Journal articles on the topic 'Antarctic Ocean Climate'

To see the other types of publications on this topic, follow the link: Antarctic Ocean Climate.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antarctic Ocean Climate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Singh, Hansi K. A., Cecilia M. Bitz, and Dargan M. W. Frierson. "The Global Climate Response to Lowering Surface Orography of Antarctica and the Importance of Atmosphere–Ocean Coupling." Journal of Climate 29, no. 11 (May 20, 2016): 4137–53. http://dx.doi.org/10.1175/jcli-d-15-0442.1.

Full text
Abstract:
Abstract A global climate model is used to study the effect of flattening the orography of the Antarctic Ice Sheet on climate. A general result is that the Antarctic continent and the atmosphere aloft warm, while there is modest cooling globally. The large local warming over Antarctica leads to increased outgoing longwave radiation, which drives anomalous southward energy transport toward the continent and cooling elsewhere. Atmosphere and ocean both anomalously transport energy southward in the Southern Hemisphere. Near Antarctica, poleward energy and momentum transport by baroclinic eddies strengthens. Anomalous southward cross-equatorial energy transport is associated with a northward shift in the intertropical convergence zone. In the ocean, anomalous southward energy transport arises from a slowdown of the upper cell of the oceanic meridional overturning circulation and a weakening of the horizontal ocean gyres, causing sea ice in the Northern Hemisphere to expand and the Arctic to cool. Comparison with a slab-ocean simulation confirms the importance of ocean dynamics in determining the climate system response to Antarctic orography. This paper concludes by briefly presenting a discussion of the relevance of these results to climates of the past and to future climate scenarios.
APA, Harvard, Vancouver, ISO, and other styles
2

Jun, Sang-Yoon, Joo-Hong Kim, Jung Choi, Seong-Joong Kim, Baek-Min Kim, and Soon-Il An. "The internal origin of the west-east asymmetry of Antarctic climate change." Science Advances 6, no. 24 (June 2020): eaaz1490. http://dx.doi.org/10.1126/sciadv.aaz1490.

Full text
Abstract:
Recent Antarctic surface climate change has been characterized by greater warming trends in West Antarctica than in East Antarctica. Although this asymmetric feature is well recognized, its origin remains poorly understood. Here, by analyzing observation data and multimodel results, we show that a west-east asymmetric internal mode amplified in austral winter originates from the harmony of the atmosphere-ocean coupled feedback off West Antarctica and the Antarctic terrain. The warmer ocean temperature over the West Antarctic sector has positive feedback, with an anomalous upper-tropospheric anticyclonic circulation response centered over West Antarctica, in which the strength of the feedback is controlled by the Antarctic topographic layout and the annual cycle. The current west-east asymmetry of Antarctic surface climate change is undoubtedly of natural origin because no external factors (e.g., orbital or anthropogenic factors) contribute to the asymmetric mode.
APA, Harvard, Vancouver, ISO, and other styles
3

MACKENSEN, ANDREAS. "Changing Southern Ocean palaeocirculation and effects on global climate." Antarctic Science 16, no. 4 (November 30, 2004): 369–86. http://dx.doi.org/10.1017/s0954102004002202.

Full text
Abstract:
Southern Ocean palaeocirculation is clearly related to the formation of a continental ice sheet on Antarctica and the opening of gateways between Antarctica and the Australian and South American continents. Palaeoenvironmental proxy records from Southern Ocean sediment cores suggest ice growth on Antarctica beginning by at least 40 million years (Ma) ago, and the opening of Tasmania–Antarctic and Drake Passages to deep-water flow around 34 and 31 ± 2 Ma, respectively. So, the Eocene/Oligocene transition appears to mark the initiation of the Antarctic Circumpolar Current and thus the onset of thermal isolation of Antarctica with a first major ice volume growth on East Antarctic. There is no evidence for a significant cooling of the deep ocean associated with this rapid (< 350 000 years) continental ice build-up. After a long phase with frequent ice sheets growing and decaying, in the middle Miocene at about 14 Ma, a re-establishment of an ice sheet on East Antarctica and the Pacific margin of West Antarctica was associated with an increased southern bottom water formation, and a slight cooling of the deep ocean, but with no permanent drop in atmospheric pCO2. During the late Pleistocene on orbital time scales a temporal correlation between changes in atmospheric pCO2 and proxy records of deep ocean temperatures, continental ice volume, sea ice extension, and deep-water nutrient contents is documented. I discuss hypotheses that call for a dominant control of glacial to interglacial atmospheric pCO2 variations by Southern Ocean circulation dynamics. Millennial to centennial climate variability is a global feature, but there is contrasting evidence from various palaeoclimate archives that indicate both interhemispheric synchrony and asynchrony. The role of the Southern Ocean, however, in triggering or modulating climate variability on these time scales only recently received some attention and is not yet adequately investigated.
APA, Harvard, Vancouver, ISO, and other styles
4

England, Matthew H., David K. Hutchinson, Agus Santoso, and Willem P. Sijp. "Ice–Atmosphere Feedbacks Dominate the Response of the Climate System to Drake Passage Closure." Journal of Climate 30, no. 15 (August 2017): 5775–90. http://dx.doi.org/10.1175/jcli-d-15-0554.1.

Full text
Abstract:
The response of the global climate system to Drake Passage (DP) closure is examined using a fully coupled ocean–atmosphere–ice model. Unlike most previous studies, a full three-dimensional atmospheric general circulation model is included with a complete hydrological cycle and a freely evolving wind field, as well as a coupled dynamic–thermodynamic sea ice module. Upon DP closure the initial response is found to be consistent with previous ocean-only and intermediate-complexity climate model studies, with an expansion and invigoration of the Antarctic meridional overturning, along with a slowdown in North Atlantic Deep Water (NADW) production. This results in a dominance of Southern Ocean poleward geostrophic flow and Antarctic sinking when DP is closed. However, within just a decade of DP closure, the increased southward heat transport has melted back a substantial fraction of Antarctic sea ice. At the same time the polar oceans warm by 4°–6°C on the zonal mean, and the maximum strength of the Southern Hemisphere westerlies weakens by ≃10%. These effects, not captured in models without ice and atmosphere feedbacks, combine to force Antarctic Bottom Water (AABW) to warm and freshen, to the point that this water mass becomes less dense than NADW. This leads to a marked contraction of the Antarctic overturning, allowing NADW to ventilate the abyssal ocean once more. Poleward heat transport settles back to very similar values as seen in the unperturbed DP open case. Yet remarkably, the equilibrium climate in the closed DP configuration retains a strong Southern Hemisphere warming, similar to past studies with no dynamic atmosphere. However, here it is ocean–atmosphere–ice feedbacks, primarily the ice-albedo feedback and partly the weakened midlatitude jet, not a vigorous southern sinking, which maintain the warm polar oceans. This demonstrates that DP closure can drive a hemisphere-scale warming with polar amplification, without the presence of any vigorous Southern Hemisphere overturning circulation. Indeed, DP closure leads to warming that is sufficient over the West Antarctic Ice Sheet region to inhibit ice-sheet growth. This highlights the importance of the DP gap, Antarctic sea ice, and the associated ice-albedo feedback in maintaining the present-day glacial state over Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
5

Jacka, T. H. "Antarctic and Southern Ocean Sea-Ice and Climate Trends." Annals of Glaciology 14 (1990): 127–30. http://dx.doi.org/10.3189/s0260305500008417.

Full text
Abstract:
A computer-based climate monitoring project is described. Data sets include monthly and annual mean surface temperatures and pressures for occupied stations in Antarctica, the Southern Ocean and South Pacific Ocean; and monthly Antarctic sea-ice extent at each 10° of longitude.Simple statistical analyses of the data sets reveal a mean warming of ~0.15°C (10 a)−1 since the mid 1950s for Antarctic coastal stations and of ~0.04°C (10 a)−1 since the mid 1940s for the ocean stations. The sea-ice record from 1973 to 1988 reveals that the average northern ice limit has decreased at ~0.23°lat. (10 a)−1. Despite apparently compatible long-term trends of temperature and sea-ice extent, annual fluctuations of temperature and ice extent are highly variable and are not well correlated.
APA, Harvard, Vancouver, ISO, and other styles
6

Jacka, T. H. "Antarctic and Southern Ocean Sea-Ice and Climate Trends." Annals of Glaciology 14 (1990): 127–30. http://dx.doi.org/10.1017/s0260305500008417.

Full text
Abstract:
A computer-based climate monitoring project is described. Data sets include monthly and annual mean surface temperatures and pressures for occupied stations in Antarctica, the Southern Ocean and South Pacific Ocean; and monthly Antarctic sea-ice extent at each 10° of longitude. Simple statistical analyses of the data sets reveal a mean warming of ~0.15°C (10 a)−1 since the mid 1950s for Antarctic coastal stations and of ~0.04°C (10 a)−1 since the mid 1940s for the ocean stations. The sea-ice record from 1973 to 1988 reveals that the average northern ice limit has decreased at ~0.23°lat. (10 a)−1. Despite apparently compatible long-term trends of temperature and sea-ice extent, annual fluctuations of temperature and ice extent are highly variable and are not well correlated.
APA, Harvard, Vancouver, ISO, and other styles
7

Pedro, J. B., T. D. van Ommen, S. O. Rasmussen, V. I. Morgan, J. Chappellaz, A. D. Moy, V. Masson-Delmotte, and M. Delmotte. "The last deglaciation: timing the bipolar seesaw." Climate of the Past Discussions 7, no. 1 (January 26, 2011): 397–430. http://dx.doi.org/10.5194/cpd-7-397-2011.

Full text
Abstract:
Abstract. Precise information on the relative timing of north-south climate variations is a key to resolving questions concerning the mechanisms that force and couple climate changes between the hemispheres. We present a new composite record made from five well-resolved Antarctic ice core records that robustly represents the timing of regional Antarctic climate change during the last deglaciation. Using fast variations in global methane gas concentrations as time markers, the Antarctic composite is directly compared to Greenland ice core records, allowing a detailed mapping of the inter-hemispheric sequence of climate changes. Consistent with prior studies the synchronized records show that warming (and cooling) trends in Antarctica closely match cold (and warm) periods in Greenland on millennial timescales. For the first time, we also identify a sub-millennial component to the inter-hemispheric coupling: within the Antarctic Cold Reversal the strongest Antarctic cooling occurs during the pronounced northern warmth of the Bølling; warming then resumes in Antarctica during the Intra-Allerød Cold Period i.e. prior to the Younger Dryas stadial. There is little-to-no time lag between climate transitions in Greenland and opposing changes in Antarctica. Our results lend support to fast acting inter-hemispheric coupling mechanisms including recently proposed bipolar atmospheric teleconnections and/or rapid bipolar ocean teleconnections.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Xichen, David M. Holland, Edwin P. Gerber, and Changhyun Yoo. "Rossby Waves Mediate Impacts of Tropical Oceans on West Antarctic Atmospheric Circulation in Austral Winter." Journal of Climate 28, no. 20 (October 13, 2015): 8151–64. http://dx.doi.org/10.1175/jcli-d-15-0113.1.

Full text
Abstract:
Abstract Recent studies link climate change around Antarctica to the sea surface temperature of tropical oceans, with teleconnections from the Pacific, Atlantic, and Indian Oceans making different contributions to Antarctic climate. In this study, the impacts of each ocean basin on the wintertime Southern Hemisphere circulation are identified by comparing simulation results using a comprehensive atmospheric model, an idealized dynamical core model, and a theoretical Rossby wave model. The results herein show that tropical Atlantic Ocean warming, Indian Ocean warming, and eastern Pacific cooling are all able to deepen the Amundsen Sea low located adjacent to West Antarctica, while western Pacific warming increases the pressure to the west of the international date line, encompassing the Ross Sea and regions south of the Tasman Sea. In austral winter, these tropical ocean basins work together linearly to modulate the atmospheric circulation around West Antarctica. Further analyses indicate that these teleconnections critically depend on stationary Rossby wave dynamics and are thus sensitive to the background flow, particularly the subtropical/midlatitude jet. Near these jets, wind shear is amplified, which strengthens the generation of Rossby waves. On the other hand, near the edges of the jets the meridional gradient of the absolute vorticity is also enhanced. As a consequence of the Rossby wave dispersion relationship, the jet edge may reflect stationary Rossby wave trains, serving as a waveguide. The simulation results not only identify the relative roles of each of the tropical ocean basins in the tropical–Antarctica teleconnection, but also suggest that a deeper understanding of teleconnections requires a better estimation of the atmospheric jet structures.
APA, Harvard, Vancouver, ISO, and other styles
9

Bintanja, R., G. J. van Oldenborgh, and C. A. Katsman. "The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice." Annals of Glaciology 56, no. 69 (2015): 120–26. http://dx.doi.org/10.3189/2015aog69a001.

Full text
Abstract:
AbstractObservations show that, in contrast to the Arctic, the area of Antarctic sea ice has increased since 1979. A potential driver of this significant increase relates to the mass loss of the Antarctic ice sheet. Subsurface ocean warming causes basal ice-shelf melt, freshening the surface waters around Antarctica, which leads to increases in sea-ice cover. With climate warming ongoing, future mass-loss rates are projected to accelerate, which has the potential to affect future Antarctic sea-ice trends. Here we investigate to what extent future sea-ice trends are influenced by projected increases in Antarctic freshwater flux due to subsurface melt, using a state-of-the-art global climate model (EC-Earth) in standardized Climate Model Intercomparison Project phase 5 (CMIP5) climate-change simulations. Virtually all CMIP5 models disregard ocean–ice-sheet interactions and project strongly retreating Antarctic sea ice. Applying various freshwater flux scenarios, we find that the additional fresh water significantly offsets the decline in sea-ice area and is even able to reverse the trend in the strongest freshwater forcing scenario that can reasonably be expected, especially in austral winter. The model also simulates decreasing sea surface temperatures (SSTs), with the SST trends exhibiting strong regional variations that largely correspond to regional sea-ice trends.
APA, Harvard, Vancouver, ISO, and other styles
10

Cunningham, Stuart A. "Southern Ocean circulation." Archives of Natural History 32, no. 2 (October 2005): 265–80. http://dx.doi.org/10.3366/anh.2005.32.2.265.

Full text
Abstract:
The Discovery Investigations of the 1930s provided a compelling description of the main elements of the Southern Ocean circulation. Over the intervening years, this has been extended to include ideas on ocean dynamics based on physical principles. In the modern description, the Southern Ocean has two main circulations that are intimately linked: a zonal (west-east) circumpolar circulation and a meridional (north-south) overturning circulation. The Antarctic Circumpolar Current transports around 140 million cubic metres per second west to east around Antarctica. This zonal circulation connects the Atlantic, Indian and Pacific Oceans, transferring and blending water masses and properties from one ocean basin to another. For the meridional circulation, a key feature is the ascent of waters from depths of around 2,000 metres north of the Antarctic Circumpolar Current to the surface south of the Current. In so doing, this circulation connects deep ocean layers directly to the atmosphere. The circumpolar zonal currents are not stable: meanders grow and separate, creating eddies and these eddies are critical to the dynamics of the Southern Ocean, linking the zonal circumpolar and meridional circulations. As a result of this connection, a global three-dimensional ocean circulation exists in which the Southern Ocean plays a central role in regulating the Earth's climate.
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Caixin, and Aike Beckmann. "Investigation of the impact of Antarctic ice-shelf melting in a global ice–ocean model (ORCA2-LIM)." Annals of Glaciology 46 (2007): 78–82. http://dx.doi.org/10.3189/172756407782871602.

Full text
Abstract:
AbstractIce-shelf melting (ISM) removes heat from and injects fresh water into the adjacent ocean and contributes significantly to the freshwater balance and water mass formation in the Antarctic marginal seas. The thermodynamic interaction between ocean and ice shelf is a complicated process and usually not adequately included in the ocean–ice climate models. In this paper, the ISM from all major ice-shelf areas around Antarctica is added to a global coupled ice–ocean model ORCA2-LIM following the parameterization proposed by Beckmann and Goosse (2003). Using interannual forcing data from 1958 through 2000, the impact of ISM on Southern Ocean hydrography and sea-ice distribution is investigated. The model also shows global signatures of the Antarctic ISM.
APA, Harvard, Vancouver, ISO, and other styles
12

Pedro, J. B., T. D. van Ommen, S. O. Rasmussen, V. I. Morgan, J. Chappellaz, A. D. Moy, V. Masson-Delmotte, and M. Delmotte. "The last deglaciation: timing the bipolar seesaw." Climate of the Past 7, no. 2 (June 24, 2011): 671–83. http://dx.doi.org/10.5194/cp-7-671-2011.

Full text
Abstract:
Abstract. Precise information on the relative timing of north-south climate variations is a key to resolving questions concerning the mechanisms that force and couple climate changes between the hemispheres. We present a new composite record made from five well-resolved Antarctic ice core records that robustly represents the timing of regional Antarctic climate change during the last deglaciation. Using fast variations in global methane gas concentrations as time markers, the Antarctic composite is directly compared to Greenland ice core records, allowing a detailed mapping of the inter-hemispheric sequence of climate changes. Consistent with prior studies the synchronized records show that warming (and cooling) trends in Antarctica closely match cold (and warm) periods in Greenland on millennial timescales. For the first time, we also identify a sub-millennial component to the inter-hemispheric coupling. Within the Antarctic Cold Reversal the strongest Antarctic cooling occurs during the pronounced northern warmth of the Bølling. Warming then resumes in Antarctica, potentially as early as the Intra-Allerød Cold Period, but with dating uncertainty that could place it as late as the onset of the Younger Dryas stadial. There is little-to-no time lag between climate transitions in Greenland and opposing changes in Antarctica. Our results lend support to fast acting inter-hemispheric coupling mechanisms, including recently proposed bipolar atmospheric teleconnections and/or rapid bipolar ocean teleconnections.
APA, Harvard, Vancouver, ISO, and other styles
13

Isla, Enrique. "THE SOUTHERN OCEAN: OUR BEST OPPORTUNITY?" Arquivos de Ciências do Mar 55, Especial (March 18, 2022): 180–90. http://dx.doi.org/10.32360/acmar.v55iespecial.78406.

Full text
Abstract:
The Southern Ocean has a significant importance in global climate regulation because its great potential to sequester atmospheric carbon and its enormous contribution to the transport of heat and mass in the global ocean. Antarctic benthos presents unique characteristics developed after millions of years of evolution and greatly contribute to the maintenance of the global biodiversity and genetic pool. Ongoing anthropogenic pressure seriously threaten Southern Ocean’s current characteristics and the ecosystems services they provide. In my opinion, individual actions toward environmental protection emergesas the fastest alternative to ameliorate the current situation. Keywords: Antarctica, climate change, anthropogenic impacts, social behavior.
APA, Harvard, Vancouver, ISO, and other styles
14

Graham, Jennifer A., David P. Stevens, and Karen J. Heywood. "Nonlinear Climate Responses to Changes in Antarctic Intermediate Water." Journal of Climate 26, no. 22 (October 29, 2013): 9175–93. http://dx.doi.org/10.1175/jcli-d-12-00767.1.

Full text
Abstract:
Abstract The global impact of changes in Antarctic Intermediate Water (AAIW) properties is demonstrated using idealized perturbation experiments in a coupled climate model. Properties of AAIW were altered between 10° and 20°S in the Atlantic, Pacific, and Indian Oceans separately. Potential temperature was changed by ±1°C, along with density-compensating changes in salinity. For each of the experiments, sea surface temperature responds to changes in AAIW when anomalies surface at higher latitudes (&gt;30°). Anomalous sea-to-air heat fluxes leave density anomalies in the ocean, resulting in nonlinear responses to opposite-sign perturbations. In the Southern Ocean, these affect the meridional density gradient, leading to changes in Antarctic Circumpolar Current transport. The response to cooler, fresher AAIW is both greater in magnitude and significant over a larger area than that for warmer, saltier AAIW. The North Atlantic is particularly sensitive to cool, fresh perturbations, with density anomalies causing reductions in the meridional overturning circulation of up to 1 Sv (1 Sv ≡ 106 m3 s−1). Resultant changes in meridional ocean heat transport, along with surfacing anomalies, cause basinwide changes in the surface ocean and overlying atmosphere on multidecadal time scales.
APA, Harvard, Vancouver, ISO, and other styles
15

Yusof, Nur Athirah, Makdi Masnoddin, Jennifer Charles, Ying Qing Thien, Farhan Nazaie Nasib, Clemente Michael Vui Ling Wong, Abdul Munir Abdul Murad, Nor Muhammad Mahadi, and Izwan Bharudin. "Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress?" Polar Biology 45, no. 3 (January 24, 2022): 371–94. http://dx.doi.org/10.1007/s00300-022-03006-7.

Full text
Abstract:
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
APA, Harvard, Vancouver, ISO, and other styles
16

Obase, Takashi, Ayako Abe-Ouchi, Kazuya Kusahara, Hiroyasu Hasumi, and Rumi Ohgaito. "Responses of Basal Melting of Antarctic Ice Shelves to the Climatic Forcing of the Last Glacial Maximum and CO2 Doubling." Journal of Climate 30, no. 10 (April 19, 2017): 3473–97. http://dx.doi.org/10.1175/jcli-d-15-0908.1.

Full text
Abstract:
Abstract Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere–ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions (i.e., to a doubling of CO2 and to the Last Glacial Maximum conditions). Sensitivity experiments were also conducted to investigate the roles of both surface atmospheric change and changes of oceanic lateral boundary conditions. It was found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than that due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change, together with atmospheric heat flux change, strongly affected the production of both sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Feng, Yury V. Vikhliaev, Paul A. Newman, Steven Pawson, Judith Perlwitz, Darryn W. Waugh, and Anne R. Douglass. "Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5)." Journal of Climate 29, no. 9 (April 19, 2016): 3199–218. http://dx.doi.org/10.1175/jcli-d-15-0572.1.

Full text
Abstract:
Abstract Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer’s evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960–2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model’s climatology is evaluated using observations and reanalysis. Comparison of the 1979–2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November–January. It enhances stratosphere–troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.
APA, Harvard, Vancouver, ISO, and other styles
18

Turner, John, Nicholas E. Barrand, Thomas J. Bracegirdle, Peter Convey, Dominic A. Hodgson, Martin Jarvis, Adrian Jenkins, et al. "Antarctic climate change and the environment: an update." Polar Record 50, no. 3 (April 18, 2013): 237–59. http://dx.doi.org/10.1017/s0032247413000296.

Full text
Abstract:
ABSTRACTWe present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report.
APA, Harvard, Vancouver, ISO, and other styles
19

Weijer, Wilbert, Bernadette M. Sloyan, Mathew E. Maltrud, Nicole Jeffery, Matthew W. Hecht, Corinne A. Hartin, Erik van Sebille, Ilana Wainer, and Laura Landrum. "The Southern Ocean and Its Climate in CCSM4." Journal of Climate 25, no. 8 (April 10, 2012): 2652–75. http://dx.doi.org/10.1175/jcli-d-11-00302.1.

Full text
Abstract:
Abstract The new Community Climate System Model, version 4 (CCSM4), provides a powerful tool to understand and predict the earth’s climate system. Several aspects of the Southern Ocean in the CCSM4 are explored, including the surface climatology and interannual variability, simulation of key climate water masses (Antarctic Bottom Water, Subantarctic Mode Water, and Antarctic Intermediate Water), the transport and structure of the Antarctic Circumpolar Current, and interbasin exchange via the Agulhas and Tasman leakages and at the Brazil–Malvinas Confluence. It is found that the CCSM4 has varying degrees of accuracy in the simulation of the climate of the Southern Ocean when compared with observations. This study has identified aspects of the model that warrant further analysis that will result in a more comprehensive understanding of ocean–atmosphere–ice dynamics and interactions that control the earth’s climate and its variability.
APA, Harvard, Vancouver, ISO, and other styles
20

Mayewski, Paul A., Kirk A. Maasch, James W. C. White, Eric J. Steig, Eric Meyerson, Ian Goodwin, Vin I. Morgan, et al. "A 700 year record of Southern Hemisphere extratropical climate variability." Annals of Glaciology 39 (2004): 127–32. http://dx.doi.org/10.3189/172756404781814249.

Full text
Abstract:
AbstractAnnually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Niño events. During the period AD 1700–1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From AD 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Niño events increased during the mode switch. The onset of the AD 1700–1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gases.
APA, Harvard, Vancouver, ISO, and other styles
21

Mathiot, P., H. Goosse, X. Crosta, B. Stenni, M. Braida, H. Renssen, C. J. Van Meerbeeck, V. Masson-Delmotte, A. Mairesse, and S. Dubinkina. "Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP." Climate of the Past 9, no. 2 (April 3, 2013): 887–901. http://dx.doi.org/10.5194/cp-9-887-2013.

Full text
Abstract:
Abstract. From 10 to 8 ka BP (thousand years before present), paleoclimate records show an atmospheric and oceanic cooling in the high latitudes of the Southern Hemisphere. During this interval, temperatures estimated from proxy data decrease by 0.8 °C over Antarctica and 1.2 °C over the Southern Ocean. In order to study the causes of this cooling, simulations covering the early Holocene have been performed with the climate model of intermediate complexity LOVECLIM constrained to follow the signal recorded in climate proxies using a data assimilation method based on a particle filtering approach. The selected proxies represent oceanic and atmospheric surface temperature in the Southern Hemisphere derived from terrestrial, marine and glaciological records. Two mechanisms previously suggested to explain the 10–8 ka BP cooling pattern are investigated using the data assimilation approach in our model. The first hypothesis is a change in atmospheric circulation, and the second one is a cooling of the sea surface temperature in the Southern Ocean, driven in our experimental setup by the impact of an increased West Antarctic melting rate on ocean circulation. For the atmosphere hypothesis, the climate state obtained by data assimilation produces a modification of the meridional atmospheric circulation leading to a 0.5 °C Antarctic cooling from 10 to 8 ka BP compared to the simulation without data assimilation, without congruent cooling of the atmospheric and sea surface temperature in the Southern Ocean. For the ocean hypothesis, the increased West Antarctic freshwater flux constrainted by data assimilation (+100 mSv from 10 to 8 ka BP) leads to an oceanic cooling of 0.7 °C and a strengthening of Southern Hemisphere westerlies (+6%). Thus, according to our experiments, the observed cooling in Antarctic and the Southern Ocean proxy records can only be reconciled with the reconstructions by the combination of a modified atmospheric circulation and an enhanced freshwater flux.
APA, Harvard, Vancouver, ISO, and other styles
22

Yamagata, Hirokazu, Shuma Kochii, Hiroshi Yoshida, Yoshifumi Nogi, and Toshihiro Maki. "Development of AUV MONACA - Hover-Capable Platform for Detailed Observation Under Ice –." Journal of Robotics and Mechatronics 33, no. 6 (December 20, 2021): 1223–33. http://dx.doi.org/10.20965/jrm.2021.p1223.

Full text
Abstract:
The melting of ice and changes in ocean currents in Antarctica must be investigated to understand global climate change. In this regard, the volume changes of sea ice and ice shelves, bathymetry, and ocean currents in the Antarctic Ocean must be measured in three dimensions. Therefore, the use of autonomous underwater vehicles (AUVs), which can directly observe under ice, is being considered. The authors developed an AUV named Mobility Oriented Nadir AntarctiC Adventurer (MONACA) to observe sea ice and the lower region of the ice shelf in the Antarctic Ocean. Herein, we describe MONACA and its basic autonomous navigation methods (altitude control, depth control, and waypoint tracking), as well as report the results of a sea experiment conducted in Shimoda Bay, Japan. During the 5-day sea trial, the MONACA successfully measured bathymetry by tracking 15 waypoints in sequence, switching the control criteria in the -axis direction between 3 m depth and 3 m altitude.
APA, Harvard, Vancouver, ISO, and other styles
23

Smith, Ben, Helen A. Fricker, Alex S. Gardner, Brooke Medley, Johan Nilsson, Fernando S. Paolo, Nicholas Holschuh, et al. "Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes." Science 368, no. 6496 (April 30, 2020): 1239–42. http://dx.doi.org/10.1126/science.aaz5845.

Full text
Abstract:
Quantifying changes in Earth’s ice sheets and identifying the climate drivers are central to improving sea level projections. We provide unified estimates of grounded and floating ice mass change from 2003 to 2019 using NASA’s Ice, Cloud and land Elevation Satellite (ICESat) and ICESat-2 satellite laser altimetry. Our data reveal patterns likely linked to competing climate processes: Ice loss from coastal Greenland (increased surface melt), Antarctic ice shelves (increased ocean melting), and Greenland and Antarctic outlet glaciers (dynamic response to ocean melting) was partially compensated by mass gains over ice sheet interiors (increased snow accumulation). Losses outpaced gains, with grounded-ice loss from Greenland (200 billion tonnes per year) and Antarctica (118 billion tonnes per year) contributing 14 millimeters to sea level. Mass lost from West Antarctica’s ice shelves accounted for more than 30% of that region’s total.
APA, Harvard, Vancouver, ISO, and other styles
24

Scott, Ryan C., Julien P. Nicolas, David H. Bromwich, Joel R. Norris, and Dan Lubin. "Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt." Journal of Climate 32, no. 3 (February 2019): 665–84. http://dx.doi.org/10.1175/jcli-d-18-0233.1.

Full text
Abstract:
Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.
APA, Harvard, Vancouver, ISO, and other styles
25

Fyfe, John C., and Oleg A. Saenko. "Human-Induced Change in the Antarctic Circumpolar Current." Journal of Climate 18, no. 15 (August 1, 2005): 3068–73. http://dx.doi.org/10.1175/jcli3447.1.

Full text
Abstract:
Abstract Global climate models indicate that the poleward shift of the Antarctic Circumpolar Current observed over recent decades may have been significantly human induced. The poleward shift, along with a significant increase in the transport of water around Antarctica, is predicted to continue into the future. To appreciate the magnitude of the poleward shift it is noted that by century’s end the concomitant shrinking of the Southern Ocean is predicted to displace a volume of water close to that in the entire Arctic Ocean. A simple theory, balancing surface Ekman drift and ocean eddy mixing, explains these changes as the oceanic response to changing wind stress.
APA, Harvard, Vancouver, ISO, and other styles
26

Sijp, Willem P., Matthew H. England, and J. R. Toggweiler. "Effect of Ocean Gateway Changes under Greenhouse Warmth." Journal of Climate 22, no. 24 (December 15, 2009): 6639–52. http://dx.doi.org/10.1175/2009jcli3003.1.

Full text
Abstract:
Abstract The role of tectonic Southern Ocean gateway changes in driving Antarctic climate change at the Eocene–Oligocene boundary remains a topic of debate. One approach taken in previous idealized modeling studies of gateway effects has been to alter modern boundary conditions, whereby the Drake Passage becomes closed. Here, the authors follow this approach but vary atmospheric pCO2 over a range of values when comparing gateway configurations. They find a significantly greater sensitivity of Antarctic temperatures to Southern Ocean gateway changes when atmospheric pCO2 is high than when concentrations are low and the ambient climate is cool. In particular, the closure of the Drake Passage (DP) gap is a necessary condition for the existence of ice-free Antarctic conditions at high CO2 concentrations in this coupled climate model. The absence of the Antarctic Circumpolar Current (ACC) is particularly conducive to warm Antarctic conditions at higher CO2 concentrations, which is markedly different from previous simulations conducted under present-day CO2 conditions. The reason for this is the reduction of sea ice associated with higher CO2. Antarctic sea surface temperature and surface air temperature warming due to a closed DP gap reach values around ∼5° and ∼7°C, respectively, for high concentrations of CO2 (above 1250 ppm). In other words, the authors find a significantly greater sensitivity of Antarctic temperatures to atmospheric CO2 concentration when the DP is closed compared to when it is open. The presence of a DP gap inhibits a return to warmer and more Eocene-like Antarctic and deep ocean conditions, even under enhanced atmospheric greenhouse gas concentrations.
APA, Harvard, Vancouver, ISO, and other styles
27

Davis, W. Jackson, Peter J. Taylor, and W. Barton Davis. "The Origin and Propagation of the Antarctic Centennial Oscillation." Climate 7, no. 9 (September 17, 2019): 112. http://dx.doi.org/10.3390/cli7090112.

Full text
Abstract:
The Antarctic Centennial Oscillation (ACO) is a paleoclimate temperature cycle that originates in the Southern Hemisphere, is the presumptive evolutionary precursor of the contemporary Antarctic Oscillation (AAO), and teleconnects to the Northern Hemisphere to influence global temperature. In this study we investigate the internal climate dynamics of the ACO over the last 21 millennia using stable water isotopes frozen in ice cores from 11 Antarctic drill sites as temperature proxies. Spectral and time series analyses reveal that ACOs occurred at all 11 sites over all time periods evaluated, suggesting that the ACO encompasses all of Antarctica. From the Last Glacial Maximum through the Last Glacial Termination (LGT), ACO cycles propagated on a multicentennial time scale from the East Antarctic coastline clockwise around Antarctica in the streamline of the Antarctic Circumpolar Current (ACC). The velocity of teleconnection (VT) is correlated with the geophysical characteristics of drill sites, including distance from the ocean and temperature. During the LGT, the VT to coastal sites doubled while the VT to inland sites decreased fourfold, correlated with increasing solar insolation at 65°N. These results implicate two interdependent mechanisms of teleconnection, oceanic and atmospheric, and suggest possible physical mechanisms for each. During the warmer Holocene, ACOs arrived synchronously at all drill sites examined, suggesting that the VT increased with temperature. Backward extrapolation of ACO propagation direction and velocity places its estimated geographic origin in the Southern Ocean east of Antarctica, in the region of the strongest sustained surface wind stress over any body of ocean water on Earth. ACO period is correlated with all major cycle parameters except cycle symmetry, consistent with a forced, undamped oscillation in which the driving energy affects all major cycle metrics. Cycle period and symmetry are not discernibly different for the ACO and AAO over the same time periods, suggesting that they are the same climate cycle. We postulate that the ACO/AAO is generated by relaxation oscillation of Westerly Wind velocity forced by the equator-to-pole temperature gradient and propagated regionally by identified air-sea-ice interactions.
APA, Harvard, Vancouver, ISO, and other styles
28

Halanych, Kenneth M., and Andrew R. Mahon. "Challenging Dogma Concerning Biogeographic Patterns of Antarctica and the Southern Ocean." Annual Review of Ecology, Evolution, and Systematics 49, no. 1 (November 2, 2018): 355–78. http://dx.doi.org/10.1146/annurev-ecolsys-121415-032139.

Full text
Abstract:
Antarctica is enormous, cold, remote, and particularly sensitive to climate change. Most biological research below 60°S has focused on the isolated nature of the biota and how organisms have adapted to the cold and ice. However, biogeographic patterns in Antarctica and the Southern Ocean, and the processes explaining how those patterns came about, still await adequate explanation. Both terrestrial and marine organisms have been influenced by climatic change (e.g., glaciation), physical phenomena (e.g., oceanic currents), and/or potential barriers to gene flow (e.g., steep thermal gradients). Whereas the Antarctic region contains diverse and complex marine communities, terrestrial systems tend to be comparatively simple with limited diversity. Here, we challenge the current dogma used to explain the diversity and biogeographic patterns present in the Antarctic. We assert that relatively modern processes within the last few million years, rather than geo-logical events that occurred in the Eocene and Miocene, account for present patterns of biodiversity in the region. Additionally, reproductive life history stages appear to have little influence in structuring genetic patterns in the Antarctic, as currents and glacial patterns are noted to be more important drivers of organismal patterns of distribution. Finally, we highlight the need for additional sampling, high-throughput genomic approaches, and broad, multinational cooperation for addressing outstanding questions of Antarctic biogeography and biodiversity.
APA, Harvard, Vancouver, ISO, and other styles
29

Hanna, Edward. "The role of Antarctic sea ice in global climate change." Progress in Physical Geography: Earth and Environment 20, no. 4 (December 1996): 371–401. http://dx.doi.org/10.1177/030913339602000401.

Full text
Abstract:
Taking a distinct interdisciplinary focus, a critical view is presented of the current state of research concerning Antarctic sea-ice / atmosphere / ocean interaction and its effect on climate on the interannual timescale, with particular regard to anthropogenic global warming. Sea-ice formation, morphology, thickness, extent, seasonality and distribution are introduced as vital factors in climatic feedbacks. Sea-ice / atmosphere interaction is next discussed, emphas izing its meteorological and topographical influences and the effects of and on polar cyclonic activity. This leads on to the central theme of sea ice in global climate change, which contains critiques of sea-ice climatic feedbacks, current findings on the representation of these feedbacks in global climatic models, and to what extent they are corroborated by observational evidence. Sea-ice / ocean interaction is particularly important. This is discussed with special reference to polynyas and leads, and the use of suitably coupled sea-ice / ocean models. A brief review of several possible climatic forcing factors is presented, which most highly rates a postulated ENSO-Antarctic sea-ice link. Sea-ice / atmosphere / ocean models need to be validated by adequate observations, both from satellites and ground based. In particular, models developed in the Arctic, where the observational network allows more reasonable validation, can be applied to the Antarctic in suitably modified form so as to account for unique features of the Antarctic cryosphere. Benefits in climatic modelling will be gained by treating Antarctic sea ice as a fully coupled component of global climate.
APA, Harvard, Vancouver, ISO, and other styles
30

Rogers, A. D., B. A. V. Frinault, D. K. A. Barnes, N. L. Bindoff, R. Downie, H. W. Ducklow, A. S. Friedlaender, et al. "Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean." Annual Review of Marine Science 12, no. 1 (January 3, 2020): 87–120. http://dx.doi.org/10.1146/annurev-marine-010419-011028.

Full text
Abstract:
In this article, we analyze the impacts of climate change on Antarctic marine ecosystems. Observations demonstrate large-scale changes in the physical variables and circulation of the Southern Ocean driven by warming, stratospheric ozone depletion, and a positive Southern Annular Mode. Alterations in the physical environment are driving change through all levels of Antarctic marine food webs, which differ regionally. The distributions of key species, such as Antarctic krill, are also changing. Differential responses among predators reflect differences in species ecology. The impacts of climate change on Antarctic biodiversity will likely vary for different communities and depend on species range. Coastal communities and those of sub-Antarctic islands, especially range-restricted endemic communities, will likely suffer the greatest negative consequences of climate change. Simultaneously, ecosystem services in the Southern Ocean will likely increase. Such decoupling of ecosystem services and endemic species will require consideration in the management of human activities such as fishing in Antarctic marine ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
31

Lange, M. A., N. Blindow, B. Breuer, K. Grosfeld, T. Kleiner, C. O. Mohrholz, M. Nicolaus, C. Oelke, H. Sandhäger, and M. Thoma. "Numerical model studies of Antarctic ice-sheet–ice-shelf–ocean systems and ice caps." Annals of Glaciology 41 (2005): 111–20. http://dx.doi.org/10.3189/172756405781813186.

Full text
Abstract:
AbstractThe cryosphere is an essential component of the global climate system, equally affecting climate processes significantly and being subject, and particularly sensitive, to changes in climate conditions. Numerical models are an important tool for assessing climate-change impacts on the Antarctic ice–sheet–ice–shelf–ocean system. They not only complement field and satellite remotesensing investigations but are often the only feasible alternative for addressing some of the important parameters and processes. Over the last few years, our group has made significant progress in developing and applying innovative numerical methods. In this paper, we provide a brief overview of some of the methods employed and the major results obtained for a number of case studies in the Atlantic sector of Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
32

Meyer, Bettina, and So Kawaguchi. "Antarctic marine life under pressure." Science 378, no. 6617 (October 21, 2022): 230. http://dx.doi.org/10.1126/science.adf3606.

Full text
Abstract:
Next week, the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) convenes in Hobart, Tasmania, to examine the state of marine life in the Southern Ocean. As part of the Antarctic Treaty System, this convention entered into force in 1982, and its focus on the region’s environmental integrity has never been more important, given the increasing effects of climate change and commercial fishing. An important focus over the past 40 years has been Antarctic krill, Euphausia superba (hereafter krill), a keystone species that helps to hold this marine ecosystem together. Climate and fishing stresses should prompt the CCAMLR to address whether management of krill fishing is at a level that protects the Southern Ocean from losing its overall balance of marine life and the oceanic processes that regulate global climate.
APA, Harvard, Vancouver, ISO, and other styles
33

Marshall, John, Kyle C. Armour, Jeffery R. Scott, Yavor Kostov, Ute Hausmann, David Ferreira, Theodore G. Shepherd, and Cecilia M. Bitz. "The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2019 (July 13, 2014): 20130040. http://dx.doi.org/10.1098/rsta.2013.0040.

Full text
Abstract:
In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.
APA, Harvard, Vancouver, ISO, and other styles
34

Heywood, Karen J., Sunke Schmidtko, Céline Heuzé, Jan Kaiser, Timothy D. Jickells, Bastien Y. Queste, David P. Stevens, et al. "Ocean processes at the Antarctic continental slope." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2019 (July 13, 2014): 20130047. http://dx.doi.org/10.1098/rsta.2013.0047.

Full text
Abstract:
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.
APA, Harvard, Vancouver, ISO, and other styles
35

Zhu, Chenyu, Jiaxu Zhang, Zhengyu Liu, Bette L. Otto-Bliesner, Chengfei He, Esther C. Brady, Robert Tomas, et al. "Antarctic Warming during Heinrich Stadial 1 in a Transient Isotope-Enabled Deglacial Simulation." Journal of Climate 35, no. 22 (November 15, 2022): 3753–65. http://dx.doi.org/10.1175/jcli-d-22-0094.1.

Full text
Abstract:
Abstract Heinrich Stadial 1 (HS1) was the major climate event at the onset of the last deglaciation associated with rapid cooling in Greenland and lagged, slow warming in Antarctica. Although it is widely believed that temperature signals were triggered in the Northern Hemisphere and propagated southward associated with the Atlantic meridional overturning circulation (AMOC), understanding how these signals were able to cross the Antarctic Circumpolar Current (ACC) barrier and further warm up Antarctica has proven particularly challenging. In this study, we explore the physical processes that lead to the Antarctic warming during HS1 in a transient isotope-enabled deglacial simulation iTRACE, in which the interpolar phasing has been faithfully reproduced. We show that the increased meridional heat transport alone, first through the ocean and then through the atmosphere, can explain the Antarctic warming during the early stage of HS1 without notable changes in the strength and position of the Southern Hemisphere midlatitude westerlies. In particular, when a reduction of the AMOC causes ocean warming to the north of the ACC, increased southward ocean heat transport by mesoscale eddies is triggered by steeper isopycnals to warm up the ocean beyond the ACC, which further decreases the sea ice concentration and leads to more absorption of insolation. The increased atmospheric heat then releases to the Antarctic primarily by a strengthening zonal wavenumber-3 (ZW3) pattern. Sensitivity experiments further suggest that a ∼4°C warming caused by this mechanism superimposed on a comparable warming driven by the background atmospheric CO2 rise is able to explain the total simulated ∼8°C warming in the West Antarctica during HS1.
APA, Harvard, Vancouver, ISO, and other styles
36

Turney, Chris S. M., Christopher J. Fogwill, Nicholas R. Golledge, Nicholas P. McKay, Erik van Sebille, Richard T. Jones, David Etheridge, et al. "Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica." Proceedings of the National Academy of Sciences 117, no. 8 (February 11, 2020): 3996–4006. http://dx.doi.org/10.1073/pnas.1902469117.

Full text
Abstract:
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming.
APA, Harvard, Vancouver, ISO, and other styles
37

Stein, Karl, Axel Timmermann, Eun Young Kwon, and Tobias Friedrich. "Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks." Proceedings of the National Academy of Sciences 117, no. 9 (February 18, 2020): 4498–504. http://dx.doi.org/10.1073/pnas.1908670117.

Full text
Abstract:
The Southern Ocean (SO) played a prominent role in the exchange of carbon between ocean and atmosphere on glacial timescales through its regulation of deep ocean ventilation. Previous studies indicated that SO sea ice could dynamically link several processes of carbon sequestration, but these studies relied on models with simplified ocean and sea ice dynamics or snapshot simulations with general circulation models. Here, we use a transient run of an intermediate complexity climate model, covering the past eight glacial cycles, to investigate the orbital-scale dynamics of deep ocean ventilation changes due to SO sea ice. Cold climates increase sea ice cover, sea ice export, and Antarctic Bottom Water formation, which are accompanied by increased SO upwelling, stronger poleward export of Circumpolar Deep Water, and a reduction of the atmospheric exposure time of surface waters by a factor of 10. Moreover, increased brine formation around Antarctica enhances deep ocean stratification, which could act to decrease vertical mixing by a factor of four compared with the current climate. Sensitivity tests with a steady-state carbon cycle model indicate that the two mechanisms combined can reduce atmospheric carbon by 40 ppm, with ocean stratification acting early within a glacial cycle to amplify the carbon cycle response.
APA, Harvard, Vancouver, ISO, and other styles
38

Sloyan, Bernadette M., and Igor V. Kamenkovich. "Simulation of Subantarctic Mode and Antarctic Intermediate Waters in Climate Models." Journal of Climate 20, no. 20 (October 15, 2007): 5061–80. http://dx.doi.org/10.1175/jcli4295.1.

Full text
Abstract:
Abstract The Southern Ocean’s Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) are two globally significant upper-ocean water masses that circulate in all Southern Hemisphere subtropical gyres and cross the equator to enter the North Pacific and North Atlantic Oceans. Simulations of SAMW and AAIW for the twentieth century in eight climate models [GFDL-CM2.1, CCSM3, CNRM-CM3, MIROC3.2(medres), MIROC3.2(hires), MRI-CGCM2.3.2, CSIRO-Mk3.0, and UKMO-HadCM3] that provided their output in support of the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) have been compared to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atlas of Regional Seas. The climate models, except for UKMO-HadCM3, CSIRO-Mk3.0, and MRI-CGCM2.3.2, provide a reasonable simulation of SAMW and AAIW isopycnal temperature and salinity in the Southern Ocean. Many models simulate the potential vorticity minimum layer and salinity minimum layer of SAMW and AAIW, respectively. However, the simulated SAMW layer is generally thinner and at lighter densities than observed. All climate models display a limited equatorward extension of SAMW and AAIW north of the Antarctic Circumpolar Current. Errors in the simulation of SAMW and AAIW property characteristics are likely to be due to a combination of many errors in the climate models, including simulation of wind and buoyancy forcing, inadequate representation of subgrid-scale mixing processes in the Southern Ocean, and midlatitude diapycnal mixing parameterizations.
APA, Harvard, Vancouver, ISO, and other styles
39

Grootes, Pieter M., Eric J. Steig, Minze Stuiver, Edwin D. Waddington, David L. Morse, and Marie-Josée Nadeau. "The Taylor Dome Antarctic 18O Record and Globally Synchronous Changes in Climate." Quaternary Research 56, no. 3 (November 2001): 289–98. http://dx.doi.org/10.1006/qres.2001.2276.

Full text
Abstract:
AbstractThe 18O/16O profile of a 554-m long ice core through Taylor Dome, Antarctica, shows the climate variability of the last glacial–interglacial cycle in detail and extends at least another full cycle. Taylor Dome shares the main features of the Vostok record, including the early climatic optimum with later cool phase of the last interglacial period in Antarctica. Taylor Dome δ18O fluctuations are more abrupt and larger than those at Vostok and Byrd Station, although still less pronounced than those of the Greenland GISP2 and GRIP records. The influence of the Atlantic thermohaline circulation on regional ocean heat transport explains the partly “North Atlantic” character of this Antarctic record. Under full glacial climate (marine isotope stage 4, late stage 3, and stage 2), this marine influence diminished and Taylor Dome became more like Vostok. Varying degrees of marine influence produce climate heterogeneity within Antarctica, which may account for conflicting evidence regarding the relative phasing of Northern and Southern Hemisphere climate change.
APA, Harvard, Vancouver, ISO, and other styles
40

O’Brien, Charlotte L., Matthew Huber, Ellen Thomas, Mark Pagani, James R. Super, Leanne E. Elder, and Pincelli M. Hull. "The enigma of Oligocene climate and global surface temperature evolution." Proceedings of the National Academy of Sciences 117, no. 41 (September 28, 2020): 25302–9. http://dx.doi.org/10.1073/pnas.2003914117.

Full text
Abstract:
Falling atmospheric CO2levels led to cooling through the Eocene and the expansion of Antarctic ice sheets close to their modern size near the beginning of the Oligocene, a period of poorly documented climate. Here, we present a record of climate evolution across the entire Oligocene (33.9 to 23.0 Ma) based on TEX86sea surface temperature (SST) estimates from southwestern Atlantic Deep Sea Drilling Project Site 516 (paleolatitude ∼36°S) and western equatorial Atlantic Ocean Drilling Project Site 929 (paleolatitude ∼0°), combined with a compilation of existing SST records and climate modeling. In this relatively low CO2Oligocene world (∼300 to 700 ppm), warm climates similar to those of the late Eocene continued with only brief interruptions, while the Antarctic ice sheet waxed and waned. SSTs are spatially heterogenous, but generally support late Oligocene warming coincident with declining atmospheric CO2. This Oligocene warmth, especially at high latitudes, belies a simple relationship between climate and atmospheric CO2and/or ocean gateways, and is only partially explained by current climate models. Although the dominant climate drivers of this enigmatic Oligocene world remain unclear, our results help fill a gap in understanding past Cenozoic climates and the way long-term climate sensitivity responded to varying background climate states.
APA, Harvard, Vancouver, ISO, and other styles
41

Lavery, Charne. "Antarctica and Africa: Narrating alternate futures." Polar Record 55, no. 5 (September 2019): 347–50. http://dx.doi.org/10.1017/s0032247419000743.

Full text
Abstract:
AbstractAfrica has been marginalised in the history of Antarctica, a politics of exclusion (with the exception of Apartheid South Africa) reflected unsurprisingly by a dearth of imaginative, cultural and literary engagement. But, in addition to paleontological and geophysical links, Antarctica has increasing interrelationship with Africa’s climactic future. Africa is widely predicted to be the continent worst affected by climate change, and Antarctica and its surrounding Southern Ocean are uniquely implicated as crucial mediators for changing global climate and currents, rainfall patterns, and sea level rise. This paper proposes that there are in fact several ways of imagining the far South from Africa in literary and cultural terms. One is to read against the grain for southern-directed perspectives in existing African literature and the arts, from southern coastlines looking south; another is to reexamine both familiar and new, speculative narratives of African weather – drought, flood and change – for their Antarctic entanglements. In the context of ongoing work on postcolonial Antarctica and calls to decolonise Antarctic studies – such readings can begin to bridge the Antarctica–Africa divide.
APA, Harvard, Vancouver, ISO, and other styles
42

Bryan, Frank O., Peter R. Gent, and Robert Tomas. "Can Southern Ocean Eddy Effects Be Parameterized in Climate Models?" Journal of Climate 27, no. 1 (January 1, 2014): 411–25. http://dx.doi.org/10.1175/jcli-d-12-00759.1.

Full text
Abstract:
Abstract Present-day control and 1% yr−1 increasing carbon dioxide runs have been made using two versions of the Community Climate System Model, version 3.5. One uses the standard versions of the ocean and sea ice components where the horizontal resolution is 1° and the effects of mesoscale eddies are parameterized, and the second uses a resolution of 1/10° where the eddies are resolved. This is the first time the parameterization has been tested in a climate change run compared to an eddy-resolving run. The comparison is made not straightforward by the fact that the two control run climates are not the same, especially in their sea ice distributions. The focus is on the Antarctic Circumpolar Current region, where the effects of eddies are of leading order. The conclusions are that many of the differences in the two carbon dioxide transient forcing runs can be explained by the different control run sea ice distributions around Antarctica, but there are some quantitative differences in the meridional overturning circulation, poleward heat transport, and zonally averaged heat uptake when the eddies are parameterized rather than resolved.
APA, Harvard, Vancouver, ISO, and other styles
43

Turner, John. "Aspects of modern Antarctic meteorology and climatology." Archives of Natural History 32, no. 2 (October 2005): 334–45. http://dx.doi.org/10.3366/anh.2005.32.2.334.

Full text
Abstract:
Great advances have been made in recent years in our understanding of the weather of the Antarctic and how the climate of the continent varies on a range of time-scales. The observations from the stations are still the most accurate meteorological measurements that we have, but satellites have been important in providing data for remote parts of the continent and the Southern Ocean. With the large amount of data that is available today weather forecasts are much more accurate than just a few years ago and can provide valuable guidance up to several days ahead over the Southern Ocean and Antarctic coastal region. However, predicting the weather for the interior of the Antarctic is still very difficult. Recent research has shown that the climate of the Antarctic is affected by tropical atmospheric and oceanic climate cycles, such as the El Niño-Southern Oscillation, but the links are complex. The picture of climate change across the Antarctic during the last 50 years is complex, with only the Antarctic Peninsula showing a significant warming. By the end of the twenty-first century near-surface air temperatures across much of the Antarctic continent are expected to increase by several degrees. A small increase in precipitation is also expected.
APA, Harvard, Vancouver, ISO, and other styles
44

Lenaerts, Jan T. M., Stefan R. M. Ligtenberg, Brooke Medley, Willem Jan Van de Berg, Hannes Konrad, Julien P. Nicolas, J. Melchior Van Wessem, et al. "Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling." Annals of Glaciology 59, no. 76pt1 (November 27, 2017): 29–41. http://dx.doi.org/10.1017/aog.2017.42.

Full text
Abstract:
ABSTRACTWest Antarctic climate and surface mass balance (SMB) records are sparse. To fill this gap, regional atmospheric climate modelling is useful, providing that such models are employed at sufficiently high horizontal resolution and coupled with a snow model. Here we present the results of a high-resolution (5.5 km) regional atmospheric climate model (RACMO2) simulation of coastal West Antarctica for the period 1979–2015. We evaluate the results with available in situ weather observations, remote-sensing estimates of surface melt, and SMB estimates derived from radar and firn cores. Moreover, results are compared with those from a lower-resolution version, to assess the added value of the resolution. The high-resolution model resolves small-scale climate variability invoked by topography, such as the relatively warm conditions over ice-shelf grounding zones, and local wind speed accelerations. Surface melt and SMB are well reproduced by RACMO2. This dataset will prove useful for picking ice core locations, converting elevation changes to mass changes, for driving ocean, ice-sheet and coupled models, and for attributing changes in the West Antarctic Ice Sheet and shelves to changes in atmospheric forcing.
APA, Harvard, Vancouver, ISO, and other styles
45

van Westen, René M., and Henk A. Dijkstra. "Ocean eddies strongly affect global mean sea-level projections." Science Advances 7, no. 15 (April 2021): eabf1674. http://dx.doi.org/10.1126/sciadv.abf1674.

Full text
Abstract:
Current sea-level projections are based on climate models in which the effects of ocean eddies are parameterized. Here, we investigate the effect of ocean eddies on global mean sea-level rise (GMSLR) projections, using climate model simulations. Explicitly resolving ocean eddies leads to a more realistic Southern Ocean temperature distribution and volume transport. These quantities control the rate of basal melt, which eventually results in Antarctic mass loss. In a model with resolved ocean eddies, the Southern Ocean temperature changes lead to a smaller Antarctic GMSLR contribution compared to the same model in which eddies are parameterized. As a result, the projected GMSLR is about 25% lower at the end of this century in the eddying model. Relatively small-scale ocean eddies can hence have profound large-scale effects and consequently affect GMSLR projections.
APA, Harvard, Vancouver, ISO, and other styles
46

Kennicutt, M. C., S. L. Chown, J. J. Cassano, D. Liggett, L. S. Peck, R. Massom, S. R. Rintoul, et al. "A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond." Antarctic Science 27, no. 1 (September 18, 2014): 3–18. http://dx.doi.org/10.1017/s0954102014000674.

Full text
Abstract:
AbstractAntarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
APA, Harvard, Vancouver, ISO, and other styles
47

Autret, Guilhem, Frédérique Rémy, and Sylvie Roques. "Multiscale Analysis of Antarctic Surface Temperature Series by Empirical Mode Decomposition." Journal of Atmospheric and Oceanic Technology 30, no. 4 (April 1, 2013): 649–54. http://dx.doi.org/10.1175/jtech-d-11-00050.1.

Full text
Abstract:
Abstract This article illustrates the multiscale nature of the Antarctica climatology. Its variability is analyzed from coastal weather stations climate recordings of the continent, supplying temperature data since 1955. Using empirical mode decomposition, coupled to wavelet analysis, climatological signals are detected of a weak near-8-yr rotating wave that could be the so-called Antarctic Circumpolar Wave.
APA, Harvard, Vancouver, ISO, and other styles
48

Foster, Annette F. M., Mark A. J. Curran, Barbara T. Smith, Tas D. Van Ommen, and Vin I. Morgan. "Covariation of Sea ice and methanesulphonic acid in Wilhelm II Land, East Antarctica." Annals of Glaciology 44 (2006): 429–32. http://dx.doi.org/10.3189/172756406781811394.

Full text
Abstract:
AbstractSea ice plays an important role in ocean–atmosphere heat exchange, global albedo and the marine ecosystem. Knowledge of variation in Sea-ice extent is essential in order to understand past climates, and to model possible future climate Scenarios. This paper presents results from a Short firn core Spanning 15 years collected from near Mount Brown, Wilhelm II Land, East Antarctica. Variations of methanesulphonic acid (MSA) at Mount Brown were positively correlated with Sea-ice extent from the coastal region Surrounding Mount Brown (60–120˚ E) and from around the entire Antarctic coast (0–360˚ E). Previous results from Law Dome identified this MSA–sea-ice relationship and proposed it as an Antarctic Sea-ice proxy (Curran and others, 2003), with the Strongest results found for the local Law Dome region. Our data provide Supporting evidence for the Law Dome proxy (at another Site in East Antarctica), but a deeper Mount Brown ice core is required to confirm the Sea-ice decline Suggested by Curran and others (2003). Results also indicate that this deeper record may also provide a more circum-Antarctic Sea-ice proxy.
APA, Harvard, Vancouver, ISO, and other styles
49

Kennedy, A. T., A. Farnsworth, D. J. Lunt, C. H. Lear, and P. J. Markwick. "Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene–Oligocene transition." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2054 (November 13, 2015): 20140419. http://dx.doi.org/10.1098/rsta.2014.0419.

Full text
Abstract:
The glaciation of Antarctica at the Eocene–Oligocene transition (approx. 34 million years ago) was a major shift in the Earth’s climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere–ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet–climate simulations to properly represent and investigate feedback processes acting on these time scales.
APA, Harvard, Vancouver, ISO, and other styles
50

Stone, Emma J., Emilie Capron, Daniel J. Lunt, Antony J. Payne, Joy S. Singarayer, Paul J. Valdes, and Eric W. Wolff. "Impact of meltwater on high-latitude early Last Interglacial climate." Climate of the Past 12, no. 9 (September 29, 2016): 1919–32. http://dx.doi.org/10.5194/cp-12-1919-2016.

Full text
Abstract:
Abstract. Recent data compilations of the early Last Interglacial period have indicated a bipolar temperature response at 130 ka, with colder-than-present temperatures in the North Atlantic and warmer-than-present temperatures in the Southern Ocean and over Antarctica. However, climate model simulations of this period have been unable to reproduce this response, when only orbital and greenhouse gas forcings are considered in a climate model framework. Using a full-complexity general circulation model we perform climate model simulations representative of 130 ka conditions which include a magnitude of freshwater forcing derived from data at this time. We show that this meltwater from the remnant Northern Hemisphere ice sheets during the glacial–interglacial transition produces a modelled climate response similar to the observed colder-than-present temperatures in the North Atlantic at 130 ka and also results in warmer-than-present temperatures in the Southern Ocean via the bipolar seesaw mechanism. Further simulations in which the West Antarctic Ice Sheet is also removed lead to warming in East Antarctica and the Southern Ocean but do not appreciably improve the model–data comparison. This integrated model–data approach provides evidence that Northern Hemisphere freshwater forcing is an important player in the evolution of early Last Interglacial climate.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography