. J. Keller & Associates, Inc., 2012.
Find full textB, Blake K., and Canada Mines Branch, eds. Cobalt alloys with non-corrosive properties. Ottawa: Govt. Print. Bureau, 1997.
Find full textGerhard, Kreysa, Schütze Michael, and Dechema, eds. Corrosion handbook: Corrosive agents and their interaction with materials. 2nd ed. Weinheim: Wiley-VCH, 2004.
Find full textMiyoshi, Kazuhisa. Wear of iron and nickel in corrosive liquid environments. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Find full textIordanskiĭ, A. L. Interaction of polymers with bioactive and corrosive media. Utrecht: VSP, 1994.
Find full textLowther, Michael. How to work safely with corrosive liquids and solids. Hamilton, Ont: Canadian Centre for Occupational Health and Safety, 1988.
Find full textBook chapters on the topic "Anti-corrosive"
Sheetal, Sanjeeve Thakur, Balaram Pani, and Ashish Kumar Singh. "Carbon Nanotubes and Nanofibres." In Anti-Corrosive Nanomaterials, 141–53. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-8.
Full textQuadri, Taiwo W., and Eno E. Ebenso. "Fabrication and Applications of Fullerene-Based Anticorrosive Coatings." In Anti-Corrosive Nanomaterials, 123–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-7.
Full textEs-Soufi, Hicham, Elyor Berdimurodov, Khasan Berdimuradov, Hssain Bih, M. I. Sayyed, and Lahcen Bih. "Nanoceramics for Enhanced Corrosion Protection." In Anti-Corrosive Nanomaterials, 241–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-14.
Full textBerdimurodov, Elyor, Hicham Es-Soufi, Khasan Berdimuradov, Brahim El Ibrahimi, Dakeshwar Kumar Verma, Hssain Bih, Omar Dagdag, Eshmamatova Nodira, Borikhonov Bakhtiyor, and Lahcen Bih. "Stimuli-Responsive Smart Nanocoatings for Autonomous Corrosion Monitoring and Control." In Anti-Corrosive Nanomaterials, 259–69. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-15.
Full textZhang, Qiao, Renhui Zhang, Lei Guo, and Ime Bassey Obot. "Summary and Future Perspectives of Corrosion Protection at the Nanoscale." In Anti-Corrosive Nanomaterials, 323–30. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-18.
Full textAnadebe, Valentine Chikaodili, Vitalis Ikenna Chukwuike, and Rakesh Chandra Barik. "Organic–Inorganic Hybrid Nanocomposite Coatings for Corrosion Protection." In Anti-Corrosive Nanomaterials, 271–83. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-16.
Full textLi, Hao. "Metal-Oxide-Based Anticorrosion Nanocoating." In Anti-Corrosive Nanomaterials, 231–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-13.
Full textDagdag, Omar, Rajesh Haldhar, Seong-Cheol Kim, Walid Daoudi, Elyor Berdimurodov, Ekemini D. Akpan, and Eno E. Ebenso. "General Classification, Designing Principles, Synthesis Methods, and Potential Applications of Nanomaterials." In Anti-Corrosive Nanomaterials, 13–23. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-2.
Full textZhao, Wenjie, and Yangmin Wu. "Recent Progress of MXene-Based Nanomaterials for Corrosion Protection Nanomaterial." In Anti-Corrosive Nanomaterials, 191–216. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-11.
Full textFan, Xiaoqiang. "Anticorrosive Application of Graphene and Its Derivatives." In Anti-Corrosive Nanomaterials, 77–107. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003331124-5.
Full textConference papers on the topic "Anti-corrosive"
Bachert, Joshua, A. H. M. E. Rahman, and Ma'moun Abu-Ayyad. "Anti-Corrosive Coating Using Recycled High Density Polyethylene for Automotive Chassis." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86498.
Full textHarahap, Sabrina, Surya Dewi Puspitasari, and Ahmad Aki Muhaimin. "Seawater-mixed concrete in Indonesia and anti-corrosive materials: A review." In INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICoBE 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0110946.
Full textIto, Hisaki, and Masamine Tanikawa. "Study of Anti-Corrosive Property of Engine Coolant for Aluminum Cylinder Heads." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950119.
Full textStepin, Sergey. "PROPERTIES OF ANTI-CORROSIVE FERRITE PIGMENT SYNTHESIZED WITH THE USE OF PRODUCTION WASTE." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/6.1/s24.056.
Full textHashimoto, Yui, Yusuke Hioka, and Masatoshi Kubouchi. "Study on Optical Fiber Sensing for Detecting Liquid Penetration into Anti-corrosive Resins." In International Conference on Industrial Application Engineering 2015. The Institute of Industrial Applications Engineers, 2015. http://dx.doi.org/10.12792/iciae2015.045.
Full textLoganathan, P., A. Fathima Darras Gracy, and S. Mary Rebekah Sharmila. "An experimental investigation on corrosion impediment in R.C. slabs using anti-corrosive agents." In INTELLIGENT SYSTEMS: A STEP TOWARDS SMARTER ELECTRICAL, ELECTRONIC AND MECHANICAL ENGINEERING: Proceedings of 2nd International Conference on Industrial Electronics, Mechatronics, Electrical and Mechanical Power (IEMPOWER), 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0102996.
Full textde Cayeux, S., J. Tanguy, and G. Lécayon. "Anti-corrosive properties of an electropolymerized polymer coating on a shape memory alloy surface." In The proceedings of the 53rd international meeting of physical chemistry: Organic coatings. AIP, 1996. http://dx.doi.org/10.1063/1.49466.
Full textXu, Jin, Juan Mo, Baozhen Fan, Yuchao Ma, Xiang Li, and Hongbing Shen. "Analysis of the Influence of Anti-Corrosive Coating on the Heat Dissipation of Distribution Transformer." In 2021 China International Conference on Electricity Distribution (CICED). IEEE, 2021. http://dx.doi.org/10.1109/ciced50259.2021.9556703.
Full textWang, Yuequan, Tao Hang, and Ming Li. "Reverse pulse current (RPC) electrodeposition of anti-corrosive nickel-tungsten ultrathin film for connector application." In 2016 17th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2016. http://dx.doi.org/10.1109/icept.2016.7583258.
Full textMei, Hongwei, Xiyuan Guan, Chenglong Zhao, Liming Wang, and Xiangyun Fu. "Effect of anti-corrosive coatings on the performance of high temperature vulcanized silicone rubber insulator." In 2017 IEEE Electrical Insulation Conference (EIC). IEEE, 2017. http://dx.doi.org/10.1109/eic.2017.8004660.
Full textReports on the topic "Anti-corrosive"
Volinsky, Alex A. Mechanical Aspects of Anti-Corrosive Coatings Performance Tests. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada456129.
Full text