Academic literature on the topic 'ANSYS WORK BENCH'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ANSYS WORK BENCH.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ANSYS WORK BENCH"

1

Zhou, Chen Quan, Ji Yu, Dan Shen, Zheng Peng Xia, and Ping Liao. "Analysis and Optimization of Marine Pumps Take-Off and Landing Platform Based on ANSYS." Applied Mechanics and Materials 455 (November 2013): 544–50. http://dx.doi.org/10.4028/www.scientific.net/amm.455.544.

Full text
Abstract:
Marine pumps take-off and landing platform is one of the important parts on the dredger, with its high performance, high benefit, make the pump under complex conditions running steadily, work safely and reliably, to ensure that the concentration of desilting. Its finite element model was established by applying the software ANSYS, the static analysis and buckling analysis of the model was carried out, the bench structure was improved according to the results of the analysis, in order to predict the performance of the work at the design stage, and provide theoretical basis for structure optimization design platform.
APA, Harvard, Vancouver, ISO, and other styles
2

Patil, Kedar Kishor, Vinit Randive, Sahil Mulla, and Rajkumar Parit. "Design and Analysis of Single Plate Clutch by Mathematical Modelling and Simulation." International Journal of Advance Research and Innovation 8, no. 3 (2020): 53–62. http://dx.doi.org/10.51976/ijari.832009.

Full text
Abstract:
This paper addresses Modeling and analysis of single plate clutch which is used in Tata Sumo vehicle. Clutch is the most significant component located between engine and gear box in automobiles. The static and dynamic analysis were developed for a clutch plate by using finite element analysis (FEA). The 3D solid model was done using CATIA V5R16 version and imported to ANSYS work bench 19.0 for structural, thermal and modal analysis. The mathematical modelling was also done using six different materials (i.e. Steel, Stainless Steel, Ceramics, Kevlar, Aluminum alloy and Gray Cast iron); then, by observing the results, comparison was carryout for materials to validate better lining material for single plate clutches using ANSYS workbench 19.0 and finally conclusion was made.
APA, Harvard, Vancouver, ISO, and other styles
3

Lisowski, Edward, Grzegorz Filo, Piotr Pluskowski, and Janusz Rajda. "Flow Analysis of a Novel, Three-Way Cartridge Flow Control Valve." Applied Sciences 13, no. 6 (2023): 3719. http://dx.doi.org/10.3390/app13063719.

Full text
Abstract:
Flow control valves are designed to maintain a constant flow rate regardless of pressure changes. However, standard, two-way design may cause significant energy losses due to the need to maintain high pressure in the supply line. In contrast, the proposed three-way valve allows the required flow rate to be obtained at a supply pressure slightly above the loading pressure. This work included building mathematical and simulation models, conducting numerical simulations in Ansys/Fluent and Matlab/Simulink environments, and verifying the results by initial test bench experiments on a valve prototype. The main contribution provided by the work concerns the proposal of a new valve solution and the estimation of its operational characteristics.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Feng Shou, Don Gyan Wang, Jian Ting Liu, and Feng Kui Cui. "Thermal Deformation Analysis for the Guideway of Large-Type CNC Lathe Based on Finite Element Method." Applied Mechanics and Materials 58-60 (June 2011): 198–204. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.198.

Full text
Abstract:
Friction between the guideway and the bench of large-type CNC lathe will cause thermal deformation of the guideway, which causes processing error of the lathe,thereby reduces machining precision of the workpiece. The authors establish the mathematical model of temperature field and thermal deformation of the guideway in the work process, numerically simulate the guideway thermal characteristics by ANSYS finite element analysis software, and obtain the distribution regularities of temperature field and thermal deformation and their major influencing factors, which provide a theoretical basis for optimizing design and thermal error compensation design of the lathe guideway.
APA, Harvard, Vancouver, ISO, and other styles
5

Wong, Pak Kin, Zheng Chao Xie, Yu Cong Cao, and Ming Li. "Design and Optimization on Active Engine Mounting Systems for Vibration Isolation." Applied Mechanics and Materials 479-480 (December 2013): 202–9. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.202.

Full text
Abstract:
In this paper, based on the previous research experiences in the lumped parameter modeling and study of active control mounts model, a test bench model of ACM in powertrain is described and the vibration model is implemented in MATLAB. In order to validate the implementation of the state equations in this work, a finite element analysis (FEA) method is used in ANSYS and compared with analytical model for validate. After the validation, the control strategy is integrated into the analytical model by using the linear quadratic regulator (LQR) method, which is a well know design technique that provides practical feedback gains. Furthermore, this work examines the application of genetic algorithms (GA) in optimizing the weight matrices of LQR. Finally, this work will be useful in improved prediction and performance of vehicle NVH.
APA, Harvard, Vancouver, ISO, and other styles
6

Radha Krishnan, B., and M. Ramesh. "Experimental Evaluation of Al-Zn-Al2O3 Composite on Piston Analysis by CAE Tools." Mechanics and Mechanical Engineering 23, no. 1 (2019): 212–17. http://dx.doi.org/10.2478/mme-2019-0028.

Full text
Abstract:
Abstract Today’s automotive designers and material specialists regard lighter vehicles for less fuel consumption (economy and ecology) and higher safety to passengers. Metal matrix composites have been a large area of interest. Aluminium composite is potentially applied in automotive and aerospace industries, because it has a superior strength to weight ratio and is a light weight metal with high temperature resistance. Composites containing hard oxides and ceramics (such as alumina) are preferred for high wear resistance along with increased hardness. In this work, alumina and zinc are reinforced in Al-LM25 alloy through stir casting process, where alumina is varied 6% and 12% in Al-5%Zn. Various mechanical analyses were conducted and the effect of wear with different percentage of alumina reinforcement was studied. The resulting properties are imported in a piston, modelled using solid works, and analysed in ANSYS work bench. Imparting this new material for pistons could introduce deep design and improvements in engine operation of a vehicle.
APA, Harvard, Vancouver, ISO, and other styles
7

Bakri, Badis, Hani Benguesmia, Ahmed Ketata, Slah Driss, and Zied Driss. "Prediction of the Unsteady Turbulent Flow in a Solar Air Heater Test Bench." Modelling, Measurement and Control B 89, no. 1-4 (2020): 7–13. http://dx.doi.org/10.18280/mmc_b.891-402.

Full text
Abstract:
In this work, the unsteady turbulent flow in a new solar air heater test bench, developed in our LASEM laboratory, was predicted. The considered system consists of two passages solar air heater separated by an absorber and powered by a fan working in a delivery mode, placed in the hole inlet side the insulation. On this system, a glass is hanging on the front side and an absorber is inserted inside. On the glass side, it is connected to the box prototype through a pipe. The hot air flow is routed towards the box prototype. Two circular holes, are located in the same face of the box prototype. The inlet hole allows the hot air supply. However, the outlet hole allows its escape into the ambient environment. By using the ANSYS Fluent 17.0 software, the Navier-Stokes equations coupled with the standard k-ω turbulence model were resolved. The numerical results were compared with our experimental data, established in the second passage of the solar air heater test bench. The good agreement confirms the validity of the numerical method. The range of temperatures is very useful in many applications such as industrial and domestic applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Subbarao, Rayapati, and Nityanando Mahato. "Simulation studies on the comparison of different superalloys used in gas turbine blades." IOP Conference Series: Materials Science and Engineering 1248, no. 1 (2022): 012034. http://dx.doi.org/10.1088/1757-899x/1248/1/012034.

Full text
Abstract:
Abstract Impingement of gases at high temperature and pressure leads to the development of stresses and deformation in gas turbine blades. Other important characteristics are also getting changed, prompting more problems in gas turbine engines, as they are used in both power generation and transportation. In this work, failure aspects in blades is studied by performing structural analysis, considering superalloys that are used in the industry. Software packages like Solidworks and Ansys are used for modelling, meshing and solving, in order to identify the target variables like total deformation, von Mises stress, strain energy and fatigue. Geomtery of the turbine blade is modelled and after meshing, boundary conditions like pressure, force and rotational speed are enforced. Results are analysed after carrying out the static structural analysis in Ansys work bench. For the superalloy materials chosen, contours and plots are made for all the configurations. Validation of deformation from the present work is done with experiments done earlier, which is in good agreement. Total deformation is more at the tip of the blade. At the root of the blade, the stresses are found to be more. Presence of strain energy is more near the root. Fatigue life contours showed similarity in all the cases. The blade failure region is identified for all the materials under consideration and the trends are compared for different input temperatures. Thus the current work is helpful in recognizing appropriate superalloy to be used in the present day gas turbines and supports the use of GTD 111 as gas turbine blade material.
APA, Harvard, Vancouver, ISO, and other styles
9

Shi, Yalin, Lingling Chen, Pengfei Chen, Qingzhen Yang, Yongqiang Shi, and Hua Yang. "Numerical Study On Aerodynamic Characteristics Of Supersonic Nozzle In Presence Of Ground Effect." Journal of Physics: Conference Series 2252, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1742-6596/2252/1/012013.

Full text
Abstract:
Abstract The aeroengine mobile test bench is well applied as it is convenient for outfield transportation and installation, and also it is suitable for different environments. When utilizing a mobile test bench, the distance between the center of the engine and the ground is normally within a range so that it can be manually operated. However, this limited distance will lead to the ground effect, which affects the test performance of the aeroengine. This paper numerically studies the aerodynamic characteristics of a supersonic nozzle in the presence of the ground effect. The work is conducted with the software package ANSYS Fluent 21, employing the unsteady large eddy simulation. The nozzle works in a supersonic condition, and the distance between the nozzle and the ground is 2Dj. Dj is the diameter of the nozzle outlet. The models with and without ground effect are investigated. The analysis of the flow field confirms that the ground effect enhances the mixing of the jet and the air, and enriches the coherent structure. With the ground effect, the Reynolds stress on the vertical centerline on each section plane is increased, and the shear layer on each section plane is expanded radially. The results show that the ground effect increases the ground temperature after x/Dj=9, shortens the length of the core area by about 12.5%, decreases the mean axial velocity on the centerline of the jet after x/Dj=10, and increases the dimensionless velocity on the near ground side of the vertical plane. Here, x is the distance between the inlet plane and the discussed cross section. The analysis of the thrust characteristics confirms that the ground effect has no influence on the thrust. Therefore, the mobile test bench can accurately evaluate the thrust performance of an aeroengine.
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, Yalin, Lingling Chen, Pengfei Chen, Qingzhen Yang, Yongqiang Shi, and Hua Yang. "Numerical Study On Aerodynamic Characteristics Of Supersonic Nozzle In Presence Of Ground Effect." Journal of Physics: Conference Series 2252, no. 1 (2022): 012013. http://dx.doi.org/10.1088/1742-6596/2252/1/012013.

Full text
Abstract:
Abstract The aeroengine mobile test bench is well applied as it is convenient for outfield transportation and installation, and also it is suitable for different environments. When utilizing a mobile test bench, the distance between the center of the engine and the ground is normally within a range so that it can be manually operated. However, this limited distance will lead to the ground effect, which affects the test performance of the aeroengine. This paper numerically studies the aerodynamic characteristics of a supersonic nozzle in the presence of the ground effect. The work is conducted with the software package ANSYS Fluent 21, employing the unsteady large eddy simulation. The nozzle works in a supersonic condition, and the distance between the nozzle and the ground is 2Dj. Dj is the diameter of the nozzle outlet. The models with and without ground effect are investigated. The analysis of the flow field confirms that the ground effect enhances the mixing of the jet and the air, and enriches the coherent structure. With the ground effect, the Reynolds stress on the vertical centerline on each section plane is increased, and the shear layer on each section plane is expanded radially. The results show that the ground effect increases the ground temperature after x/Dj=9, shortens the length of the core area by about 12.5%, decreases the mean axial velocity on the centerline of the jet after x/Dj=10, and increases the dimensionless velocity on the near ground side of the vertical plane. Here, x is the distance between the inlet plane and the discussed cross section. The analysis of the thrust characteristics confirms that the ground effect has no influence on the thrust. Therefore, the mobile test bench can accurately evaluate the thrust performance of an aeroengine.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography