To see the other types of publications on this topic, follow the link: Anthropogenic particle.

Journal articles on the topic 'Anthropogenic particle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Anthropogenic particle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Paasonen, Pauli, Kaarle Kupiainen, Zbigniew Klimont, Antoon Visschedijk, Hugo A. C. Denier van der Gon, and Markus Amann. "Continental anthropogenic primary particle number emissions." Atmospheric Chemistry and Physics 16, no. 11 (June 6, 2016): 6823–40. http://dx.doi.org/10.5194/acp-16-6823-2016.

Full text
Abstract:
Abstract. Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening emission regulations. However, there are significant uncertainties in these current emission estimates and the key actions for decreasing the uncertainties are pointed out.
APA, Harvard, Vancouver, ISO, and other styles
2

Russell, Philip A. "The Analyses of Anthropogenic Atmospheric Particulates by EM." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 2 (August 12, 1990): 547. http://dx.doi.org/10.1017/s0424820100136349.

Full text
Abstract:
This presentation will summarize fourteen years of research on the physical and chemical nature of particulates suspended in the earths atmosphere utilizing scanning electron microscopy and, to a lesser extent, transmission electron microscopy. Topics to be discussed include (1) the rationale for using electron microscopy to study airborne particulates, (2) methods for collecting airborne particulates, (3) methods of analysis and (4) a summary of results. Examples will demonstrate how conclusions about the nature and source of collected particles can differ between bulk sample analyses and discrete particle analyses. Without the input from discrete particle analyses, bulk analytical techniques may produce serious errors in the apportionment of airborne particulates to specific sources.The scanning electron microscope (SEM) and transmission electron microscopy (TEM) have proven themselves to be the preferred instruments to use in the study of discrete fine particles because they permit sufficient resolution and analytical capabilities to examine the structure and chemistry of individual particles less than a few micrometers in diameter.
APA, Harvard, Vancouver, ISO, and other styles
3

Pawlak, Filip, Krystyna Koziol, Wanda Wilczyńska-Michalik, Mikołaj Worosz, Marek Michalik, Sara Lehmann-Konera, and Żaneta Polkowska. "Characteristics of Anthropogenic Pollution in the Atmospheric Air of South-Western Svalbard (Hornsund, Spring 2019)." Water 16, no. 11 (May 23, 2024): 1486. http://dx.doi.org/10.3390/w16111486.

Full text
Abstract:
The character of atmospheric pollution and its impact on surface waters may vary substantially in space, and hence, we add a potentially important location for the studies of atmospheric air pollution to the map of the High Arctic. We have investigated the anthropogenic particle characteristics and selected persistent organic pollutant concentrations, in a priorly unmonitored location in the Arctic (Svalbard), exposed to a climatic gradient. Single-particle analysis of PM indicates that besides the prevailing natural aerosol particles, anthropogenic ones were present. The likely anthropogenic origin of some particles was established for spherical Fe-rich or aluminosilicate particles formed in high-temperature processes or metal-rich particles of the chemical composition corresponding to industrial products and atypical for natural minerals; soot, tar balls, and secondary sulfate were also likely of anthropogenic origin. Some of the observed anthropogenic particles could only come from remote industrial sources. POP concentrations indicated a background of LRAT, consistent with the ΣPCB concentrations and volatility profile. However, the ΣDDX composition indicating aged sources and an order of magnitude higher concentrations of both ΣDDXs and ΣHCHs than at other High Arctic monitoring stations indicate their potential source in two types of re-emission from secondary sources, i.e., from seawater and snowpack, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Bjedov, Dora, Alma Mikuška, Vlatka Gvozdić, Petar Glavaš, Dora Gradečak, and Mirta Sudarić Bogojević. "White Stork Pellets: Non-Invasive Solution to Monitor Anthropogenic Particle Pollution." Toxics 12, no. 4 (March 23, 2024): 236. http://dx.doi.org/10.3390/toxics12040236.

Full text
Abstract:
The present study applied a non-invasive method to analyse anthropogenic particles and prey items in white stork (Ciconia ciconia) pellets. Pellets (n = 20) were obtained from white stork nests during the 2020 breeding season from two sites in Croatia. In total, 7869 anthropogenic particles were isolated. The majority of particles were fragments, while previous studies on other birds often reported fibres. An ATR–FTIR polymer analysis detected glass and construction and building materials, as well as several compounds associated with plastic masses. Polymer investigation revealed the presence of dotriacontane and octacosane, which are by-products of polyethylene (PE) degradation and transformation. Additionally, the detection of vinylidene chloride (VDC) highlights the historical contribution of polyvinylidene chloride (PVDC) to plastic pollution. Significant variation in particle quantity and size between the sampling sites was detected, with larger particles found at sites associated with the metal mechanical engineering industry and agriculture. Prey assessment revealed chitin remains of large insects such as Orthoptera and Coleoptera. This research confirms the potential of pellet analysis as a valuable tool for assessing the presence of anthropogenic particles in the environment. However, further research is needed to fully understand the extent of particle ingestion, particle sources and potential impact.
APA, Harvard, Vancouver, ISO, and other styles
5

Ahlm, L., R. Krejci, E. D. Nilsson, E. M. Mårtensson, M. Vogt, and P. Artaxo. "Emission and dry deposition of accumulation mode particles in the Amazon Basin." Atmospheric Chemistry and Physics 10, no. 21 (November 3, 2010): 10237–53. http://dx.doi.org/10.5194/acp-10-10237-2010.

Full text
Abstract:
Abstract. Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25–2.5 μm were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25–0.45 μm in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5–2.5 μm, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log10 F=0.48 · U+2.21 where F is the net emission number flux of 0.5–2.5 μm particles [m−2 s−1] and U is the horizontal wind speed [ms−1] at the top of the tower.
APA, Harvard, Vancouver, ISO, and other styles
6

Xausa, Filippo, Pauli Paasonen, Risto Makkonen, Mikhail Arshinov, Aijun Ding, Hugo Denier Van Der Gon, Veli-Matti Kerminen, and Markku Kulmala. "Advancing global aerosol simulations with size-segregated anthropogenic particle number emissions." Atmospheric Chemistry and Physics 18, no. 13 (July 16, 2018): 10039–54. http://dx.doi.org/10.5194/acp-18-10039-2018.

Full text
Abstract:
Abstract. Climate models are important tools that are used for generating climate change projections, in which aerosol–climate interactions are one of the main sources of uncertainties. In order to quantify aerosol–radiation and aerosol–cloud interactions, detailed input of anthropogenic aerosol number emissions is necessary. However, the anthropogenic aerosol number emissions are usually converted from the corresponding mass emissions in pre-compiled emission inventories through a very simplistic method depending uniquely on chemical composition, particle size and density, which are defined for a few, very wide main source sectors. In this work, the anthropogenic particle number emissions converted from the AeroCom mass in the ECHAM-HAM climate model were replaced with the recently formulated number emissions from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model. In the GAINS model the emission number size distributions vary, for example, with respect to the fuel and technology. Special attention was paid to accumulation mode particles (particle diameter dp > 100 nm) because of (i) their capability of acting as cloud condensation nuclei (CCN), thus forming cloud droplets and affecting Earth's radiation budget, and (ii) their dominant role in forming the coagulation sink and thus limiting the concentration of sub-100 nm particles. In addition, the estimates of anthropogenic CCN formation, and thus the forcing from aerosol–climate interactions, are expected to be affected. Analysis of global particle number concentrations and size distributions reveals that GAINS implementation increases CCN concentration compared with AeroCom, with regional enhancement factors reaching values as high as 10. A comparison between modeled and observed concentrations shows that the increase in number concentration for accumulation mode particles agrees well with measurements, but it leads to a consistent underestimation of both nucleation mode and Aitken mode (dp < 100 nm) particle number concentrations. This suggests that revisions are needed in the new particle formation and growth schemes currently applied in global modeling frameworks.
APA, Harvard, Vancouver, ISO, and other styles
7

Schmidt, Susan, Johannes Schneider, Thomas Klimach, Stephan Mertes, Ludwig Paul Schenk, Piotr Kupiszewski, Joachim Curtius, and Stephan Borrmann. "Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment." Atmospheric Chemistry and Physics 17, no. 1 (January 12, 2017): 575–94. http://dx.doi.org/10.5194/acp-17-575-2017.

Full text
Abstract:
Abstract. In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January–February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between −27 and −6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.
APA, Harvard, Vancouver, ISO, and other styles
8

Spracklen, D. V., K. J. Pringle, K. S. Carslaw, G. W. Mann, P. Manktelow, and J. Heintzenberg. "First comparison of a global microphysical aerosol model with size-resolved observational aerosol statistics." Atmospheric Chemistry and Physics Discussions 6, no. 5 (September 21, 2006): 8871–915. http://dx.doi.org/10.5194/acpd-6-8871-2006.

Full text
Abstract:
Abstract. A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the MBL. Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic marine boundary layer (MBL) aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the observed and modelled particle persistence at Cape Grim in the Southern Ocean, does not reveal a diurnal cycle consistent with a photochemically driven local particle source. We also show that a physically based cloud drop activation scheme is needed to explain the observed change in accumulation mode geometric mean diameter with particle number.
APA, Harvard, Vancouver, ISO, and other styles
9

Ahlm, L., R. Krejci, E. D. Nilsson, E. M. Mårtensson, M. Vogt, and P. Artaxo. "Emission and deposition of accumulation and coarse mode particles in the Amazon basin." Atmospheric Chemistry and Physics Discussions 10, no. 6 (June 8, 2010): 14013–52. http://dx.doi.org/10.5194/acpd-10-14013-2010.

Full text
Abstract:
Abstract. Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25–2.5 μm were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25–0.45 μm in diameter, pointed downward in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. In the diameter range 0.5–2.5 μm, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net emission fluxes dominated. However, in wind sectors associated with higher anthropogenic influence, net deposition fluxes dominated. The net emission fluxes were interpreted as primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and these emissions were best correlated with horizontal wind speed by the equation log10F=0.47·U+2.26 where F is the emission number flux of 0.5–2.5 μm particles [m−2s−1] and U is the horizontal wind speed [ms−1] at the top of the tower.
APA, Harvard, Vancouver, ISO, and other styles
10

Bateman, Adam P., Zhaoheng Gong, Tristan H. Harder, Suzane S. de Sá, Bingbing Wang, Paulo Castillo, Swarup China, et al. "Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest." Atmospheric Chemistry and Physics 17, no. 3 (February 6, 2017): 1759–73. http://dx.doi.org/10.5194/acp-17-1759-2017.

Full text
Abstract:
Abstract. The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two intensive operating periods (IOP1 and IOP2) that took place during the wet and dry seasons of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional- and continental-scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, an indicator of physical state, was measured in real time at ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered, while nonliquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves. When the apparatus RH matched ambient RH, 95 % of the particles adhered as a campaign average. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, produces liquid PM over this tropical forest. During periods of anthropogenic influence, by comparison, the rebound fraction dropped to as low as 60 % at 95 % RH. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of nonliquid PM at high RH correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70 % of the variance in the observed rebound fractions. Anthropogenic influences can contribute to the presence of nonliquid PM in the atmospheric particle population through the combined effects of molecular species that increase viscosity when internally mixed with background PM and increased concentrations of nonliquid anthropogenic particles in external mixtures of anthropogenic and biogenic PM.
APA, Harvard, Vancouver, ISO, and other styles
11

Wu, Z. J., Y. F. Cheng, M. Hu, B. Wehner, N. Sugimoto, and A. Wiedensohler. "Dust events in Beijing, China (2004–2006): comparison of ground-based measurements with columnar integrated observations." Atmospheric Chemistry and Physics Discussions 9, no. 3 (May 14, 2009): 11843–88. http://dx.doi.org/10.5194/acpd-9-11843-2009.

Full text
Abstract:
Abstract. Three-year particle number size distributions were analyzed to characterize the size distributions and optical properties of the particles in the urban atmosphere of Beijing, China during dust events in the springs of 2004–2006 in combination with AERONET sun/sky radiometer data. The dust events were categorized as two different types (type 1 and 2). This categorization of the dust events was confirmed by the aerosol index images, columnar aerosol optical properties, and vertical potential temperature profiles. Dust particles dominated the total particle volume concentration (3–10000 nm) (over 70%) for the dust events in type 1, which happened under strong wind speeds. In this type, relatively purer dust particles were observed in the urban atmosphere. The events in type 2 with a longer stagnation time in the urban area and lower ratio of coarse mode particle to the total particle volume concentration occurred under stable local weather conditions. During the events in type 2, a superposition of the dust particles and anthropogenic aerosols was observed. The comparison of columnar optical properties among type 1, 2, and heavy pollution periods shows that the superposition of dust particles and anthropogenic aerosols can result in much higher AOD than pure dust particles in the urban atmosphere of Beijing. By comparing the particle volume size distributions retrieved from AERONET with those obtained from the Twin Differential Mobility Particle Sizer measurements, a discrepancy between the ground-based and column integrated particle volume size distributions was found, especially obvious for the coarse mode particles.
APA, Harvard, Vancouver, ISO, and other styles
12

Spracklen, D. V., K. J. Pringle, K. S. Carslaw, G. W. Mann, P. Manktelow, and J. Heintzenberg. "Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere." Atmospheric Chemistry and Physics 7, no. 8 (April 26, 2007): 2073–90. http://dx.doi.org/10.5194/acp-7-2073-2007.

Full text
Abstract:
Abstract. A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the marine boundary layer (MBL). Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic MBL aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles (at the emission size and quantity assumed here) do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the observed and modelled particle persistence at Cape Grim in the Southern Ocean, does not reveal a diurnal cycle consistent with a photochemically driven local particle source. We also show that a physically based cloud drop activation scheme better explains the observed change in accumulation mode geometric mean diameter with particle number.
APA, Harvard, Vancouver, ISO, and other styles
13

Hamed, A., W. Birmili, J. Joutsensaari, S. Mikkonen, A. Asmi, B. Wehner, G. Spindler, et al. "Changes in the production rate of secondary aerosol particles in central Europe in view of decreasing SO<sub>2</sub> emissions between 1996 and 2006." Atmospheric Chemistry and Physics Discussions 9, no. 4 (July 13, 2009): 15083–123. http://dx.doi.org/10.5194/acpd-9-15083-2009.

Full text
Abstract:
Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn forms new aerosol particles (diameter <10 nm) through nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. Using two different data sets of experimental particle number size distributions (3–750 nm) from the research station Melpitz (1996–1997 and 2003–2006) we have attempted to evaluate the possible influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF). Between the two periods SO2 concentrations decreased on average by 65%, while the frequency of NPF events dropped by 45%. In addition, the average formation rate of 3 nm particles decreased by 68%. The trends were statistically significant, therefore suggesting a connection between the availability of anthropogenic SO2 and the production of new particle number. A contrasting finding was the increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and global radiation intensity, we could define the characteristic range of atmospheric conditions under which particle formation events at the Melpitz site take place or not. While the connection between anthropogenic SO2, H2SO4 and NPF appears very plausible, our analysis yielded no significant evidence whether decreasing SO2 concentrations did affect the production of cloud condensation nuclei (CCN).
APA, Harvard, Vancouver, ISO, and other styles
14

Spracklen, D. V., K. S. Carslaw, J. Merikanto, G. W. Mann, S. Pickering, J. A. Ogren, E. Andrews, et al. "Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation." Atmospheric Chemistry and Physics Discussions 9, no. 6 (December 10, 2009): 26377–419. http://dx.doi.org/10.5194/acpd-9-26377-2009.

Full text
Abstract:
Abstract. We use observations of total particle number concentration at 36 worldwide sites and a global aerosol model to quantify the primary and secondary sources of particle number. We show that emissions of primary particles can reasonably reproduce the spatial pattern of observed condensation nuclei (CN) (R2=0.51) but fail to explain the observed seasonal cycle at many sites (R2=0.1). The modeled CN concentration in the free troposphere is biased low (normalised mean bias, NMB=−88%) unless a secondary source of particles is included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%). Simulated CN concentrations in the continental boundary layer (BL) are also biased low (NMB=−74%) unless the number emission of anthropogenic primary particles is increased or an empirical BL particle formation mechanism based on sulfuric acid is used. We find that the seasonal CN cycle observed at continental BL sites is better simulated by including a BL particle formation mechanism (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). Using sensitivity tests we derive optimum rate coefficients for this nucleation mechanism, which agree with values derived from detailed case studies at individual sites.
APA, Harvard, Vancouver, ISO, and other styles
15

Wu, Z. J., Y. F. Cheng, M. Hu, B. Wehner, N. Sugimoto, and A. Wiedensohler. "Dust events in Beijing, China (2004–2006): comparison of ground-based measurements with columnar integrated observations." Atmospheric Chemistry and Physics 9, no. 18 (September 22, 2009): 6915–32. http://dx.doi.org/10.5194/acp-9-6915-2009.

Full text
Abstract:
Abstract. Ambient particle number size distributions spanning three years were used to characterize the frequency and intensity of atmospheric dust events in the urban areas of Beijing, China in combination with AERONET sun/sky radiometer data. Dust events were classified into two types based on the differences in particle number and volume size distributions and local weather conditions. This categorization was confirmed by aerosol index images, columnar aerosol optical properties, and vertical potential temperature profiles. During the type-1 events, dust particles dominated the total particle volume concentration (<10 μm), with a relative share over 70%. Anthropogenic particles in the Aitken and accumulation mode played a subordinate role here because of high wind speeds (>4 m s−1). The type-2 events occurred in rather stagnant air masses and were characterized by a lower volume fraction of coarse mode particles (on average, 55%). Columnar optical properties showed that the superposition of dust and anthropogenic aerosols in type-2 events resulted in a much higher AOD (average: 1.51) than for the rather pure dust aerosols in type-1 events (average AOD: 0.36). A discrepancy was found between the ground-based and column integrated particle volume size distributions, especially for the coarse mode particles. This discrepancy likely originates from both the limited comparability of particle volume size distributions derived from Sun photometer and in situ number size distributions, and the inhomogeneous vertical distribution of particles during dust events.
APA, Harvard, Vancouver, ISO, and other styles
16

Li, W. J., D. Z. Zhang, L. Y. Shao, S. Z. Zhou, and W. X. Wang. "Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain." Atmospheric Chemistry and Physics Discussions 11, no. 8 (August 8, 2011): 22385–415. http://dx.doi.org/10.5194/acpd-11-22385-2011.

Full text
Abstract:
Abstract. The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on a regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l) from 19 to 28 April 2010, when the air masses were advected from the east (phase-I: 19–21 April), from the south (phase-II: 22–25 April), and from the northwest (phase-III: 26–28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a major number of particles were sulfur-rich (47–49 %). In phase-III, haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were predominant (43 %). NPF followed by particle growth during daytime was more pronounced at upper levels of the haze layers than clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10–22 nm in the morning to 56–96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. Moreover, the presence of ultrafine and fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles may indicate their influences on particle nucleation through condensation and enhancement of particle growth through coagulation. Each fine refractory particle can enlarge the sulfate particles by 10–20 nm. Abundant mineral particles in phase-III likely suppressed the NPF processes because a high number of crustal mineral particles in the free troposphere supplied an important surface on which acidic gases or acids condensed.
APA, Harvard, Vancouver, ISO, and other styles
17

Quennehen, B., A. Schwarzenboeck, A. Matsuki, J. F. Burkhart, A. Stohl, G. Ancellet, and K. S. Law. "Anthropogenic and forest fire pollution aerosol transported to the Arctic: observations from the POLARCAT-France spring campaign." Atmospheric Chemistry and Physics 12, no. 14 (July 24, 2012): 6437–54. http://dx.doi.org/10.5194/acp-12-6437-2012.

Full text
Abstract:
Abstract. During the POLARCAT-France airborne measurement campaign in spring 2008, several pollution plumes transported from mid-latitude regions were encountered. The study presented here focuses on air masses from two different geographic origins (Europe and Asia) and from 2 different source types (anthropogenic pollution and forest fires). A first case study is dedicated to a European air mass, which was repeatedly sampled and analysed during three consecutive days. Thereby, the evolution of the aerosol properties (size distributions, CO mixing ratio) is characterised and related processes are discussed. In particular, the role of coagulation, condensation and cloud processing in the evolution of the Aitken and the accumulation mode particles are contrasted. A second case study focuses on European air masses impacted solely by biomass burning emissions and Asian air masses with contributions from both biomass burning and anthropogenic emissions. The analysis of aerosol modes highlight a similar behaviour for particle originating from biomass burning (from Europe as well as Asia). In comparison to the predominating aged accumulation mode in biomass burning particles, a still larger aerosol accumulation mode related to Asian anthropogenic emissions can be isolated. These findings corroborate the external mixing of such kind of aerosol size distributions. An electron microscopy study (coupled to X-ray elemental analysis) of particles illustrated soot-like inclusions in several samples. Within samples attributed to forest fire sources, the chemical signature is highly associated with the presence of potassium, which is a characteristic tracer element for biomass burning plumes. The single particle images suggest an internal mixing of sampled individual aerosol particles. Thus, particles are found externally mixed as demonstrated from particle size distributions while they appear internally mixed at the particle scale.
APA, Harvard, Vancouver, ISO, and other styles
18

Li, W. J., D. Z. Zhang, L. Y. Shao, S. Z. Zhou, and W. X. Wang. "Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain." Atmospheric Chemistry and Physics 11, no. 22 (November 24, 2011): 11733–44. http://dx.doi.org/10.5194/acp-11-11733-2011.

Full text
Abstract:
Abstract. The North China plain is a region with megacities and huge populations. Aerosols over the highly polluted area have a significant impact on the regional and global climate. In order to investigate the physical and chemical characteristics of aerosol particles in elevated layers there, observations were carried out at the summit of Mt. Tai (1534 m a.s.l.) from 19 to 28 April, 2010, when the air masses were advected from the east (phase-I: 19–21 April), from the south (phase-II: 22–25 April), and from the northwest (phase-III: 26–28 April). Individual aerosol particles were identified with transmission electron microscopy (TEM), new particle formation (NPF) and growth events were monitored by a wide-range particle spectrometer, and ion concentrations in PM2.5 were analyzed. During phase-I and phase-II, haze layers caused by anthropogenic pollution were observed, and a high percentage of particles were sulfur-rich (47–49%). In phase-III, the haze disappeared due to the intrusion of cold air from the northwest, and mineral dust particles from deserts were dominant (43%). NPF followed by particle growth during daytime was more pronounced on hazy than on clear days. Particle growth during daytime resulted in an increase of particle geometric mean diameter from 10–22 nm in the morning to 56–96 nm in the evening. TEM analysis suggests that sulfuric acid and secondary organic compounds should be important factors for particle nucleation and growth. However, the presence of fine anthropogenic particles (e.g., soot, metal, and fly ash) embedded within S-rich particles indicates that they could weaken NPF and enhance particle growth through condensation and coagulation. Abundant mineral particles in phase-III likely suppressed the NPF processes because they supplied sufficient area on which acidic gases or acids condensed.
APA, Harvard, Vancouver, ISO, and other styles
19

Debevec, Cécile, Stéphane Sauvage, Valérie Gros, Karine Sellegri, Jean Sciare, Michael Pikridas, Iasonas Stavroulas, et al. "Driving parameters of biogenic volatile organic compounds and consequences on new particle formation observed at an eastern Mediterranean background site." Atmospheric Chemistry and Physics 18, no. 19 (October 9, 2018): 14297–325. http://dx.doi.org/10.5194/acp-18-14297-2018.

Full text
Abstract:
Abstract. As a part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) and Cyprus Aerosols and Gas Precursors (ENVI-Med CyAr) programs, this study aims primarily to provide an improved understanding of the sources and the fate of volatile organic compounds (VOCs) in the eastern Mediterranean. More than 60 VOCs, including biogenic species (isoprene and eight monoterpenes) and oxygenated VOCs, were measured during a 1-month intensive field campaign performed in March 2015 at the Cyprus Atmospheric Observatory (CAO), a regional background site in Cyprus. VOC measurements were conducted using complementary online and offline techniques. Biogenic VOCs (BVOCs) were principally imputed to local sources and characterized by compound-specific daily cycles such as diurnal maximum for isoprene and nocturnal maximum for α- and β-pinenes, in connection with the variability of emission sources. The simultaneous study of pinene and isoprene temporal evolution and meteorological parameters has shown that BVOC emissions were mainly controlled by ambient temperature, precipitation and relative humidity. It was found that isoprene daytime emissions at CAO depended on temperature and solar radiation changes, whereas nocturnal BVOC concentrations (e.g., from oak and pine forests) were more prone to the relative humidity and temperature changes. Significant changes in monoterpene mixing ratios occurred during and after rainfall. The second part of the study focused on new particle formation (NPF) events at CAO. BVOCs are known to potentially play a role in the growth as well as in the early stages of formation of new atmospheric particles. Based on observations of the particle size distribution performed with a differential mobility particle sizer (DMPS) and the total number concentrations of particles larger than 1 nm diameter measured by particle size magnifier (PSM), NPF events were found on 14 out of 20 days of the field campaign. For all possible proxy parameters (meteorological parameters, calculated H2SO4 and measured gaseous compounds) having a role in NPF, we present daily variations of different classes during nucleation event and non-event days. NPF can occur at various condensational sink (CS) values and both under polluted and clean atmospheric conditions. High H2SO4 concentrations coupled with high BVOC concentrations seemed to be one of the most favorable conditions to observe NPF at CAO in March 2015. NPF event days were characterized by either (1) a predominant anthropogenic influence (high concentrations of anthropogenic source tracers observed), (2) a predominant biogenic influence (high BVOC concentrations coupled with low anthropogenic tracer concentrations), (3) a mixed influence (high BVOC concentrations coupled with high anthropogenic tracer concentrations) and (4) a marine influence (both low BVOC and anthropogenic tracer concentrations). More pronounced NPF events were identified during mixed anthropogenic–biogenic conditions compared to the pure anthropogenic or biogenic ones, for the same levels of precursors. Analysis of a specific NPF period of the mixed influence type highlighted that BVOC interactions with anthropogenic compounds enhanced nucleation formation and growth of newly formed particles. During this period, the nucleation-mode particles may be formed by the combination of high H2SO4 and isoprene amounts, under favorable meteorological conditions (high temperature and solar radiation and low relative humidity) along with low CS. During the daytime, growth of the newly formed particles, not only sulfate but also oxygen-like organic aerosol (OOA) mass contributions, increased in the particle phase. High BVOC concentrations were observed during the night following NPF events, accompanied by an increase in CS and in semi-volatile OOA contributions, suggesting further BVOC contribution to aerosol nighttime growth by condensing onto pre-existing aerosols.
APA, Harvard, Vancouver, ISO, and other styles
20

Pan, Xiaole, Itsushi Uno, Yukari Hara, Kazuo Osada, Shigekazu Yamamoto, Zhe Wang, Nobuo Sugimoto, Hiroshi Kobayashi, and Zifa Wang. "Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality." Atmospheric Chemistry and Physics 16, no. 15 (August 5, 2016): 9863–73. http://dx.doi.org/10.5194/acp-16-9863-2016.

Full text
Abstract:
Abstract. Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21–0.23) and winter (0.19–0.23), and a minimum value (0.09–0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.
APA, Harvard, Vancouver, ISO, and other styles
21

Aymoz, G., J. L. Jaffrezo, V. Jacob, A. Colomb, and Ch George. "Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps." Atmospheric Chemistry and Physics Discussions 4, no. 4 (July 12, 2004): 3875–909. http://dx.doi.org/10.5194/acpd-4-3875-2004.

Full text
Abstract:
Abstract. A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps) in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC) and Organic Carbon (OC)) are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate) show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate) or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.
APA, Harvard, Vancouver, ISO, and other styles
22

Aymoz, G., J. L. Jaffrezo, V. Jacob, A. Colomb, and Ch George. "Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps." Atmospheric Chemistry and Physics 4, no. 11/12 (December 9, 2004): 2499–512. http://dx.doi.org/10.5194/acp-4-2499-2004.

Full text
Abstract:
Abstract. A Saharan dust event was observed in a rural area in the Maurienne Valley (French Alps) in summer 2000. Detailed data on PM10, particle numbers, and aerosol chemistry (ionic species and Elemental Carbon (EC) and Organic Carbon (OC)) are presented. The comparative evolutions of particle numbers and chemistry (calcium, sodium, and sulfate) show that the overall period included two episodes of dust particles with very distinct chemistry, followed by an episode with a large increase of the concentrations of species with an anthropogenic origin. The overall data set does not indicate large interactions between the dust particles and compounds from anthropogenic origin (sulfate, nitrate) or with organic carbon, all of these species showing very low concentrations. Simplistic calculations indicate that these concentrations are consistent with our current knowledge of adsorption processes of gases on mineral dust in a clean air mass.
APA, Harvard, Vancouver, ISO, and other styles
23

Shevchenko, Vladimir P., Sergey N. Vorobyev, Ivan V. Krickov, Andrey G. Boev, Artyom G. Lim, Alexander N. Novigatsky, Dina P. Starodymova, and Oleg S. Pokrovsky. "Insoluble Particles in the Snowpack of the Ob River Basin (Western Siberia) a 2800 km Submeridional Profile." Atmosphere 11, no. 11 (November 2, 2020): 1184. http://dx.doi.org/10.3390/atmos11111184.

Full text
Abstract:
Snowpack exhibits properties that make it a unique natural archive of airborne pollution. The data on insoluble particles in the Ob River catchment (Western Siberia) snowpack are limited. Insoluble particles in the snowpack of Western Siberia were studied at 36 sites on a 2800 km submeridional profile from the city of Barnaul to Salekhard in February 2020. Snow samples were collected over the full depth of the snow core, from the surface of the snow cover to the boundary with soil, except for the lower 1–2 cm. After the filtration of melted snow through a 0.45-µm membrane, the particle composition was studied using a scanning electron microscope with an energy microprobe. In the background areas, the concentration of insoluble particles in the snow was below 2 mg/L. Significantly higher particle concentrations were encountered near cities and hydrocarbon production areas. Particulate matter in snow mainly consists of biogenic and lithogenic particles mixed with anthropogenic particles (ash and black carbon aggregates). The proportion of anthropogenic particles increases near cities and areas of active hydrocarbon production.
APA, Harvard, Vancouver, ISO, and other styles
24

Spracklen, D. V., K. S. Carslaw, M. Kulmala, V. M. Kerminen, G. W. Mann, and S. L. Sihto. "The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales." Atmospheric Chemistry and Physics 6, no. 12 (December 18, 2006): 5631–48. http://dx.doi.org/10.5194/acp-6-5631-2006.

Full text
Abstract:
Abstract. The contribution of boundary layer (BL) nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the BL at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm−3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental regions are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of BL particle formation over tropical regions and the Amazon is negligible. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget.
APA, Harvard, Vancouver, ISO, and other styles
25

Glicker, Hayley S., Michael J. Lawler, John Ortega, Suzane S. de Sá, Scot T. Martin, Paulo Artaxo, Oscar Vega Bustillos, et al. "Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season." Atmospheric Chemistry and Physics 19, no. 20 (October 23, 2019): 13053–66. http://dx.doi.org/10.5194/acp-19-13053-2019.

Full text
Abstract:
Abstract. Central Amazonia serves as an ideal location to study atmospheric particle formation, since it often represents nearly natural, pre-industrial conditions but can also experience periods of anthropogenic influence due to the presence of emissions from large metropolitan areas like Manaus, Brazil. Ultrafine (sub-100 nm diameter) particles are often observed in this region, although new particle formation events seldom occur near the ground despite being readily observed in other forested regions with similar emissions of volatile organic compounds (VOCs). This study focuses on identifying the chemical composition of ultrafine particles as a means of determining the chemical species and mechanisms that may be responsible for new particle formation and growth in the region. These measurements were performed during the wet season as part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign at a site located 70 km southwest of Manaus. A thermal desorption chemical ionization mass spectrometer (TDCIMS) characterized the most abundant compounds detected in ultrafine particles. Two time periods representing distinct influences on aerosol composition, which we label as “anthropogenic” and “background” periods, were studied as part of a larger 10 d period of analysis. Higher particle number concentrations were measured during the anthropogenic period, and modeled back-trajectory frequencies indicate transport of emissions from the Manaus metropolitan area. During the background period there were much lower number concentrations, and back-trajectory frequencies showed that air masses arrived at the site predominantly from the forested regions to the north and northeast. TDCIMS-measured constituents also show distinct differences between the two observational periods. Although bisulfate was detected in particles throughout the 10 d period, the anthropogenic period had higher levels of particulate bisulfate overall. Ammonium and trimethyl ammonium were positively correlated with bisulfate. The background period had distinct diurnal patterns of particulate cyanate and acetate, while oxalate remained relatively constant during the 10 d period. 3-Methylfuran, a thermal decomposition product of a particulate-phase isoprene epoxydiol (IEPOX), was the dominant species measured in the positive-ion mode. Principal component analysis (PCA) was performed on the TDCIMS-measured ion abundance and aerosol mass spectrometer (AMS) mass concentration data. Two different hierarchical clusters representing unique influences arise: one comprising ultrafine particulate acetate, hydrogen oxalate, cyanate, trimethyl ammonium and 3-methylfuran and another made up of ultrafine particulate bisulfate, chloride, ammonium and potassium. A third cluster separated AMS-measured species from the two TDCIMS-derived clusters, indicating different sources or processes in ultrafine aerosol particle formation compared to larger submicron-sized particles.
APA, Harvard, Vancouver, ISO, and other styles
26

Lamb, Kara D. "Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning." Atmospheric Measurement Techniques 12, no. 7 (July 15, 2019): 3885–906. http://dx.doi.org/10.5194/amt-12-3885-2019.

Full text
Abstract:
Abstract. Single particle soot photometers (SP2) use laser-induced incandescence to detect aerosols on a single particle basis. SP2s that have been modified to provide greater spectral contrast between their narrow and broad-band incandescent detectors have previously been used to characterize both refractory black carbon (rBC) and light-absorbing metallic aerosols, including iron oxides (FeOx). However, single particles cannot be unambiguously identified from their incandescent peak height (a function of particle mass) and color ratio (a measure of blackbody temperature) alone. Machine learning offers a promising approach for improving the classification of these aerosols. Here we explore the advantages and limitations of classifying single particle signals obtained with a modified SP2 using a supervised machine learning algorithm. Laboratory samples of different aerosols that incandesce in the SP2 (fullerene soot, mineral dust, volcanic ash, coal fly ash, Fe2O3, and Fe3O4) were used to train a random forest algorithm. The trained algorithm was then applied to test data sets of laboratory samples and atmospheric aerosols. This method provides a systematic approach for classifying incandescent aerosols by providing a score, or conditional probability, that a particle is likely to belong to a particular aerosol class (rBC, FeOx, etc.) given its observed single particle features. We consider two alternative approaches for identifying aerosols in mixed populations based on their single particle SP2 response: one with specific class labels for each species sampled, and one with three broader classes (rBC, anthropogenic FeOx, and dust-like) for particles with similar SP2 responses. Predictions of the most likely particle class (the one with the highest mean probability) based on applying the trained random forest algorithm to the single particle features for test data sets comprising examples of each class are compared with the true class for those particles to estimate generalization performance. While the specific class approach performed well for rBC and Fe3O4 (≥99 % of these aerosols are correctly identified), its classification of other aerosol types is significantly worse (only 47 %–66 % of other particles are correctly identified). Using the broader class approach, we find a classification accuracy of 99 % for FeOx samples measured in the laboratory. The method allows for classification of FeOx as anthropogenic or dust-like for aerosols with effective spherical diameters from 170 to >1200 nm. The misidentification of both dust-like aerosols and rBC as anthropogenic FeOx is small, with <3 % of the dust-like aerosols and <0.1 % of rBC misidentified as FeOx for the broader class case. When applying this method to atmospheric observations taken in Boulder, CO, a clear mode consistent with FeOx was observed, distinct from dust-like aerosols.
APA, Harvard, Vancouver, ISO, and other styles
27

Saukko, E., A. T. Lambe, P. Massoli, J. P. Wright, D. R. Croasdale, D. A. Pedernera, T. B. Onasch, et al. "Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors." Atmospheric Chemistry and Physics Discussions 12, no. 2 (February 8, 2012): 4447–76. http://dx.doi.org/10.5194/acpd-12-4447-2012.

Full text
Abstract:
Abstract. The physical phase state (solid, semi-solid, or liquid) of secondary organic aerosol (SOA) particles has important implications for a number of atmospheric processes. We report the phase state of SOA particles spanning a wide range of oxygen to carbon ratios (O/C), used here as a surrogate for SOA oxidation level, produced in a flow tube reactor by photo-oxidation of various atmospherically relevant surrogate anthropogenic and biogenic volatile organic compounds (VOCs). The phase state of laboratory-generated SOA was determined by the particle bounce behavior after inertial impaction on a polished steel substrate. The measured bounce fraction was evaluated as a function of relative humidity and SOA oxidation level (O/C) measured by an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-ToF AMS). The main findings of the study are: (1) Biogenic and anthropogenic SOA particles are found to be solid or semi-solid until a relative humidity of at least 50 % RH at impaction is reached. (2) Long-chain alkanes produce liquid SOA particles when generated at low oxidation level of O/C<0.2, but at higher oxidation levels they solidify. (3) Increasing sulphuric acid (H2SO4) within the SOA particles reduces the threshold of humidity-induced phase changes. (4) The bounce behavior of the various SOA systems did not show a consistent linear relationship with the particle O/C. Rather, the molar mass of the gas-phase VOC precursor showed a positive correlation with the resistance to the RH-induced phase change of the formed SOA particles.
APA, Harvard, Vancouver, ISO, and other styles
28

Settimo, Gaetano, Maria Eleonora Soggiu, Marco Inglessis, Maurizio Manigrasso, and Pasquale Avino. "Submicron and Ultrafine Particles in Downtown Rome: How the Different Euro Engines Have Influenced Their Behavior for Two Decades." Atmosphere 11, no. 9 (August 24, 2020): 894. http://dx.doi.org/10.3390/atmos11090894.

Full text
Abstract:
Today, submicron particles are recognized as the new target in environmental sciences and human health issues as well. Their level in urban air is strongly affected by anthropogenic sources, i.e., domestic heating and autovehicular traffic, but the availability of large datasets represents a limit in the knowledge both of the behavior and of the relative levels. This paper would like to highlight the role of these two anthropogenic sources in a big city such as Rome in the particle formation/removal processes in the range 18–750 nm using a Scanning Mobility Particle Analyser (SMPS). The investigation starts from data collected in the previous decade (2010) and analyzes the role played by different Euro (0–6) engines on the particle levels as well as the responsibility of different biomass burning in this issue. Furthermore, a chemometric approach (Cluster Analysis, CA, and Principal Component Analysis, PCA) has allowed the identification of three different clusters, strongly dependent on the accumulation and nucleation modes of the Ultrafine Particles. On the other hand, the PCA demonstrated a scatter distribution in December larger than that in October, justified by the different sources present in these periods.
APA, Harvard, Vancouver, ISO, and other styles
29

Gordon, Hamish, Kamalika Sengupta, Alexandru Rap, Jonathan Duplissy, Carla Frege, Christina Williamson, Martin Heinritzi, et al. "Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation." Proceedings of the National Academy of Sciences 113, no. 43 (October 10, 2016): 12053–58. http://dx.doi.org/10.1073/pnas.1602360113.

Full text
Abstract:
The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol–cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m−2 (27%) to −0.60 W m−2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.
APA, Harvard, Vancouver, ISO, and other styles
30

Miler, Miloš, and Mateja Gosar. "Assessment of Metal Pollution Sources by SEM/EDS Analysis of Solid Particles in Snow: A Case Study of Žerjav, Slovenia." Microscopy and Microanalysis 19, no. 6 (August 28, 2013): 1606–19. http://dx.doi.org/10.1017/s1431927613013202.

Full text
Abstract:
AbstractSolid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic–anthropogenic, anthropogenic, and secondary weathering products. Geogenic–anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.
APA, Harvard, Vancouver, ISO, and other styles
31

Ahlm, L., J. Julin, C. Fountoukis, S. N. Pandis, and I. Riipinen. "Particle number concentrations over Europe in 2030: the role of emissions and new particle formation." Atmospheric Chemistry and Physics Discussions 13, no. 4 (April 3, 2013): 8769–803. http://dx.doi.org/10.5194/acpd-13-8769-2013.

Full text
Abstract:
Abstract. The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulphur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 μm (PM2.5) focusing on a photochemically active period. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (Ntot) will decrease by 30–70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N100), a proxy for cloud condensation nuclei (CCN) concentration, is predicted to decrease by 40–70% during the same period. The predicted decrease in Ntot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60–80% in both Ntot and N100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing Ntot. For N100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted reductions in both Ntot and N100 between 2008 and 2030 in this study will likely reduce both the aerosol direct and indirect effects, and limit the damaging effects of aerosol particles on human health in Europe.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, M., and J. E. Penner. "Aerosol indirect forcing in a global model with particle nucleation." Atmospheric Chemistry and Physics Discussions 8, no. 4 (July 22, 2008): 13943–98. http://dx.doi.org/10.5194/acpd-8-13943-2008.

Full text
Abstract:
Abstract. The number concentration of cloud condensation nuclei (CCN) formed as a result of anthropogenic emissions is a key uncertainty in the study of aerosol indirect forcing and global climate change. Here, we use a global aerosol model that includes an empirical boundary layer nucleation mechanism, the use of primary-emitted sulfate particles to represent sub-grid scale nucleation, as well as binary homogeneous nucleation to explore how nucleation affects the CCN concentration and the first aerosol indirect effect (AIE). The inclusion of the boundary layer nucleation scheme increases the global average CCN concentrations in the boundary layer by 31.4% when no primary-emitted sulfate particles are included and by 5.3% when they are included. Particle formation with the boundary layer nucleation scheme decreases the first indirect forcing over ocean, and increases the first indirect forcing over land when primary sulfate particles are included. This suggests that whether particle formation from aerosol nucleation increases or decreases aerosol indirect effects largely depends on the relative change of primary particles and SO2 emissions from the preindustrial to the present day atmosphere. Including primary-emitted sulfate particle significantly increases both the anthropogenic fraction of CCN concentrations and the first aerosol indirect forcing. The forcing from various treatments of aerosol nucleation ranges from −1.22 to −2.03 w/m2. This large variation shows the importance of better quantifying aerosol nucleation mechanisms for the prediction of CCN concentrations and aerosol indirect effects.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, M., and J. E. Penner. "Aerosol indirect forcing in a global model with particle nucleation." Atmospheric Chemistry and Physics 9, no. 1 (January 14, 2009): 239–60. http://dx.doi.org/10.5194/acp-9-239-2009.

Full text
Abstract:
Abstract. The number concentration of cloud condensation nuclei (CCN) formed as a result of anthropogenic emissions is a key uncertainty in the study of aerosol indirect forcing and global climate change. Here, we use a global aerosol model that includes an empirical boundary layer nucleation mechanism, the use of primary-emitted sulfate particles to represent sub-grid scale nucleation, as well as binary homogeneous nucleation to explore how nucleation affects the CCN concentration and the first aerosol indirect effect (AIE). The inclusion of the boundary layer nucleation scheme increases the global average CCN concentrations in the boundary layer by 31.4% when no primary-emitted sulfate particles are included and by 5.3% when they are included. Particle formation with the boundary layer nucleation scheme decreases the first indirect forcing over ocean, and increases the first indirect forcing over land when primary sulfate particles are included. This suggests that whether particle formation from aerosol nucleation increases or decreases aerosol indirect effects largely depends on the relative change of primary particles and SO2 emissions from the preindustrial to the present day atmosphere. Including primary-emitted sulfate particle significantly increases both the anthropogenic fraction of CCN concentrations and the first aerosol indirect forcing. The forcing from various treatments of aerosol nucleation ranges from −1.22 to −2.03 w/m2. This large variation shows the importance of better quantifying aerosol nucleation mechanisms for the prediction of CCN concentrations and aerosol indirect effects.
APA, Harvard, Vancouver, ISO, and other styles
34

Hamed, A., W. Birmili, J. Joutsensaari, S. Mikkonen, A. Asmi, B. Wehner, G. Spindler, et al. "Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO<sub>2</sub> emissions between 1996 and 2006." Atmospheric Chemistry and Physics 10, no. 3 (February 2, 2010): 1071–91. http://dx.doi.org/10.5194/acp-10-1071-2010.

Full text
Abstract:
Abstract. In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn is a main precursor for atmospheric particle nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. We have attempted to evaluate the influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF) using two different data sets (1996–1997; 2003–2006) of experimental particle number size distributions (diameter range 3–750 nm) from the atmospheric research station Melpitz near Leipzig, Germany. Between the two periods SO2 concentrations decreased by 65% on average, while the frequency of NPF events dropped by 45%. Meanwhile, the average formation rate of 3 nm particles decreased by 68% on average. The trends were statistically significant and therefore suggest a connection between the availability of anthropogenic SO2 and freshly formed new particles. In contrast to the decrease in new particle formation, we found an increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and the global radiation intensity, we were able to define the characteristic range of atmospheric conditions under which particle formation events take place at the Melpitz site. While the decrease in the concentrations and formation rates of the new particles was rather evident, no similar decrease was found with respect to the generation of cloud condensation nuclei (CCN; particle diameter >100 nm) as a result of atmospheric nucleation events. On the contrary, the production of CCN following nucleation events appears to have increased by tens of percents. Our aerosol dynamics model simulations suggest that such an increase can be caused by the increased particle growth rate.
APA, Harvard, Vancouver, ISO, and other styles
35

Leaitch, W. R., U. Lohmann, L. M. Russell, T. Garrett, N. C. Shantz, D. Toom-Sauntry, J. W. Strapp, et al. "Cloud albedo increase from carbonaceous aerosol." Atmospheric Chemistry and Physics Discussions 10, no. 2 (February 1, 2010): 2131–68. http://dx.doi.org/10.5194/acpd-10-2131-2010.

Full text
Abstract:
Abstract. Atmospheric cooling from the effect of anthropogenic carbonaceous aerosol particles on the reflectivity of sunlight by water clouds remains an uncertainty for climate prediction. Airborne measurements of aerosol and cloud properties as well as light extinction were made below, in and above stratocumulus over the Northwest Atlantic Ocean on consecutive days. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3, respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3, respectively. Correspondingly, the number concentrations of aerosol particles below cloud were approximately a factor of two higher on the second day, while the below-cloud size distributions were similar on both days. The cloud droplet number concentrations (CDNC) on the second day were approximately three times higher than the CDNC measured on the first day, and the vertically integrated cloud light extinction measurements indicate a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Locally, this albedo increase translates to a daytime radiative cooling of ~12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.
APA, Harvard, Vancouver, ISO, and other styles
36

Shao, Yunqi, Aristeidis Voliotis, Mao Du, Yu Wang, Kelly Pereira, Jacqueline Hamilton, M. Rami Alfarra, and Gordon McFiggans. "Chemical composition of secondary organic aerosol particles formed from mixtures of anthropogenic and biogenic precursors." Atmospheric Chemistry and Physics 22, no. 15 (August 2, 2022): 9799–826. http://dx.doi.org/10.5194/acp-22-9799-2022.

Full text
Abstract:
Abstract. A series of experiments was designed and conducted in the Manchester Aerosol Chamber (MAC) to study the photo-oxidation of single and mixed biogenic (isoprene and α-pinene) and anthropogenic (o-cresol) precursors in the presence of NOx and ammonium sulfate seed particles. Several online techniques (HR-ToF-AMS, semi-continuous GC-MS, NOx and O3 analyser) were coupled to the MAC to monitor the gas and particle mass concentrations. Secondary organic aerosol (SOA) particles were collected onto a quartz-fibre filter at the end of each experiment and analysed using liquid chromatography–ultrahigh-resolution mass spectrometry (LC-Orbitrap MS). The SOA particle chemical composition in single and mixed precursor systems was investigated using non-targeted accurate mass analysis of measurements in both negative and positive ionization modes, significantly reducing data complexity and analysis time, thereby providing a more complete assessment of the chemical composition. This non-targeted analysis is not widely used in environmental science and has never been previously used in atmospheric simulation chamber studies. Products from α-pinene were found to dominate the binary mixed α-pinene–isoprene system in terms of signal contributed and the number of particle components detected. Isoprene photo-oxidation was found to generate negligible SOA particle mass under the investigated experimental conditions, and isoprene-derived products made a negligible contribution to particle composition in the α-pinene–isoprene system. No compounds uniquely found in this system sufficiently contributed to be reliably considered a tracer compound for the mixture. Methyl-nitrocatechol isomers (C7H7NO4) and methyl-nitrophenol (C7H7NO3) from o-cresol oxidation made dominant contributions to the SOA particle composition in both the o-cresol–isoprene and o-cresol–α-pinene binary systems in negative ionization mode. In contrast, interactions in the oxidation mechanisms led to the formation of compounds uniquely found in the mixed o-cresol-containing binary systems in positive ionization mode. C9H11NO and C8H8O10 made large signal contributions in the o-cresol–isoprene binary system. The SOA molecular composition in the o-cresol–α-pinene system in positive ionization mode is mainly driven by the high-molecular-weight compounds (e.g. C20H31NO4 and C20H30O3) uniquely found in the mixture. The SOA particle chemical composition formed in the ternary system is more complex. The molecular composition and signal abundance are both markedly similar to those in the single α-pinene system in positive ionization mode, with major contributions from o-cresol products in negative ionization mode.
APA, Harvard, Vancouver, ISO, and other styles
37

Spracklen, D. V., K. S. Carslaw, M. Kulmala, V. M. Kerminen, G. W. Mann, and S. L. Sihto. "The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales." Atmospheric Chemistry and Physics Discussions 6, no. 4 (August 3, 2006): 7323–68. http://dx.doi.org/10.5194/acpd-6-7323-2006.

Full text
Abstract:
Abstract. The contribution of boundary layer nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the boundary layer at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm−3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of boundary layer particle formation over tropical regions and the Amazon is negligible. Particle concentrations are enhanced by a factor 3–10 over the remote Southern Ocean (30–70° S), resulting in total concentrations of ~250–1000 cm−3, in good agreement with observations. Particle formation tends to peak towards the top of the marine boundary layer and there is a lack of obvious burst-like behaviour at the sea surface. This result suggests that new particle formation in the marine boundary layer could be confused with entrainment from the free troposphere. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget.
APA, Harvard, Vancouver, ISO, and other styles
38

Saukko, E., A. T. Lambe, P. Massoli, T. Koop, J. P. Wright, D. R. Croasdale, D. A. Pedernera, et al. "Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors." Atmospheric Chemistry and Physics 12, no. 16 (August 17, 2012): 7517–29. http://dx.doi.org/10.5194/acp-12-7517-2012.

Full text
Abstract:
Abstract. The physical phase state (solid, semi-solid, or liquid) of secondary organic aerosol (SOA) particles has important implications for a number of atmospheric processes. We report the phase state of SOA particles spanning a wide range of oxygen to carbon ratios (O / C), used here as a surrogate for SOA oxidation level, produced in a flow tube reactor by photo-oxidation of various atmospherically relevant surrogate anthropogenic and biogenic volatile organic compounds (VOCs). The phase state of laboratory-generated SOA was determined by the particle bounce behavior after inertial impaction on a polished steel substrate. The measured bounce fraction was evaluated as a function of relative humidity and SOA oxidation level (O / C) measured by an Aerodyne high resolution time of flight aerosol mass spectrometer (HR-ToF AMS). The main findings of the study are: (1) biogenic and anthropogenic SOA particles are found to be amorphous solid or semi-solid based on the measured bounced fraction (BF), which was typically higher than 0.6 on a 0 to 1 scale. A decrease in the BF is observed for most systems after the SOA is exposed to relative humidity of at least 80% RH, corresponding to a RH at impaction of 55%. (2) Long-chain alkanes have a low BF (indicating a "liquid-like", less viscous phase) particles at low oxidation levels (BF < 0.2 ± 0.05 for O / C = 0.1). However, BF increases substantially upon increasing oxidation. (3) Increasing the concentration of sulphuric acid (H2SO4) in solid SOA particles (here tested for longifolene SOA) causes a decrease in BF levels. (4) In the majority of cases the bounce behavior of the various SOA systems did not show correlation with the particle O / C. Rather, the molar mass of the gas-phase VOC precursor showed a positive correlation with the resistance to the RH-induced phase change of the formed SOA particles.
APA, Harvard, Vancouver, ISO, and other styles
39

Kontkanen, Jenni, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach, et al. "Size-resolved particle number emissions in Beijing determined from measured particle size distributions." Atmospheric Chemistry and Physics 20, no. 19 (October 5, 2020): 11329–48. http://dx.doi.org/10.5194/acp-20-11329-2020.

Full text
Abstract:
Abstract. The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions, based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in a diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of the size distributions of particle number emissions in urban environments and for validating emission inventories and models. In the future, the method will be developed by modeling the transport of particles from different sources to obtain more accurate estimates of particle number emissions.
APA, Harvard, Vancouver, ISO, and other styles
40

Kesti, Jutta, John Backman, Ewan J. O'Connor, Anne Hirsikko, Eija Asmi, Minna Aurela, Ulla Makkonen, et al. "Aerosol particle characteristics measured in the United Arab Emirates and their response to mixing in the boundary layer." Atmospheric Chemistry and Physics 22, no. 1 (January 13, 2022): 481–503. http://dx.doi.org/10.5194/acp-22-481-2022.

Full text
Abstract:
Abstract. Aerosol particles play an important role in the microphysics of clouds and hence in their likelihood to precipitate. In the changing climate already-dry areas such as the United Arab Emirates (UAE) are predicted to become even drier. Comprehensive observations of the daily and seasonal variation in aerosol particle properties in such locations are required, reducing the uncertainty in such predictions. We analyse observations from a 1-year measurement campaign at a background location in the United Arab Emirates to investigate the properties of aerosol particles in this region, study the impact of boundary layer mixing on background aerosol particle properties measured at the surface, and study the temporal evolution of the aerosol particle cloud formation potential in the region. We used in situ aerosol particle measurements to characterise the aerosol particle composition, size, number, and cloud condensation nuclei (CCN) properties; in situ SO2 measurements as an anthropogenic signature; and a long-range scanning Doppler lidar to provide vertical profiles of the horizontal wind and turbulent properties to monitor the evolution of the boundary layer. Anthropogenic sulfate dominated the aerosol particle mass composition in this location. There was a clear diurnal cycle in the surface wind direction, which had a strong impact on aerosol particle total number concentration, SO2 concentration, and black carbon mass concentration. Local sources were the predominant source of black carbon as concentrations clearly depended on the presence of turbulent mixing, with much higher values during calm nights. The measured concentrations of SO2, instead, were highly dependent on the surface wind direction as well as on the depth of the boundary layer when entrainment from the advected elevated layers occurred. The wind direction at the surface or of the elevated layer suggests that the oil refineries and the cities of Dubai and Abu Dhabi and other coastal conurbations were the remote sources of SO2. We observed new-aerosol-particle formation events almost every day (on 4 d out of 5 on average). Calm nights had the highest CCN number concentrations and lowest κ values and activation fractions. We did not observe any clear dependence of CCN number concentration and κ parameter on the height of the daytime boundary layer, whereas the activation fraction did show a slight increase with increasing boundary layer height due to the change in the shape of the aerosol particle size distribution where the relative portion of larger aerosol particles increased with increasing boundary layer height. We believe that this indicates that size is more important than chemistry for aerosol particle CCN activation at this site. The combination of instrumentation used in this campaign enabled us to identify periods when anthropogenic pollution from remote sources that had been transported in elevated layers was present and had been mixed down to the surface in the growing boundary layer.
APA, Harvard, Vancouver, ISO, and other styles
41

Ahlm, L., E. D. Nilsson, R. Krejci, E. M. M&aring;rtensson, M. Vogt, and P. Artaxo. "Aerosol number fluxes over the Amazon rain forest during the wet season." Atmospheric Chemistry and Physics Discussions 9, no. 4 (August 19, 2009): 17335–83. http://dx.doi.org/10.5194/acpd-9-17335-2009.

Full text
Abstract:
Abstract. Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt=2.4×10−3·u∗ where u∗ is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, primary aerosol emission had a limited impact on the total aerosol number population in this study, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. It seems that a significant contribution of secondary aerosol particles to the aerosol population is the most reasonable explanation for the net downward flux. This is an indication that secondary aerosol particles may dominate the aerosol number population in the Amazon boundary layer and that the contribution of primary aerosol particles may be low in terms of numbers. However, aerosol flux measurements should be repeated in a more remote area of the Amazon with less influence from anthropogenic sources before any final conclusions may be drawn.
APA, Harvard, Vancouver, ISO, and other styles
42

Ahlm, L., J. Julin, C. Fountoukis, S. N. Pandis, and I. Riipinen. "Particle number concentrations over Europe in 2030: the role of emissions and new particle formation." Atmospheric Chemistry and Physics 13, no. 20 (October 22, 2013): 10271–83. http://dx.doi.org/10.5194/acp-13-10271-2013.

Full text
Abstract:
Abstract. The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulfur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 μm (PM2.5) focusing on a photochemically active period, and the implications for other seasons are discussed. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (Ntot) will decrease by 30–70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N100), a proxy for cloud condensation nuclei (CCN) concentration, is predicted to decrease by 40–70% during the same period. The predicted decrease in Ntot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60–80% in both Ntot and N100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing Ntot. For N100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted reductions in both Ntot and N100 between 2008 and 2030 in this study will likely reduce both the aerosol direct and indirect effects, and limit the damaging effects of aerosol particles on human health in Europe.
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, Xueshun, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, et al. "Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module." Atmospheric Chemistry and Physics 21, no. 12 (June 17, 2021): 9343–66. http://dx.doi.org/10.5194/acp-21-9343-2021.

Full text
Abstract:
Abstract. Aerosol microphysical processes are essential for the next generation of global and regional climate and air quality models to determine particle size distribution. The contribution of organic aerosols (OAs) to particle formation, mass, and number concentration is one of the major uncertainties in current models. A new global–regional nested aerosol model was developed to simulate detailed microphysical processes. The model combines an advanced particle microphysics (APM) module and a volatility basis set (VBS) OA module to calculate the kinetic condensation of low-volatility organic compounds and equilibrium partitioning of semi-volatile organic compounds in a 3-D framework using global–regional nested domain. In addition to the condensation of sulfuric acid, the equilibrium partitioning of nitrate and ammonium, and the coagulation process of particles, the microphysical processes of the OAs are realistically represented in our new model. The model uses high-resolution size bins to calculate the size distribution of new particles formed through nucleation and subsequent growth. The multi-scale nesting enables the model to perform high-resolution simulations of the particle formation processes in the urban atmosphere in the background of regional and global environments. By using the nested domains, the model reasonably reproduced the OA components obtained from the analysis of aerosol mass spectrometry measurements through positive matrix factorization and the particle number size distribution in the megacity of Beijing during a period of approximately a month. Anthropogenic organic species accounted for 67 % of the OAs of secondary particles formed by nucleation and subsequent growth, which is considerably larger than that of biogenic OAs. On the global scale, the model well predicted the particle number concentration in various environments. The microphysical module combined with the VBS simulated the universal distribution of organic components among the different aerosol populations. The model results strongly suggest the importance of anthropogenic organic species in aerosol particle formation and growth at polluted urban sites and over the whole globe.
APA, Harvard, Vancouver, ISO, and other styles
44

Lai, Shiyi, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, et al. "New particle formation induced by anthropogenic–biogenic interactions on the southeastern Tibetan Plateau." Atmospheric Chemistry and Physics 24, no. 4 (February 28, 2024): 2535–53. http://dx.doi.org/10.5194/acp-24-2535-2024.

Full text
Abstract:
Abstract. New particle formation (NPF) plays a crucial role in the atmospheric aerosol population and has significant implications on climate dynamics, particularly in climate-sensitive zones such as the Tibetan Plateau (TP). However, our understanding of NPF on the TP is still limited due to a lack of comprehensive measurements and verified model simulations. To fill this knowledge gap, we conducted an integrated study combining comprehensive field measurements and chemical transport modeling to investigate NPF events on the southeastern TP during the pre-monsoon season. NPF was observed to occur frequently on clear-sky days on the southeastern TP, contributing significantly to the cloud condensation nuclei (CCN) budget in this region. The observational evidence suggests that highly oxygenated organic molecules (HOMs) from monoterpene oxidation participate in the nucleation on the southeastern TP. After updating the monoterpene oxidation chemistry and nucleation schemes in the meteorology–chemistry model, the model well reproduces observed NPF and reveals an extensive occurrence of NPF across the southeastern TP. The dominant nucleation mechanism is the synergistic nucleation of sulfuric acid, ammonia, and HOMs, driven by the transport of anthropogenic precursors from South Asia and the presence of abundant biogenic gases. By investigating the vertical distribution of NPF, we find a significant influence of vertical transport on the southeastern TP. More specifically, strong nucleation near the surface leads to an intense formation of small particles, which are subsequently transported upward. These particles experience enhanced growth to larger sizes in the upper planetary boundary layer (PBL) due to favorable conditions such as lower temperatures and a reduced condensation sink. As the PBL evolves, the particles in larger sizes are brought back to the ground, resulting in a pronounced increase in near-surface particle concentrations. This study highlights the important roles of anthropogenic–biogenic interactions and meteorological dynamics in NPF on the southeastern TP.
APA, Harvard, Vancouver, ISO, and other styles
45

Yan, Chao, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, et al. "The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing." Atmospheric Chemistry and Physics 22, no. 18 (September 19, 2022): 12207–20. http://dx.doi.org/10.5194/acp-22-12207-2022.

Full text
Abstract:
Abstract. During the COVID-19 lockdown, the dramatic reduction of anthropogenic emissions provided a unique opportunity to investigate the effects of reduced anthropogenic activity and primary emissions on atmospheric chemical processes and the consequent formation of secondary pollutants. Here, we utilize comprehensive observations to examine the response of atmospheric new particle formation (NPF) to the changes in the atmospheric chemical cocktail. We find that the main clustering process was unaffected by the drastically reduced traffic emissions, and the formation rate of 1.5 nm particles remained unaltered. However, particle survival probability was enhanced due to an increased particle growth rate (GR) during the lockdown period, explaining the enhanced NPF activity in earlier studies. For GR at 1.5–3 nm, sulfuric acid (SA) was the main contributor at high temperatures, whilst there were unaccounted contributing vapors at low temperatures. For GR at 3–7 and 7–15 nm, oxygenated organic molecules (OOMs) played a major role. Surprisingly, OOM composition and volatility were insensitive to the large change of atmospheric NOx concentration; instead the associated high particle growth rates and high OOM concentration during the lockdown period were mostly caused by the enhanced atmospheric oxidative capacity. Overall, our findings suggest a limited role of traffic emissions in NPF.
APA, Harvard, Vancouver, ISO, and other styles
46

López Velásquez, Nayeli Guadalupe, Lizeth Lara Solís, Lyli Martínez Herrera, and María del Carmen Alejo Plata. "¿Qué hay en el menú? Basura antropogénica en el contenido estomacal del calamar Lolliguncula diomedeae capturado por pesca artesanal en Puerto Ángel, Oaxaca, México." Ciencia y Mar 27, no. 80 (May 2, 2023): 41–48. http://dx.doi.org/10.59673/cym.v27i80.3.

Full text
Abstract:
Squid are a group scarcely studied in terms of their susceptibility to the ingestion of anthropogenic fibers. Here we provide evidence for anthropogenic garbage ingestion in the dart squid L. diomedeae. The squid were collected by artisanal fishermen in Puerto Ángel Oaxaca, Mexico. Stomachs and digestive tracts of 103 squids were examined, 51.9% of the samples con-tained at least one contaminating particle. A total of 445 particles were identified, the majority were fibers (94.4%) with a length of 0.2 to 5 mm; translucent (47%) and blue (22%) fibers were the most common. The level of risk posed to squid species by this level of contamination is unknown. This study presents the first empirical evidence on the inges-tion of anthropogenic fibers in a species of coastal squid with ecological and nutritional importance.
APA, Harvard, Vancouver, ISO, and other styles
47

Ebert, M., A. Worringen, N. Benker, S. Mertes, E. Weingartner, and S. Weinbruch. "Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds." Atmospheric Chemistry and Physics 11, no. 6 (March 25, 2011): 2805–16. http://dx.doi.org/10.5194/acp-11-2805-2011.

Full text
Abstract:
Abstract. During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.
APA, Harvard, Vancouver, ISO, and other styles
48

Shibata, Ken, Michio Endo, Naomichi Yamamoto, Jun Yoshinaga, Yukio Yanagisawa, Osamu Endo, Sumio Goto, Minoru Yoneda, Yasuyuki Shibata, and Masatoshi Morita. "Temporal Variation of Radiocarbon Concentration in Airborne Particulate Matter in Tokyo." Radiocarbon 46, no. 1 (2004): 485–90. http://dx.doi.org/10.1017/s0033822200039795.

Full text
Abstract:
The temporal radiocarbon variation (in terms of percent Modern Carbon: pMC) of size-fractionated airborne particulate matter (APM) collected in Tokyo between April 2002 and February 2003 was analyzed in order to get an insight into the sources of carbonaceous particles. Results indicated significant biogenic origins (approximately 40 pMC on average). In general, the seasonal and particle size variations in pMC were relatively small, with 2 exceptions: elevated pMC in coarse particles in April and October 2002, and relatively low pMC in the finest particle size fraction collected in August 2002. The former finding could be tentatively attributed to the abundance of coarse particles of biological origins, such as pollen; the latter might be due to an increased fraction of anthropogenic secondary particles.
APA, Harvard, Vancouver, ISO, and other styles
49

Ma, X., F. Yu, and G. Luo. "Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties." Atmospheric Chemistry and Physics Discussions 12, no. 1 (January 3, 2012): 193–240. http://dx.doi.org/10.5194/acpd-12-193-2012.

Full text
Abstract:
Abstract. Aerosol direct radiative forcing (DRF) plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.). The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 1 km resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC) and primary organic carbon (POC), the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA) for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2 depending on assumptions regarding the mixing state, size and density of particles.
APA, Harvard, Vancouver, ISO, and other styles
50

Ma, X., F. Yu, and G. Luo. "Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties." Atmospheric Chemistry and Physics 12, no. 12 (June 26, 2012): 5563–81. http://dx.doi.org/10.5194/acp-12-5563-2012.

Full text
Abstract:
Abstract. Aerosol direct radiative forcing (DRF) plays an important role in global climate change but has a large uncertainty. Here we investigate aerosol DRF with GEOS-Chem-APM, a recently developed global aerosol microphysical model that is designed to capture key particle properties (size, composition, coating of primary particles by volatile species, etc.). The model, with comprehensive chemistry, microphysics and up-to-date emission inventories, is driven by assimilated meteorology, which is presumably more realistic compared to the model-predicted meteorology. For this study, the model is extended by incorporating a radiation transfer model. Optical properties are calculated using Mie theory, where the core-shell configuration could be treated with the refractive indices from the recently updated values available in the literature. The surface albedo is taken from MODIS satellite retrievals for the simulation year, in which the data set for the 8-day mean at 0.05° (5600 m) resolution for 7 wavebands is provided. We derive the total and anthropogenic aerosol DRF, mainly focus on the results of anthropogenic aerosols, and then compare with those values reported in previous studies. In addition, we examine the anthropogenic aerosol DRF's dependence on several key factors, including the particle size of black carbon (BC) and primary organic carbon (POC), the density of BC and the mixing state. Our studies show that the anthropogenic aerosol DRF at top of atmosphere (TOA) for all sky is −0.41 W m−2. However, the sensitivity experiments suggest that the magnitude could vary from −0.08 W m−2 to −0.61 W m−2, depending on assumptions regarding the mixing state, size and density of particles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography