Academic literature on the topic 'Antennas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antennas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antennas"
Ghodake, Asha, and Balaji Hogade. "ISM Band 2.4 GHz Wearable Textile Antenna for Glucose Level Monitoring." International Journal of Electrical and Electronics Research 11, no. 1 (March 30, 2023): 39–43. http://dx.doi.org/10.37391/ijeer.110106.
Full textFu, Xiaoyi, Yuntao Hua, Wenlai Ma, Hutao Cui, and Yang Zhao. "Thermal field simulation and material parameter optimization for spaceborne annular truss antennas." Journal of Physics: Conference Series 2691, no. 1 (January 1, 2024): 012054. http://dx.doi.org/10.1088/1742-6596/2691/1/012054.
Full textSaeidi, Tale, Idris Ismail, Wong Peng Wen, Adam R. H. Alhawari, and Ahmad Mohammadi. "Ultra-Wideband Antennas for Wireless Communication Applications." International Journal of Antennas and Propagation 2019 (April 22, 2019): 1–25. http://dx.doi.org/10.1155/2019/7918765.
Full textYeom, Insu, Junghan Choi, Sung-su Kwoun, Byungje Lee, and Changwon Jung. "Analysis of RF Front-End Performance of Reconfigurable Antennas with RF Switches in the Far Field." International Journal of Antennas and Propagation 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/385730.
Full textGargi, C., J. S. Kennedy, and T. D. Jayabal. "Morphometrics and distribution of antennal sensillae of both sexes of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae)." Journal of Applied and Natural Science 14, SI (July 15, 2022): 41–48. http://dx.doi.org/10.31018/jans.v14isi.3563.
Full textRamalakshmi, Gudla, and P. Mallikarjuna Rao. "A Novel Metamaterial Inspired 2nd Iteration Koch Fractal Antenna for Wi-Fi, WLAN, C band and X band Wireless Communications." Journal of Physics: Conference Series 2062, no. 1 (November 1, 2021): 012004. http://dx.doi.org/10.1088/1742-6596/2062/1/012004.
Full textSedghi, Tohid, Mahdi Jalali, and Tohid Aribi. "Fabrication of CPW-Fed Fractal Antenna for UWB Applications with Omni-Directional Patterns." Scientific World Journal 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/391602.
Full textKorkmaz, Sumeyye, Mohammad Alibakhshikenari, and Lida Kouhalvandi. "A Framework for Optimizing Antenna Through Genetic Algorithm-Based Neural Network." Acta Marisiensis. Seria Technologica 20, no. 1 (June 1, 2023): 49–53. http://dx.doi.org/10.2478/amset-2023-0009.
Full textMohan, Anand, and M. Sundararajan. "FRACTAL ANTENNA – WIRELESS COMMUNICATION NEW BEGINNING BREAKTHROUGH IN DIGITAL ERA." Acta Informatica Malaysia 4, no. 1 (January 23, 2020): 01–06. http://dx.doi.org/10.26480/aim.01.2020.01.06.
Full textR, Murugasamy, Abirami P, Aruna P, Dharani S, and Divyasri M. "IoT Based Antenna Positioning System." International Journal for Research in Applied Science and Engineering Technology 11, no. 3 (March 31, 2023): 1689–95. http://dx.doi.org/10.22214/ijraset.2023.49758.
Full textDissertations / Theses on the topic "Antennas"
Rouibah, Ammar. "Un modèle analytique pour l'antenne microruban rectangulaire." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209359.
Full textComme pour toute antenne, il est important de disposer pour ces antennes d’un modèle analytique qui permette une bonne compréhension du fonctionnement et fournisse de manière rapide des valeurs pour les principaux paramètres (fréquence de travail, impédance, gain, rendement et bande passante).
Au fil des ans, deux modèles, chacun comprenant de nombreuses variantes, ont été développés :le modèle dit « de la ligne de transmission » et le modèle dit « de la cavité ». Ces modèles sont soit peu rigoureux, soit complexes et donnent souvent des résultats assez éloignés de la réalité.
L’objectif de ce travail est double :définir un modèle qui soit d’une part aussi simple et direct que possible et d’autre part aussi précis que possible.
Le premier objectif est atteint dans la mesure où on n’utilise que la loi fondamentale du rayonnement des courants réels (électriques) en excluant tout recours à des courants virtuels (magnétiques).
Concernant l’objectif de précision, des comparaisons nombreuses avec des résultats d’un simulateur purement numérique et des mesures indiquent une amélioration pour tous les paramètres mais en particulier pour l’impédance qui est le point faible de tous les modèles existants.
Microstrip antennas and the rectangular microstrip antenna in particular have been studied and used for several decades.
As every antenna, the microstrip antenna requires a good analytical model that provides physical insight and an easy prediction of the antenna parameters (resonance frequency, impedance, gain, efficiency and bandwidth).
Over the years, two families of models have been developed, each involving many variants: the “transmission line” and the “cavity” models. These models either lack accuracy or are very complex and produce results that may be far away from reality.
The objective of this work is double: defining a model as simple and direct as possible and on the other hand as accurate as possible.
The first objective has been reached as all our calculations rest on the fundamental radiation formula by real (electrical) currents excluding any virtual (magnetic) currents.
Regarding accuracy, comparisons to numerical simulations and measurements show an improvement, in particular with regard to the prediction of the impedance parameters, which is the weak point of all existing models.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Sonkki, M. (Marko). "Wideband and multi-element antennas for mobile applications." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526201085.
Full textTiivistelmä Väitöskirjassa esitetään uusia laajakaistaisia ja monielementtiantenneja matkaviestimiin. Väitöskirja koostuu neljästä pääalueesta: pintavirtojen muototeoria, laajakaistaiset antennit, monielementtiantennit sekä laajakaistaiset monielementtiantennit. Teoriaosassa säteilykenttiä on aluksi tutkittu pallon pinnalla sekä skalaaripotentiaaleina että pintavirtavektoreina, jonka jälkeen niitä on verrattu mobiilin laitteen maatason ominaispintavirtojen synnyttämiin säteilykenttiin. Teoriaosassa osoitetaan, että pallon pinnalla sekä tasomaisella suorakaiteen muotoisella pinnalla on mahdollista herättää samat säteilykentät. Myöhemmin väitöskirjassa esitettävien uudenlaisten antennirakenteiden ominaisuuksia verrataan teoriaosassa esitettyihin pintavirtoihin ja säteilykenttiin. Teoriaosuuden jälkeen osoitetaan miten säteilevä sähkömagneettinen kenttä saadaan herätettyä laajalla taajuusalueella. Tähän on otettu kaksi eri lähestymistapaa, joista ensimmäisessä esitellään ja tutkitaan kvasikomplementaarista antennirakennetta (QCA). Kvasikomplementaarisessa antennirakenteessa sisääntuloimpedanssin imaginaariosa kompensoidaan yhdistämällä sähköinen johde ja magneettinen rako samaan antenniin. Samanaikaisesti perusmuoto herätetään laajalla taajuusalueella, jolla varmistetaan antennin hyvät säteilyominaisuudet koko toimintataajuusalueella. Toisessa lähestymistavassa käytetään kahta symmetrisesti asetettua antennielementtiä, joita syötetään symmetrisesti samalla amplitudilla ja vaiheella. Kun sähkömagneettinen kenttä herätetään symmetrisesti, korkeamman kertaluvun muotojen herättäminen voidaan välttää laajalla taajuusalueella. Symmetrisesti syötetyillä antennirakenteilla saavutettu -6 dB suhteellinen impedanssikaistanleveys on 37.5–80 %. Useita syöttöelementtejä käytettäessä voidaan mobiilin laitteen maatasossa herättää yhdellä pistetaajuudella monta toisistaan riippumatonta säteilykenttää. Koska herätetyt kentät ovat toisistaan riippumattomia, on niiden välinen korrelaatio myös pieni. Kyseisellä rakenteella on mahdollista toteuttaa säteilykuviodiversiteetti erittäin pienessä tilassa, kuten matkapuhelimessa. Toisaalta, kun yhdistetään kaksi QCA-elementtiä yhdeksi monielementtiratkaisuksi, voidaan toteuttaa laajakaistainen diversiteettiantenni, jonka suhteellinen -6 dB impedanssikaistanleveys on 87.5 %. Vastaavasti kahdella laajakaistaisella QCA-elementillä toteutetulla MIMO-ratkaisulla päästään 95 % suhteelliseen -6 dB impedanssikaistanleveyteen. Molemmilla ratkaisuilla on erittäin hyvät säteilyominaisuudet sekä alhainen korrelaatio ja pieni keskinäiskytkentä antennielementtien välillä. Suunniteltaessa toimivaa laajakaistaista antennirakennetta, on tärkeää ottaa huomioon antennisyötön impedanssisovitus, jotta antennin suorituskyky ei heikkenisi. Lisäksi balansoidussa rakenteissa tulee olla laajakaistainen baluni, jolla vältetään säteilykuvion vääristyminen. Väitöskirjan syöttöratkaisuissa on käytetty kaupallisia sähkömagneettisia simulaattoreita, joilla antennirakenne voidaan mallintaa kolmiulotteisesti, ja joilla laajakaistainen syöttö saadaan optimoitua haluttuun antenniin. Suurin osa esitellyistä antennirakenteista on simulointien lisäksi myös mitattu, jolloin niiden toimivuus käytännössä pystytään todentamaan rakentamalla prototyyppiantenni. Yleisesti väitöskirjassa esitellään tasomaisia antenniratkaisuja johtavassa maatasossa, joissa säteilevät pintavirrat herätetään mahdollisimman laajalla taajuusalueella. Ideana on löytää laajakaistaisia antenni- ja syöttörakenteita, joilla saadaan herätettyä perusmuoto tai jokin muu haluttu muoto. Ajatuksena on välttää korkeamman kertaluvun muotojen herättäminen, jotka voivat pilata antennin suorituskyvyn. Väitöskirjassa osoitetaan myös, että pienikokoisella antennilla on mahdollista herättää korkeamman kertaluvun muotoja pistetaajuudella käyttämällä useita heräte-elementtejä
Nikolayev, Denys. "Miniature antennas for biomedical applications." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S149.
Full textEmerging wireless biotelemetry using miniature implantable, ingestible or injectable (in-body) devices allows continuously monitor and yield human or animal physiological parameters while maintaining mobility and quality of life. Recent advances in microelectromechanical systems and microfluidics—along with ongoing miniaturization of electronics—have empowered numerous innovations in biotelemetry devices, creating new applications in medicine, clinical research, wellness, and defense. Among the typical applications, I can mention, for example, the monitoring of physiological variables: body temperature, blood pressure, heart rate, detection of antibodies, chemical, or biological agents. Biotelemetry devices require a reliable communication system: robust, efficient, and versatile. Improving the transmission range of miniature in-body devices remains a major challenge: for the time being, they are able to operate only up to a few meters. Among the main issues to face are low radiation efficiencies (< 0.1%), antenna impedance detuning, and strong coupling to lossy and dispersive biological tissues. Thus, the main goal of the thesis is to conduct a multi-disciplinary study on development, optimization and characterization of antennas for in-body biotelemetry devices. After state-of-the-art and the context, I start with the development on both physical and numerical approaches to account for the effect of human tissues on the antenna. I propose the methodology to achieve given electromagnetic properties at a given frequency based on the full factorial experiment and surface response optimization. In addition, I describe the spherical physical phantom for the far-field characterization along with a combination of feed decoupling techniques. I proceed by reviewing the trough-body propagation mechanisms and deriving the optimal frequency for the in-body devices. I formulate the problem using four phantoms (homogeneous and heterogeneous) and perform full-wave analysis using an in-house hp-FEM code Agros 2D. Next, I study the existing antenna used by the BodyCap Company for its e-Celsius capsule and the ways on how to improve its operating range and robustness under strict integration and material constraints. The mechanisms of antenna–body coupling are analyzed and the found solution improves the antenna IEEE gain by 11 dBi (the operating range is at least tripled). The existing matching circuit and balun are optimized too for the given application reducing its size from eleven to seven discrete elements. In the following chapters, I continue studying the decoupling of antennas from a body using specific microstrip designs and dielectric loading via capsule shell. By applying the developed approaches, a high robustness and radiation efficiency can be achieved. At first, I develop a proof-of-concept antenna that demonstrates that the perfect matching (detuning immunity) is achievable for the operation within all human tissues. Based on these results, I develop a miniature and versatile biotelemetry platform: a 17 mm x 7 mm alumina capsule containing a conformal 434 MHz antenna. The antenna is well matched to 50 Ohm within the majority of human tissues and operates with an arbitrary device circuitry. Like this, one can use it ''as is,'' applying it for a wide range of in-body applications. Then, I develop a low profile conformal dual-band antenna operating in 434 MHz and 2.45 GHz bands. Such antenna can integrate both data transmission and wireless powering functionality increasing the available space inside an in-body device and increasing its scope of applications. Finally, I present the perspective developments including in-body sensing methodology. The obtained results contributes to further development of a new generation of miniature in-body devices that involve complex and dense integration of sensors, logic, and power sources
Trinh, Le-Huy. "Antennes reconfigurables pour les applications mobiles et réseaux sans fil." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4047/document.
Full textIn recent years, telecommunication technologies have enormous progress, especially cellular communications and wireless sensor networks. To meet the demand of increasing transmission capacity, improving quality of cellular communication channels, expanding the operating band of the equipment is necessary. As passive antenna has reached the limit on increasing the operating band with the small size, the use of frequency reconfigurable antenna is a feasible solution. Besides, in the applications of WSN, to reduce collisions, increase communication distance and optimize consumption, directional reconfigurable antenna is a good proposal. In this thesis we present several reconfigurable antenna structures. Firstly, a new component is introduced; digitally tunable capacitor (DTC). Thanks to its advantages, such parts are good candidate to be integrated in the antenna for cellular communication and wireless sensor network applications. After, several antennas are introduced include multiband antenna, MIMO and frequency reconfigurable antenna, which can be used to extend the operating frequency band of the communication system, optimize spectral efficiency and quality improve channel quality. The structures of these antennas are introduced together with the results of simulation and measurement for the purpose of solving the challenges given in the future cellular communications systems. And then, the proposed approach to the design of reconfigurable directional antennas is presented. Several reconfigurable directional antennas, which are used in applications of WSN, are introduced. Thanks to the use of directional antennas reconfigurable, performance of WSN system will be optimized
Kabalan, Aladdin. "Miniaturisation et modélisation d’antennes monopoles larges bandes utilisant des matériaux magnéto-diélectriques en bande VHF." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S041/document.
Full textAirplanes with multiple navigation and communication systems require broadband VHF antennas. Reduce the size of these antennas is a major challenge while keeping good performances. This thesis proposes new configurations of low profile antennas using new nanocomposite non-conductive materials consisting of magnetic nanoparticles developed at Lab-STICC. A broadband planar monopole has been developed and optimized with a 60% miniaturization rate thanks to the use of a high permeability and low loss magneto-dielectric material covering only 5% of its surface. The experimental results, in almost perfect agreement with the simulations, show that the radiation pattern is omnidirectional and that the polarization is vertical, with a good level of gain. The planar monopole antenna inserted in a MMD of limited dimensions with losses was modeled by a new multi-resonant equivalent circuit. This circuit is developed from the input impedance of the antenna and the characteristics of the MMD. and validated by the simulations with a perfect agreement between the results
Shahpari, Morteza. "Fundamental Limitations of Small Antennas." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/365747.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Gorla, Hemachandra Reddy reddy. "MINIATUIRIZED ULTRA-WIDEBAND ANTENNAS FOR WIRELESS COMMUNICATIONS." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1905.
Full textSousa, Jonas Rodrigo da Silva. "Estudo de antenas para comunicação na faixa de subterahertz." Universidade Federal Rural do Semi-Árido, 2016. http://bdtd.ufersa.edu.br:80/tede/handle/tede/766.
Full textApproved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-07-18T15:08:15Z (GMT) No. of bitstreams: 1 JonasRSS_DISSERT.pdf: 2555775 bytes, checksum: 1cffc3792b8fe12b4067e7bc74ee127d (MD5)
Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-07-18T15:11:33Z (GMT) No. of bitstreams: 1 JonasRSS_DISSERT.pdf: 2555775 bytes, checksum: 1cffc3792b8fe12b4067e7bc74ee127d (MD5)
Made available in DSpace on 2017-07-18T15:11:41Z (GMT). No. of bitstreams: 1 JonasRSS_DISSERT.pdf: 2555775 bytes, checksum: 1cffc3792b8fe12b4067e7bc74ee127d (MD5) Previous issue date: 2016-12-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The antennas in nano-metric scales are part of a line of research that has been gaining strength in recent years, being the target of numerous studies and publications in several universities in Brazil and around the world. Nano antennas are characterized as a promising new branch in the development of devices capable of being applied in different areas, in addition to communication. Occupying a prominent place in the new era of technologies, the nano antennas, here restricted only to dipole and microstrip, generate enormous expectations about this new revolution, not only between researchers, but also in a part of society. Currently, wireless communications require that radiator devices have wide bandwidth and miniaturization for mobile devices, so this dissertation discusses the potential application of antennas for communications in the frequency range in Terahertz. At these frequencies, there are numerous restrictions on the propagation of signals, so high performance antenna are necessary to allow communication with reduced losses. The purpose of this work is to study some configurations and types of antennas, such as microstrip antenna and dipole antenna, with application in the subterahertz frequency, which can be used, for example, in internal networks, medicine, photovoltaic power generation, spectroscopy, near-field microscopy and high quality images. Some configurations of antennas with various materials for communications in the frequency range will be presented to verify the feasibility of the use of nano dipole antennas and miniaturized microstrip antennas in this type of application. The methodology adopted suggests the comparison of the simulated results, through the software Ansoft HFSS ® and CST Microwave Studio ®, with the results of other published works
As antenas em escalas nanométrica fazem parte de uma linha de pesquisa que vem aumentando nos últimos anos, sendo alvo de inúmeros estudos e publicações. As nanoantenas caracterizam-se como um novo e promissor ramo no desenvolvimento de dispositivos capazes de ser aplicados em diferentes áreas, além da comunicação. Ocupando lugar de destaque na nova era das tecnologias, as nanoantenas, aqui restritas somente as de dipolo e microfita, geram enorme expectativas. Atualmente as comunicações sem fio requer que os dispositivos radiadores possuam uma ampla largura de banda e miniaturização para dispositivos móveis, assim, essa dissertação discute a aplicação potencial de antenas para comunicações na faixa de frequência em Terahertz. Nessas frequências existem inúmeras restrições na propagação de sinais, então antenas com alto rendimento são necessárias para permitir comunicação com perdas reduzidas. A proposta desse trabalho é estudar algumas configurações e tipos de antenas, tais como de antena de microfita e antena dipolo, com aplicação na faixa de frequência em subterahertz, que podem ser utilizadas, por exemplo, nas redes internas, medicina, na geração de energia fotovoltaica, espectroscopia, microscopia de campo próximo e obtenção de imagens de alta qualidade. Serão apresentadas algumas configurações de antenas e com diversos materiais para comunicações na faixa de frequência em questão, para verificar a viabilidade do uso de nanoantenas de dipolo e de antenas de microfita miniaturizadas neste tipo de aplicação. A metodologia adotada sugere a comparação dos resultados simulados, através dos softwares Ansoft HFSS ® e CST Microwave Studio ®, com os resultados de outros trabalhos publicados
2017-07-14
Martinis, Mario. "Développement et caractérisation de métamatériaux pour application en cavité : application à la conception d'antennes compactes." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S107/document.
Full textThis thesis presents new developments in cavity type antennas. The main objective of the thesis is bandwidth performance analysis of antennas in cavities with aperture sizes which are small compared to the free space wavelength. Cavities of rectangular and circular shapes in an infinite and finite ground plane are investigated in detail. So far in the literature, microstrip patch antennas were the antenna of choice for cavity type antennas. The intention of the thesis is to determine if cavity type antennas can be improved and how. To this end, the bound on bandwidth for cavity antennas is investigated theoretically. It is concluded that patch antennas, in fact, do not reach the bound for cavity antennas, which is one of the key results of the thesis. Infinite and finite sized ground plane cavity antennas are further analyzed using several simple transmission line models. The second key result of the thesis is a demonstration that a special transmission line model corresponds to antennas that reach the bound on bandwidth. This transmission line model is the basis to a new cavity antenna design. Finally, the most important result is a practical, physical, design of novel cavity antennas capable of reaching the bandwidth bound. Furthermore, several additional topics are explored; i) A comparison with stacked patches design in terms of bandwidth, ease of fabrication, and cost; ii) The extension of the bound with the inclusion of ideal magnetic materials and magnetic conductors; iii) The new antenna design use in constructing a compact antenna array; iv) The benefits of the new design for constructing small cavity antennas previously not feasible with the classical design
Li, Hui. "Decoupling and Evaluation of Multiple Antenna Systems in Compact MIMO Terminals." Doctoral thesis, KTH, Elektroteknisk teori och konstruktion, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96239.
Full textQC 20120604
Books on the topic "Antennas"
Company, Watkins-Johnson, ed. Antennas and antenna systems. Palo Alto, CA: Watkins-Johnson Co., 1990.
Find full textBlake, Lamont V. Antennas. 2nd ed. Silver Spring, Md: Munro Pub. Co., 1991.
Find full textFang, D. G. Antenna theory and microstrip antennas. Boca Raton: Taylor & Francis, 2010.
Find full textFang, D. G. Antenna theory and microstrip antennas. Boca Raton, FL: CRC Press/Taylor & Francis, 2010.
Find full textW, Long Maurice, ed. Antennas: Fundamentals, design, measurement. Raleigh, NC: SciTech Pub., 2009.
Find full textKraus, John D. Antennas. 2nd ed. New York: McGraw-Hill, 1988.
Find full textKraus, John Daniel. Antennas. 2nd ed. New York: McGraw-Hill, 1988.
Find full textKraus, John D. Antennas. 2nd ed. New York: McGraw-Hill, 1989.
Find full textM, Weiner Melvin, ed. Adaptive antennas and receivers. Boca Raton, FL: Taylor & Francis, 2005.
Find full textESA, Workshop on Mechanical Technology for Antennas (2nd 1986 Noordwijk Netherlands). Second ESA Workshop on Mechanical Technology for Antennas: Proceedings of a workshop held at ESTEC, Noordwijk, the Netherlands, 20-22 May 1986. Paris: European Space Agency, 1986.
Find full textBook chapters on the topic "Antennas"
Keller, Reto B. "Antennas." In Design for Electromagnetic Compatibility--In a Nutshell, 111–34. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14186-7_9.
Full textGroth, Mateusz, Mateusz Rzymowski, Krzysztof Nyka, and Lukasz Kulas. "Reconfigurable Antennas for Trustable Things." In Intelligent Secure Trustable Things, 151–67. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54049-3_9.
Full textDunlop, J., and D. G. Smith. "Antennas." In Telecommunications Engineering, 212–43. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-2929-7_7.
Full textWulff, Alex. "Antennas." In Beginning Radio Communications, 45–67. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5302-1_3.
Full textMaqsood, Moazam, Steven Gao, and Oliver Montenbruck. "Antennas." In Springer Handbook of Global Navigation Satellite Systems, 505–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42928-1_17.
Full textWootton, Cliff. "Antennas." In Samsung ARTIK Reference, 221–27. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2322-2_15.
Full textBalaji, S. "Antennas." In Electromagnetics Made Easy, 619–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2658-9_10.
Full textDunlop, J., and D. G. Smith. "Antennas." In Telecommunications Engineering, 216–47. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-8004-1_7.
Full textZhang, Zhiya, Masood Ur-Rehman, Xiaodong Yang, Erchin Serpedin, Aifeng Ren, Shaoli Zuo, Atiqur Rahman, and Qammer Hussain Abbasi. "Broadband Antennas." In Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications, 27–71. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8645-8.ch002.
Full textKumari, A. "Hard Ferrites for High Frequency Antenna Applications." In Materials Research Foundations, 152–84. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902318-6.
Full textConference papers on the topic "Antennas"
Sulic, E., B. Pell, S. John, Rahul K. Gupta, W. Rowe, K. Ghorbani, and K. Zhang. "Performance of Embedded Multi-Frequency Communication Devices in Smart Composite Structures." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-402.
Full textShah, Hamil, Abdullahi Inshaar, Chengzhe Zou, Shreyas Chaudhari, Saad Alharbi, Asimina Kiourti, and Ryan L. Harne. "Multiphysics Modeling and Experimental Validation of Reconfigurable, E-Textile Origami Antennas." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85603.
Full textYoon, Hwan-Sik, and Gregory Washington. "Analysis of Active Doubly Curved Antenna Structures." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0957.
Full textWang, C. S., H. Bao, and W. Wang. "Coupled Structural-Electromagnetic Optimization and Analysis of Space Intelligent Antenna Structural Systems." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59306.
Full textShahanas, K. S., R. Sruthy, K. R. Rahna, M. Sumi, and A. I. Harikrishnan. "Review on UHF RFID Tag Antenna." In 2nd International Conference on Modern Trends in Engineering Technology and Management. AIJR Publisher, 2023. http://dx.doi.org/10.21467/proceedings.160.42.
Full textKoukou, Melina, Vasilis Vellikis, Ioannis Varvaringos, Konstantinos Koutropoulos, Ioannis Myrsinias, Despina Ekaterini Argiropoulos, Andronikos Dourmisis, et al. "SDR Helix Antenna Deployment Experiment (SHADE) on board BEXUS." In Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.012.
Full textBossi, D. E., W. D. Goodhue, L. M. Johnson, M. C. Finn, K. Rauschenbach, and R. H. Rediker. "Fabrication and enhanced performance of reduced-confinement GaAlAs tapered-waveguide antennas." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ipr.1990.mi3.
Full textWashington, Gregory. "Active Aperture Antennas." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0662.
Full textAuston, D. H., X. C. Zhang, N. Froberg, B. B. Hu, and J. Darrow. "Large Aperture Photoconducting Antennas." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/peo.1991.wa1.
Full textJames, Sagil, Shubham Birar, Riken Parekh, Kushal Jain, and Kiran George. "Preliminary Study on Fractal-Based Monopole Antenna Fabricated Using 3D Polymer Printing and Selective Electrodeposition Process." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2901.
Full textReports on the topic "Antennas"
Maragoudakis, Christos E., and Edward Rede. Validated Antenna Models for Standard Gain Horn Antennas. Fort Belvoir, VA: Defense Technical Information Center, August 2009. http://dx.doi.org/10.21236/ada629345.
Full textLewis, Richard L. Spherical-wave source-scattering matrix analysis of antennas and antenna-antenna interactions. Gaithersburg, MD: National Bureau of Standards, 1995. http://dx.doi.org/10.6028/nist.tn.1373.
Full textHo, Ping-Tong. Reconfigurable Antennas. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada304993.
Full textLong, Stuart A., and David R. Jackson. Millimeter Wave Antennas. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada201919.
Full textBoyns, J. JTIDS Shipboard Antennas. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada297554.
Full textKramer, B., M. Lee, C. C. Chen, G. Kiziltas, J. L. Volakis, and J. H. Holloran. UWB Conformal Antennas. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada425105.
Full textFarr, Everett G., and Charles A. Frost. Ultra-Wideband Antennas and Propagation. Volume 1: Antenna Design, Predictions, and Construction. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada328786.
Full textFarr, Everett G., and Charles A. Frost. Ultra-Wideband Antennas and Propagation. Volume 2: Antenna Measurements and Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada328787.
Full textFrechet, Jean M. Macromolecular Antennas and Photovotaics. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada424130.
Full textBernhard, Jennifer T., and Joshua A. Fladie. Wideband Conformal Antennas and Arrays. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada443477.
Full text