Academic literature on the topic 'ANSYS CFD'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ANSYS CFD.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ANSYS CFD"

1

Jading, Abadi, Paulus Payung, and Reniana Reniana. "ansys fluent; CFD; PCRD; simulation; sago starch." Jurnal Ilmiah Rekayasa Pertanian dan Biosistem 10, no. 1 (March 24, 2022): 1–13. http://dx.doi.org/10.29303/jrpb.v10i1.279.

Full text
Abstract:
The mini-scale pneumatic conveying ring dryer (PCRD) type sago starch dryer with a capacity of 80 kg / day has been applied to the processing of sago starch to produce dry sago starch. To increase the production capacity of the PCRD dryer, a recirculation pipe was modified. The modified pipe section is the venturi pipe diameter and the upriser vertical pipe increased. The diameter of the vertical upriser pipe is 2.5 times larger than that of the ubend pipe and the downcomer vertical pipe so that a buffer is formed. In addition, the difference in the diameter of the recirculation pipe can increase the residence time of the material. The purpose of this study was to simulate using ansys fluent to determine the temperature profile, air flow velocity, and pressure in the pneumatic conveying ring dryer (PCRD) type sago starch dryer pipe with a capacity of 1 ton per day. Simulations were carried out using the Computational Fluid Dynamics (CFD) technique using ansys fluent software package. The simulation results show that the temperature along the pipe has decreased by about 2oC at various variations of the input air velocity and variations in the outlet at the boundary conditions. Likewise, the air velocity at the end of the outlet pipe (vertical downcomer pipe) increases due to the difference in diameter with the inlet pipe. The pressure on the vertical upriser pipe is higher than the pressure on the ubend pipe and downcomer vertical pipe. The simulation results show that the recirculation pipe design is very well used so that it can be continued for the manufacture of PCRD-type sago starch dryer on a scale of 1 ton per day.
APA, Harvard, Vancouver, ISO, and other styles
2

Djodikusumo, Indra, I. Nengah Diasta, and Iwan Sanjaya Awaluddin. "Geometric Modeling of a Propeller Turbine Runner Using ANSYS BladeGen, Meshing Using ANSYS TurboGrid and Fluid Dynamic Simulation Using ANSYS Fluent." Applied Mechanics and Materials 842 (June 2016): 164–77. http://dx.doi.org/10.4028/www.scientific.net/amm.842.164.

Full text
Abstract:
This paper aims to demonstrate how to model, mesh and simulate a hydraulic propeller turbine runner based on the geometrical specification of the runner blade. Modeling process is divided into preparation and implementation phase. Preparation phase illustrates how to develop stream surfaces and passages, how to create and transform meanline and how to create an rtzt file. The profile in rtzt file has a certain fix thickness which has to be altered later. Implementation phase describes operations necessary in creating a propeller runner model in ANSYS BladeGen which consist of importing rtzt file, modifying the trailing edge properties and altering profile thickness distribution to that of 4 digits NACA airfoil standard. Grid is generated in ANSYS TurboGrid utilizing ATM Optimized topology. CFD simulation is done using the ANSYS Fluent with pressure inlet and pressure outlet boundary conditions and k-ε turbulence model. Hydraulic efficiency of the runner is calculated utilizing Turbo Topology module in ANSYS Fluent. The authors will share the advantages that may be obtained by using ANSYS BladeGen compared with the use of general CAD Systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Matej, Kurilla, Knížat Branislav, and Olšiak Róbert. "Approach to 3D Unsteady CFD Analysis of a Single-Blade Pump." MATEC Web of Conferences 328 (2020): 02016. http://dx.doi.org/10.1051/matecconf/202032802016.

Full text
Abstract:
Single-blade centrifugal pumps are hydraulic machines used in many industrial areas. A unique screw shaped blade enables liquids containing solids and fibrous matters to be pumped. Owing to good pump hydraulic properties on the one hand and unfavourable impeller mechanical properties on the other have single-blade pumps become recently more interesting for researchers regarding the CFD simulations. In this case a conventional CFD approach for multi-blade pumps cannot be applied due to the lack of symmetry of the single-blade impeller. Possible approaches to the CFD simulation of a single-blade impeller in the Ansys Fluent and the Ansys CFX are compared in this paper. A comparison of two CFD meshing tools showed substantial element number decrease of the whole CFD model. This paper presents also the laboratory experiment results of the investigated single-blade pump. The paper describes a new approach to the single-blade CFD simulation through Ansys Fluent which is faster and more user-friendly then the conventional approach.
APA, Harvard, Vancouver, ISO, and other styles
4

Klyuyev, A. S., Y. I. Chernyshev, E. A. Ivanov, and I. O. Borshchev. "Comparison of Jet Pump Numerical Calculation Results in ANSYS and Openfoam CFD Packages." E3S Web of Conferences 320 (2021): 04017. http://dx.doi.org/10.1051/e3sconf/202132004017.

Full text
Abstract:
Currently, among the most popular computational fluid dynamics software packages are commercial CFD packages – ANSYS CFX, ANSYS Fluent, STAR-CCM+ and several others. In contrast to the above-mentioned commercial CFD packages, there is an OpenFOAM, a non-commercial, freely distributed, integrated platform for numerical modeling of solid-state mechanics tasks (including CFD tasks), and it is becoming more and more popular. In addition to being a non-commercial package, OpenFOAM also has open-source code, which allows users to write their own algorithms for solving highly specialized tasks. A comparison of ANSYS and OpenFOAM in the application to CFD problems of incompressible turbulent flow in this article is given by the example of jet pump calculation, which was tested in the Laboratory of Hydraulic Machinery of Peter the Great St.Petersburg Polytechnic University.
APA, Harvard, Vancouver, ISO, and other styles
5

Hohne, Thomas. "ICONE15-10259 CFD-SIMULATION OF THERMAL HYDRAULIC BENCHMARK V1000CT-2 USING ANSYS CFX." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kevin Joseph, J., R. Jeyanthinathan, and R. Harish. "CFD investigation on the performance analysis of Tesla turbine." IOP Conference Series: Earth and Environmental Science 850, no. 1 (November 1, 2021): 012026. http://dx.doi.org/10.1088/1755-1315/850/1/012026.

Full text
Abstract:
Abstract A Tesla turbine is a bladeless turbine in which fluid flows in the direction of the centripetal path. It uses fluid properties such as Boundary layer & adhesion of fluid on a series of discs keyed to a shaft. The initial cost and maintenance cost of the Tesla turbine is very low. Our project’s main motive is to improve the performance of a Tesla turbine by changing various parameters such as disc diameter and disc rotating speed through the CFD simulation software using water as a working fluid. The CAD model is designed using Ansys design modeler, meshing is performed using Ansys meshing and post processing is carried out in Ansys fluent. The numerical simulations were carried out using Ansys Fluent which is based on the finite volume method and the changes that occurred in the pressure and velocities are investigated. The parametric study is performed by varying the turbine disc speed. By performing CFD simulations, total pressure contour and velocity magnitude contours are plotted and it is found that pressure and velocity are maximum when the clearance between disc and turbine casing is lesser and at higher turbine disc speeds. The power output of the Tesla turbine is also plotted for various rpm where higher rpm gives maximum power output. The results from the present study would be useful in designing an efficient Tesla turbine with improved performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Colman Lerner, Jorge Esteban, M. B. Del Sole, F. I. Dubois, J. E. Sambeth, A. A. Porta, and E. Y. Sanchez. "CFD SIMULATION OF A PILOT-SCALE REACTOR FOR THE REMOVAL OF VOLATILE ORGANIC COMPOUNDS (VOCS)." Latin American Applied Research - An international journal 53, no. 1 (January 1, 2023): 55–58. http://dx.doi.org/10.52292/j.laar.2023.1112.

Full text
Abstract:
This work reports preliminary results on the fluid dynamic simulation using ANSYS CFD software of a pilot scale reactor experimentally tested for the removal of VOCs (toluene, ethylbenzene, methyl ethyl ketone and xylenes). The reactor is constructed from the modification of a commercial air stripper and has been successfully evaluated for the removal of VOCs using Mn, Ce and Pt based catalysts on ceramic monoliths (bentonite). By means of ANSYS CFD simulation it was possible to represent the flow in the reactor (validating with experimental data) and to simulate the flow in the monolith channels. This information will allow us to have a better understanding of the fluid dynamics in the catalysts and to simulate the reactions with different VOCs by combining ANSYS CFD with ChemKin-PRO.
APA, Harvard, Vancouver, ISO, and other styles
8

BOJKO, MARIAN, LUKAS HERTL, and SYLVA DRABKOVA. "METHODS OF CFD MODELLING OF TWIN-SCREW PUMPS FOR NON-NEWTONIAN MATERIALS." MM Science Journal 2021, no. 6 (December 15, 2021): 5366–72. http://dx.doi.org/10.17973/mmsj.2021_12_2021103.

Full text
Abstract:
The twin-screw pump is designed for pumping highly viscous materials in the food industry. Rheological characteristics of materials are important in the specification of design parameters of screw pumps. Analysis of flow in the twin-screw pumps with definition of non-newtonian materials can be made by numerical modelling. CFD generally oriented software ANSYS Fluent and ANSYS Polyflow has been used for modelling. In this study those software’s (ANSYS Fluent and ANSYS Polyflow) were defined for solution of flow in the twin-screw pumps. Results were compared for the same boundary conditions on the inlet and outlet of the 3D model. For definition of the viscosity were used the Nonnewtonian power law. Parameters as consistency coefficient and flow exponent for Nonnewtonian power law were analysed by software ANSYS Fluent and ANSYS Polyflow. Postprocessing form ANSYS Fluent and ANSYS Polyflow were made by contours of field and by graphs.
APA, Harvard, Vancouver, ISO, and other styles
9

Krishnara J, C., S. Rajesh Ruban, and N. Subramani. "Analysis of exhaust manifold to improve the engine performance." International Journal of Engineering & Technology 7, no. 2.8 (March 19, 2018): 539. http://dx.doi.org/10.14419/ijet.v7i2.8.10517.

Full text
Abstract:
The aim of the work is to analyze the performance of the engine exhaust manifold. Because the engine exhaust manifold is a significant factor in the engine performance. In this work the manifold design is prepared with the help of CAD software and it is analyzed by the ANSYS. This CFD and thermal analysis also done to check the performance of the redesigned exhaust manifold. The aim of CFD simulations performed to investigate the volumetric efficiency behaviour of an exhaust.
APA, Harvard, Vancouver, ISO, and other styles
10

Vyavahare, Pranav, Lokavarapu Bhaskara Rao, and Nilesh Patil. "CFD Analysis of Double Suction Centrifugal Pump with Double Volute." Periodica Polytechnica Mechanical Engineering 62, no. 1 (December 21, 2017): 74. http://dx.doi.org/10.3311/ppme.11425.

Full text
Abstract:
In this study, Computational Fluid Dynamics (CFD) Analysis is used to investigate the flow in the centrifugal pump impeller using the ANSYS-CFX. Impeller is designed for head of 22 m, discharge of 52.239 m3/hr and for the operating speed of 2970 RPM. Impeller vane profile is generated by tangent arc method and CFD analysis is performed for 1st stage of vertical pump out of 15 stages. Velocity and pressure distribution are analysed for casing and impeller. Using ANSYS-CFX head developed by this impeller is calculated and compared with the required value. From results of CFD analysis, performance curves are plotted and compared with analytical performance curves. Results obtained from CFD nearly matches with analytical results.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "ANSYS CFD"

1

Anderle, Milan. "Vývoj modelu kalcinace pro ANSYS Fluent." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-367526.

Full text
Abstract:
The aim of the diploma thesis was creating a decarbonisation model of lime, implementation the model into CFD tool ANSYS Fluent and to test the decarbonisation model in a model of a real reactor. The required model was based on assumptions for a Shrinking Core Model (SCM). The main objective of this work was the non-catalytic conversion of substances and the search for the most used mathematical models for calcination. The CFD calculation, the sensitivity analysis and the Fluente parametric study were used. Data on the composition of gas flow, temperature, pressure and mass flow of limestone particles were selected for input variables. The particle model called Multiple Surface Reactions (MSR), which is a standard part of Fluent, was used at first. Subsequently, a UDF which was based on the SCM assumptions was written in the programming language C. The results of the CFD calculation were compared with the experimental values from the dissertation. It has been found that the MSR is sufficiently precise for calculation purposes but neglects the internal diffusion of CO2 through the CaO layer which forms behind the reaction front during calcination. It was found that it is possible to solve the flow with ongoing calcination without the need to know the parameters of the Arrhenian equation if the UDF is used. The created UDF incorporates the influence of intraparticular CO2 diffusion on the overall reaction rate.
APA, Harvard, Vancouver, ISO, and other styles
2

Drexler, Pavel. "CFD analýza proudění vzduchu pro různé typy průtokoměrů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220888.

Full text
Abstract:
There are some basic information about pressure sensors and flow in the first part of my diploma thesis. For example turbulent and laminar flow, construction of pressure sensors and basic information abaut Ansys and –Fluent. Main part of this thesis is focused on CFD simulation of pressure and velocity in the vicinity of pressure sensors. I confront this simulated values with measured values in final part of this thesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Vince, Tomáš. "CFD analýza tepelného zatížení trubkovnice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443458.

Full text
Abstract:
This diploma thesis focuses on the phenomena of multiphase flow in a steam generator as a one of probable causes of tubes and tubesheet weld cracking. In the first part of the work, a research was carried out focusing on the boiling and the phenomenon of two-phase flow in technical applications, its characteristics and properties. The thesis continuous with an overview of available numerical multiphase models in the ANSYS Fluent 2021 R1 and a research of previously published works focused on two-phase flow with the presence of boiling. The research is followed by a description of the particular boiler, which is part of the nitric acid production plant in the chemical company DUSLO, a.s., its operating conditions and a more detailed description of the issue that is being addressed in this thesis. The second part of the work continuous with a description of the computational model, including a description of the geometry of the model and used simplifications, the computational mesh and the description of boundary conditions. Important part is the description of calculation setting of steady-state and transient CFD simulations in ANSYS Fluent. Finally, the results of the two-phase flow calculation are presented and then discussed in the conclusions.
APA, Harvard, Vancouver, ISO, and other styles
4

CARO, DIAZ FREDDY SANTIAGO. "ANALYSIS OF FLUID STRUCTURE-INTERACTION (FSI) PROBLEMS IN ANSYS." Thesis, Faculty of Engineering and Information Technologies. School of Aerospace, Mechanical & Mechatronic Engineering, 2015. https://hdl.handle.net/2123/30023.

Full text
Abstract:
The Fluid-Structure Interaction problems occur in many natural phenomena and man-made engineering systems, this fact has promoted the research in this area. The research in this field of study is implementing two different methodologies. The first one is the use of commercial programs that have developed FSI capabilities such as Ansys or ADINA. The second methodology is the development of computational codes to solve specific problems of FSI analysis. This Project in particular focuses in the evaluation of Ansys-Fluent to perform FSI simulations. Two aeroelastic cases were simulated in Ansys, they were: the delta wing, and the Onera M6 wing. The delta wing simulation is subsonic and its structure is a simple flat plate made out of aluminum. The Onera M6 wing simulation is transonic and its structure has multiple components that are made out of an orthotropic material. The FSI simulations of the delta wing were validated through comparison with experimental data reported in literature. A turbulence analysis and a mesh independence analysis were carried out as well. The validation showed a limited capability to replicate the results that were obtained in the experiment. The FSI simulations of the Onera M6 wing were validated through comparison with a simulation that was carried out in Patran-Nastran. In addition, a computational fluid dynamics (CFD) simulation in steady state was performed in Ansys in order to establish the bases of the configuration that was implemented in the FSI simulations in Ansys. The validation showed that Ansys-Fluent is able to reproduce the results obtained in Patran-Nastran.
APA, Harvard, Vancouver, ISO, and other styles
5

Jybrink, Anton. "Dynamic CFD Modelling of Deploying Fins During Transitional Ballistic." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70758.

Full text
Abstract:
The transition from inner to outer ballistics is a crucial part for the stability of the projectile. A projectile is mainly stabilized in two ways, with fins or by rotation. This work is limited to analyze a fin stabilized projectile. The launch of the projectile and the deployment of the fins are a quick process, therefore high forces and high temperatures will act the stability of the projectile. Due to these factors, it is hard to quantify experiments to analyze the stability of the projectile. To gain knowledge about how the forces will affect the path of the projectile during the launch and the deployment of its fins Computational Fluid Dynamics (CFD) can be a useful technique. In this work, a 2D methodology have been developed in Ansys Fluent to analyze the launch of a projectile and the deployment of the fins. A RANS model have been used in combination of dynamic mesh in order to handle the movement of the projectile. The projectile accelerates due to a pressure rise which have been initialized by a mass flow and energy curve as a source term. This work indicates that it is possible to predict the flow behavior and the forces influencing the projectile and the deploying fins. This work used a 2D model throughout the simulations and a 3D model is therefore needed to further compare and validate the simulation methodology.
APA, Harvard, Vancouver, ISO, and other styles
6

LOPEZ, REBOLLAR BORIS MIGUEL 547458, and REBOLLAR BORIS MIGUEL LOPEZ. "Aplicación de cfd-ansys-fluent en el estudio hidrodinámico de tanques de recirculación empleados en acuacultura." Tesis de maestría, CENTRO INTERAMERICANO DE RECURSOS DEL AGUA - Universidad Autónoma del Estado de México, 2015. http://hdl.handle.net/20.500.11799/40428.

Full text
Abstract:
Tesis que se presenta para obtener el grado de maestría en Ciencias del Agua
La Dinámica de Fluidos Computacional (CFD) tiene distintas aplicaciones en diversas áreas de la ingeniería, principalmente en la modelación de flujos, donde es utilizada para conocer las características de un flujo en movimiento y determinar las variables que intervienen en su comportamiento, de manera teórica pero económica y con resultados muy cercanos a la realidad. En acuacultura, la CFD es utilizada para visualizar y evaluar el comportamiento hidrodinámico de tanques de cultivo de peces, tomando en cuenta las condiciones de flujo para el sano desarrollo de los peces. Sin embargo, pocos trabajos analizan la eficiencia de remoción de sedimentos de forma natural, considerando el comportamiento del flujo dentro del tanque. En el presente trabajo, se analiza la hidrodinámica de un tanque de recirculación de agua empleado en acuacultura, aplicando simulación por computadora a través de técnicas CFD, demostrando la importancia de realizar simulaciones aplicando métodos numéricos, para la obtención de parámetros hidrodinámicos, principalmente, los campos de velocidad y turbulencia ante diversos escenarios de operación de un sedimentador tipo hidrociclón. Los resultados obtenidos demuestran que los principales factores que influyen en la hidrodinámica del tanque y del sedimentador son: la forma y distribución de rejillas del sedimentador, así como el diámetro del mismo. El efecto que producen dichas rejillas, son diversas variaciones en la distribución de velocidades del tanque y principalmente dentro del sedimentador, afectando las condiciones óptimas del flujo para la sedimentación de partículas y por ende la eficiencia en la remoción de sedimentos dentro del tanque. Con los resultados obtenidos mediante la aplicación de CFD fue posible relacionar la hidrodinámica del sedimentador con su diámetro y estructura de rejillas, logrando tener un flujo idóneo en el tanque para al sano desarrollo de los peces y un flujo con velocidad total máxima de 2 cm/s dentro del sedimentador, suficiente para lograr la sedimentación de partículas, y con ello generar un sistema con características de auto-limpieza.
APA, Harvard, Vancouver, ISO, and other styles
7

Moghimi, Ardekani Mohammad. "Optical thermal and economic optimisation of a linear Fresnel collector." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/61313.

Full text
Abstract:
Solar energy is one of a very few low-carbon energy technologies with the enormous potential to grow to a large scale. Currently, solar power is generated via the photovoltaic (PV) and concentrating solar power (CSP) technologies. The ability of CSPs to scale up renewable energy at the utility level, as well as to store energy for electrical power generation even under circumstances when the sun is not available (after sunset or on a cloudy day), makes this technology an attractive option for sustainable clean energy. The levelised electricity cost (LEC) of CSP with thermal storage was about 0.16-0.196 Euro/kWh in 2013 (Kost et al., 2013). However, lowering LEC and harvesting more solar energy from CSPs in future motivate researchers to work harder towards the optimisation of such plants. The situation tempts people and governments to invest more in this ultimate clean source of energy while shifting the energy consumption statistics of their societies from fossil fuels to solar energy. Usually, researchers just concentrate on the optimisation of technical aspects of CSP plants (thermal and/or optical optimisation). However, the technical optimisation of a plant while disregarding economic goals cannot produce a fruitful design and in some cases may lead to an increase in the expenses of the plant, which could result in an increase in the generated electrical power price. The study focused on a comprehensive optimisation of one of the main CSP technology types, the linear Fresnel collector (LFC). In the study, the entire LFC solar domain was considered in an optimisation process to maximise the harvested solar heat flux throughout an imaginary summer day (optical goal), and to minimise cavity receiver heat losses (thermal goal) as well as minimising the manufacturing cost of the plant (economic goal). To illustrate the optimisation process, an LFC was considered with 12 design parameters influencing three objectives, and a unique combination of the parameters was found, which optimised the performance. In this regard, different engineering tools and approaches were introduced in the study, e.g., for the calculation of thermal goals, Computational Fluid Dynamics (CFD) and view area approaches were suggested, and for tackling optical goals, CFD and Monte-Carlo based ray-tracing approaches were introduced. The applicability of the introduced methods for the optimisation process was discussed through case study simulations. The study showed that for the intensive optimisation process of an LFC plant, using the Monte Carlo-based ray-tracing as high fidelity approach for the optical optimisation objective, and view area as a low fidelity approach for the thermal optimisation objective, made more sense due to the saving in computational cost without sacrificing accuracy, in comparison with other combinations of the suggested approaches. The study approaches can be developed for the optimisation of other CSP technologies after some modification and manipulation. The techniques provide alternative options for future researchers to choose the best approach in tackling the optimisation of a CSP plant regarding the nature of optimisation, computational cost and accuracy of the process.
Thesis (PhD)--University of Pretoria, 2017.
Mechanical and Aeronautical Engineering
PhD
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
8

Sénéchal, Ulf. "Holzverbrennung in Kaminöfen mit Keramikfilter - experimentelle Untersuchungen und mathematische Modellierung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138497.

Full text
Abstract:
Zur Verringerung von Schadstoffemissionen werden in Kaminöfen oft Keramikfilter integriert, die Staub und Ruß aus dem Abgas entfernen sollen. Die Filter beeinflussen jedoch die strömungsmechanischen, energetischen und chemischen Vorgänge im Feuerraum. Für die Auslegung und die praktische Anwendung der Filter ist die Kenntnis der Einflussgrößen und deren Umfang nötig. Mit Hilfe von experimentellen und numerischen Untersuchungen wurden die Stoff- und Energietransportvorgänge von zwei Kaminöfen charakterisiert. Zur Bestimmung der Massenabnahme von Holzscheiten kam eine neue, praktisch leicht umsetzbare Methode, basierend auf einer Schockkühlung mit flüssigem Stickstoff, zum Einsatz. Parallel dazu wurde die Massenabnahme der Holzscheite mit Hilfe einer Online-Massenbestimmung mittels Waage aufgezeichnet und ein Verfahren zur Bestimmung der Abbrandkinetik entwickelt. Die Schwierigkeiten der messtechnischen Erfassung und Auswertung der instationären Vorgänge wurden dargestellt und diskutiert. Für die zwei Kaminöfen sind numerische Simulationen mit der Software ANSYS CFX erstellt worden, die weitgehend auf realen Geometrien beruhen. Vergleichende null- und eindimensionale Simulationen mit unterschiedlichen Reaktionsmechanismen und gasförmigen Brennstoffen wurden realisiert und hinsichtlich ihrer Eignung für die Berechnung von Kaminöfen untersucht. Nach erfolgter Validierung wurde ein parametrisches Simulationsmodell eines Kaminofens erstellt. Mit diesem wurde eine Parameterstudie zur Untersuchung der Veränderung der Zielgrößen Heizleistung, Kohlenmonoxid- und Rußkonzentration sowie Gesamt- und Sekundärluftmassenstrom in Abhängigkeit der Parameter durchgeführt.
APA, Harvard, Vancouver, ISO, and other styles
9

Rogers, Charles. "Computational Fluid Dynamics Analysis of an Ideal Anguilliform Swimming Motion." ScholarWorks@UNO, 2014. http://scholarworks.uno.edu/td/1940.

Full text
Abstract:
There is an ongoing interest in analyzing the flow characteristics of swimming fish. Biology has resulted in some very efficient motions and formulating these motions is of interest to engineers. One such theory was written by Dr. William Vorus and Dr. Brandon Taravella involving ideal efficiency. It is therefore interesting to test the calculations to see if it is possible to design a motion that can create thrust without necessarily creating vorticity. The computational fluid dynamics software of ANSYS Fluent was used to calculate the resulting flow field of the eel motion to compare with the theoretical values.
APA, Harvard, Vancouver, ISO, and other styles
10

González, Silva Germán. "Metodologia para aplicar LES ao craqueamento catalítico fluido em um reator riser industrial." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266671.

Full text
Abstract:
Orientador: Milton Mori
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-21T06:39:27Z (GMT). No. of bitstreams: 1 GonzalezSilva_German_D.pdf: 4427269 bytes, checksum: bb45c122c3faad0613f060ad4cbd3b61 (MD5) Previous issue date: 2012
Resumo: O objetivo principal desta tese é propor uma metodologia para aplicar simulação de grandes escalas (LES) em uma unidade de craqueamento catalítico industrial. Para atingir este objetivo, iniciou-se propondo uma metodologia para a construção da malha, sendo uma malha quase-uniforme. As malhas propostas foram implementadas para minimizar o esforço computacional e procedimento para a refinação uniforme no domínio do sistema. Inicialmente, foi estudada a fluidodinâmica de um leito fluidizado gás-sólido na escala de laboratório sem reação química, utilizando Simulação de Grandes Escalas. Com base nos resultados numéricos obtidos a partir de resultados da escala de laboratório foi aplicado o modelo cinético de 4 lump em uma simulação CFD tridimensional para um reator industrial FCC, utilizando LES para a fase gasosa, e considerando o catalisador como uma fase contínua (Euleriana). Os pacotes de simulação utilizados foram Ansys ICEM versão 13 para a construção da malha e Ansys CFX versão 13 para o pós-processamento dos resultados. No pós-processamento dos resultados foi proposta uma metodologia para determinar as médias azimutais das variáveis em planos perpendiculares ao escoamento e finalmente foram validadas as simulações com dados reportados na literatura. As principais conclusões do trabalho foram que foi possível diminuir o tamanho da malha e o tempo de processamento. Notou-se também que, ao usar malhas com discretização quase-uniforme não foi necessário fazer um refinamento de malha elevado, nem refinar perto da parede para o sistema gás-sólido
Abstract: The main objective of this thesis is to propose a methodology in how to apply Large Eddy Simulation (LES) on a unit of catalytic cracking. In order to achieve this, it was proposed an alternative way of constructing the computational mesh, by using quasi-uniform meshes. The proposed meshes were implemented to minimize the computational effort and procedure for refining them in the entire domain of the system. Initially it was studied the fluid dynamics of a lab scale gas-solid system without chemical reaction, using Large Eddy Simulation. Based on the numerical results obtained from lab scale results it was implemented the 4 lump kinetic model in a three dimensional CFD simulation of an FCC industrial reactor, using LES for the gas phase and considering the catalyst as a continuous phase (Eulerian). The simulation packages used were Ansys ICEM, version 13 for mesh construction and Ansys CFX 13 for computation and post-processing of the results. In the data post-processing it was proposed a methodology for calculating average values of fluctuating variables between two circular sections in the azimuthal direction. The results were compared with data reported in literature. The main conclusions of the results showed that it was possible to decrease the mesh size and the computational time. It was also noticed that by using quasi-uniform discretization it was not necessary to make a high mesh refinement near the wall for a gas-solid system
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "ANSYS CFD"

1

Ji, Bingbing. ANSYS ICEM CFD wang ge hua fen ji shu shi li xiang jie. Beijing: Zhong guo shui li shui dian chu ban she, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "ANSYS CFD"

1

Shaikh, Aamir M., and Dayanand A. Ghatge. "CFD Simulation forfluid flow through a circular chamber by using ANSYS." In Recent Advances in Material, Manufacturing, and Machine Learning, 1025–34. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003370628-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jayant, Bhagya, Ark Rukhaiyar, Kunal Dahiya, and Ritu Raj. "CFD Analysis for Wind Flow Characteristics of Varying Cross-Section Tall Building Using ANSYS." In Lecture Notes in Civil Engineering, 307–20. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5077-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hairudin, Wan Masrurah, Norilmi Amilia Ismail, and Zaidi Mohd Ripin. "Simulation of Flow Distribution Inside Small Cavity at Two Way Radio by CFD (Ansys Fluent)." In Lecture Notes in Mechanical Engineering, 393–98. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0002-2_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dai, Jianing, Yulin Yan, Erhao Li, Zhengyu Gong, Ling Zhang, and Zhixing Gu. "Study on the 3-D Natural Circulation Characteristics of LFR Under Steady State by Using Ansys Fluent." In Springer Proceedings in Physics, 930–40. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_79.

Full text
Abstract:
AbstractAs one of the Generation IV reactors, Lead-based Fast Reactor (LFR) has been considered to be great promising owing to its advantages in nuclear safety, sustainable development of nuclear energy and nuclear waste disposal. Owing to the excellent thermal expansion characteristics of Lead-based coolant materials, the primary cooling system of LFR can operate in natural circulation driven mode. The CFD (Computational Fluid Dynamics)-based thermal-hydraulics and safety analyses of nuclear reactors, especially liquid metal pool-type reactors have attracted great attentions in recent years. In this paper, the entire 3-D geometric model of a 10 MWth natural circulation driven LFR primary cooling system was established and simulated by ANSYS Fluent, in which the mesh was partitioned by utilizing structured meshing technology, and the porous medium model was utilized to fine the reactor core simulation. The results showed that the above LFR can operate safely in natural circulation mode, and has excellent natural circulation characteristics for the primary cooling system.
APA, Harvard, Vancouver, ISO, and other styles
5

Štoller, Jiří, and Branislav Dubec. "Design and Assessment of Shape of Protective Structure by Usage of CFD Software Environment Ansys Fluent." In Durability of Critical Infrastructure, Monitoring and Testing, 200–210. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3247-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kadia, Subhojit, Binit Kumar, and Zulfequar Ahmad. "Discharge Characteristics of Triangular Weir with Upstream Ramp and Its CFD Modelling Using Ansys CFX Module." In Recent Trends in Environmental Hydraulics, 77–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37105-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilson, Sánchez Ocaña, Robayo Bryan, Rodriguez Pablo, Pazmiño Intriago Monserrate, and Salazar Jácome Elizabeth. "Analysis of Heat Transfer Between a Coolant Fluid and a Plastic Blowing Matrix Using the ANSYS CFD Tool." In Advances in Intelligent Systems and Computing, 280–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77712-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Caunii, Vasile, and Adrian Sachelarie. "Simulation of the Air Conditioning Curtains with Turbulent Circular Jet Flows Inside the Cabin Vehicle Using ANSYS CFD." In Proceedings of the European Automotive Congress EAEC-ESFA 2015, 357–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27276-4_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ullah, Hafiz Khadim, Sikiru Oluwarotimi Ismail, and Kumar Shantanu Prasad. "Assessment of Effectiveness of Hollow Fins for Performance Enhancement of Solar Still Device Using Simulation Approach." In Springer Proceedings in Energy, 145–55. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_15.

Full text
Abstract:
AbstractUnavailability of relatively clean water for several industrial, domestic and agricultural purposes is a serious concern to many regions of the world today. This challenge is growing worse with the increasing world global warming and human population. Therefore, there is need to research into an innovative, sustainable and/or improved technology for an efficient and effective solution, such as desalination. Desalination of freely available sea water is considered a promising source of fresh water. Solar radiation is abundant and can be used to desalinate water, using a solar still device. Also, it is important to increase the productivity of the solar still device through hollow fin modification. Therefore, the effectiveness of this improvement was investigated in this study, using an analysis system (ANSYS) Fluent computational fluid dynamic (CFD) simulation. Appropriate models were used to describe the physical processes, including condensation, evaporation, multiphase flow, surface tension and solar radiation. A close agreement between the simulation values of solar energy and the water temperature in the basin was observed when compared with the experimental data from the literature. Velocity of 0.259 m/s, pressure of 55.8 Pa, temperature of 57.85 ºC and mass transfer rate of 1.41 kg/m3/s were obtained in the mid-plane of the improved double slope single basin (DSSB). The degree of improvement was 5–7% when compared with the existing models. Importantly, this process is economically efficient and can support the concepts of sustainability and healthy living, especially in rural areas.
APA, Harvard, Vancouver, ISO, and other styles
10

Noetscher, Gregory, Peter Serano, Ara Nazarian, and Sergey Makarov. "Computational Tool Comprising Visible Human Project® Based Anatomical Female CAD Model and Ansys HFSS/Mechanical® FEM Software for Temperature Rise Prediction Near an Orthopedic Femoral Nail Implant During a 1.5 T MRI Scan." In Brain and Human Body Modelling 2021, 133–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_9.

Full text
Abstract:
AbstractThis medical device development tool (MDDT) is categorized as a non-clinical assessment model (NAM). This MDDT is a computational modeling and simulation tool. It can predict heating of metallic orthopedic implants with the radio frequency (RF) electromagnetic fields in the magnetic resonance imaging (MRI) coils while targeting a mid-aged and elderly female population primarily affected by osteoporosis and the associated bone fracture.This MDDT uses a high resolution anatomical female CAD (computer aided design) model coupled with the proven multiphysics finite element method (FEM) software (Ansys Workbench) to simulate the complete MRI environment. The environment is consisting of a tuned MRI coil with the given output power, detailed heterogeneous human model within the coil at the given landmark and a properly embedded metallic implant within the anatomical model to compute the extent of heating generated around the implant.Specifically, this MDDT is the in silico analog of an MRI scan for an elderly female subject with a metallic orthopedic implant at 1.5 T in a full-body birdcage RF coil.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "ANSYS CFD"

1

Zore, Krishna, Shoaib Shah, John Stokes, Balasubramanyam Sasanapuri, and Patrick Sharkey. "ANSYS CFD Study for High Lift Aircraft Configurations." In 2018 Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kono, Kenichi, and Tomoaki Terada. "CFD Challenge Using ANSYS CFX by a Clinical Neurosurgeon." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80120.

Full text
Abstract:
Kenichi Kono is a neurosurgeon at Wakayama Rosai Hospital in Japan. Tomoaki Terada is the head of the department of neurosurgery. Kono works as a neurosurgeon performing both endovascular treatments and open skull surgery. Kono also performs CFD simulations mainly on intracranial aneurysms.
APA, Harvard, Vancouver, ISO, and other styles
3

Selvanayagam, Jeyatharsan, Cristhian Aliaga, and John Stokes. "CFD Simulation of S-Duct Test Case Using ANSYS FLUENT." In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, WenYu, and Aike Qiao. "CFD Challenge: Solutions Using the Commercial Finite Volume Solver, ANSYS CFX." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80398.

Full text
Abstract:
The Aike Qiao group has for nearly two decades focused on the study of biomechanics and simulation engineering, particularly as applied to carotid artery and cerebral aneurysm flows. For this Challenge, CFD simulations were performed by doctor fellow Wenyu Fu, using commercial finite volume solver, ANSYS CFX.
APA, Harvard, Vancouver, ISO, and other styles
5

Golovynskyi, Andrii, Volodymyr Sirenko, Taras Lazariev, and Volodymyr Savyak. "High Performance Computing System Design for ANSYS CFD and Mechanical Codes." In 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). IEEE, 2019. http://dx.doi.org/10.1109/cadsm.2019.8779302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Selvanayagam, Jeyatharsan, Cristhian Aliaga, and John Stokes. "CFD Simulation of Ground Vortex Intake Test Case using ANSYS FLUENT." In AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-0222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Qiu, Liang, Tianqi WU, Chuanjin Zhao, and Shichen Yang. "CFD simulation of heat pipe for embedded envelope based on ANSYS." In 2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2022), edited by Chi-Hua Chen, Xuexia Ye, and Hari Mohan Srivastava. SPIE, 2022. http://dx.doi.org/10.1117/12.2638939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pereira Vilas Boas, Artur, José Leôncio Fonseca de Souza, Frederico Romagnoli Silveira Lima, André Ferreira, and Lindomar Matias Gonçalves. "CFD VALIDATION OVER A CABIN-TYPE SOLAR DRYER USING ANSYS FLUENT SOFTWARE." In Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2018. http://dx.doi.org/10.26678/abcm.encit2018.cit18-0681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kirilovskiy, S. V., A. V. Boiko, K. V. Demyanko, Y. M. Nechepurenko, T. V. Poplavskaya, and A. A. Sidorenko. "On integrating the LOTRAN 3.0 package into the ANSYS fluent CFD software." In HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2019): Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, dedicated to the 150th anniversary of the birth of S.A. Chaplygin. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Amit, and Madasamy Arockiasamy. "Wave-Current Interactions in a Marine Current Turbine Using ANSYS FLUENT CFD." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-42133.

Full text
Abstract:
This paper presents the results of the study on the wavecurrent interactions of an idealized full scale marine current turbine (MCT). A multi-phase flow model is used for simulation of three cases: still water and two different wave heights. The Standard k-ω turbulence model is chosen based on the stability of the pressure and velocity plots upstream and downstream the turbine rotor plane. The three cases are used in the present study to compare the effects of wave height and current velocity on the turbine rotor. The velocity, and pressures on the turbine blades are computed for each case using ANSYS FLUENT CFD Software. The thrust, torque, and power in the MCT are calculated using the results obtained from the CFD simulation. The turbine rotor blades are drafted in 3D using SolidWorks by extruding cross sections of a 43.2 m diameter turbine blade published by the National Renewable Energy Laboratory (NREL). Tetrahedral mesh elements are used to represent the multiphase fluid domain and rotor blades in ANSYS ICEM CFD due to its simplicity and speed of computation. The ANSYS FLUENT simulation is set up to run air and water phases in the domain, while the rotor blade is suspended in the fluid domain, such that there is 20 m of water in front and 100 m behind the plane of rotation. The effects of varying wave heights on the thrust, torque, and power are presented based on the tip speed ratios. The power generated by the turbine rotor from the wave cases is found to be higher than those for the still water case, at lower current velocities. However, at current velocities higher than 2.00 m/s, the power generated from the still water case is higher than the wave cases. At lower tip speed ratios, the thrust on the turbine, subjected to wave conditions, is lower than that for the still water condition. At higher tip speed ratios, the thrust on the turbine, under wave conditions, is higher than that for the still water condition. The torque decreases exponentially with increases in the tip speed ratio for all three cases, but the torque remains nearly constant with increases in wave height. The results provide detailed information which would be valuable in the design and operation of marine current turbines in wave environments.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "ANSYS CFD"

1

Fernandez, Ruben, Hernando Lugo, and Georfe Dulikravich. Aerodynamic Shape Multi-Objective Optimization for SAE Aero Design Competition Aircraft. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009778.

Full text
Abstract:
The SAE Regular Class Aero Design Competition requires students to design a radio-controlled aircraft with limits to the aircraft power consumption, take-off distance, and wingspan, while maximizing the amount of payload it can carry. As a result, the aircraft should be designed subject to these simultaneous and contradicting objectives: 1) minimize the aerodynamic drag force, 2) minimize the aerodynamic pitching moment, and 3) maximize the aerodynamic lift force. In this study, we optimized the geometric design variables of a biplane configuration using 3D aerodynamic analysis using the ANSYS Fluent. Coefficients of lift, drag, and pitching moment were determined from the completed 3D CFD simulations. Extracted coefficients were used in modeFRONTIER multi-objective optimization software to find a set of non-dominated (Pareto-optimal or best trade-off) optimized 3D aircraft shapes from which the winner was selected based to the desired plane performance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography