Journal articles on the topic 'Anodic electrocatalysts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Anodic electrocatalysts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Moeller, Sandra, Stefan Barwe, Stefan Dieckhoefer, Justus Masa, Corina Andronescu, and Wolfgang Schuhmann. "Differentiation between Carbon Corrosion and Oxygen Evolution Catalyzed by NixB/C Hybrid Electrocatalysts in Alkaline Solution using Differential Electrochemical Mass Spectrometry." ChemElectroChem 7 (June 11, 2020): 2680–86. https://doi.org/10.1002/celc.202000697.
Full textPham Hong, Hanh, Linh Do Chi, Phong Nguyen Ngoc, and Lam Nguyen Duc. "Synthesis and characterization of NiCoOx mixed nanocatalysts for anion exchanger membrane water electrolysis (AEMWE)." Vietnam Journal of Catalysis and Adsorption 9, no. 2 (2020): 49–53. http://dx.doi.org/10.51316/jca.2020.028.
Full textYun, Young Hwa, Changsoo Lee, and Bonjae Koo. "Improvement of Mass Activity of IrOx Electrocatalyst in Acidic Oxygen Evolution Reaction Using Bi3TaO7 Support." ECS Meeting Abstracts MA2024-02, no. 42 (2024): 2786. https://doi.org/10.1149/ma2024-02422786mtgabs.
Full textBalčiūnaitė, Aldona, Noha A. Elessawy, Biljana Šljukić, et al. "Effective Fuel Cell Electrocatalyst with Ultralow Pd Loading on Ni-N-Doped Graphene from Upcycled Water Bottle Waste." Sustainability 16, no. 17 (2024): 7469. http://dx.doi.org/10.3390/su16177469.
Full textHeath, Megan Muriel, Elise Fosdal Closs, Svein Sunde, et al. "The Potential of Ruthenate Pyrochlores As Anodic Electroctalysts for PEM Water Electrolysisoral Presentation." ECS Meeting Abstracts MA2024-02, no. 42 (2024): 2847. https://doi.org/10.1149/ma2024-02422847mtgabs.
Full textTian, Na, Bang-An Lu, Xiao-Dong Yang, et al. "Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts." Electrochemical Energy Reviews 1, no. 1 (2018): 54–83. http://dx.doi.org/10.1007/s41918-018-0004-1.
Full textProtsenko, V. S., D. A. Shaiderov, O. D. Sukhatskyi, T. E. Butyrina, S. A. Korniy, and F. I. Danilov. "DES-assisted electrodeposition and characterization of an electrocatalyst for enhanced urea oxidation in green hydrogen production." Voprosy Khimii i Khimicheskoi Tekhnologii, no. 1 (February 2025): 65–70. https://doi.org/10.32434/0321-4095-2025-158-1-65-70.
Full textBelhaj, Ines, Alexander Becker, Filipe M. B. Gusmão, et al. "Au-Based MOFs as Anodic Electrocatalysts for Direct Borohydride Fuel Cells." ECS Meeting Abstracts MA2023-02, no. 41 (2023): 2053. http://dx.doi.org/10.1149/ma2023-02412053mtgabs.
Full textSilva-Carrillo, Carolina, Edgar Alonso Reynoso-Soto, Ivan Cruz-Reyes, et al. "Electrocatalyst of PdNi Particles on Carbon Black for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell." Nanomaterials 15, no. 9 (2025): 664. https://doi.org/10.3390/nano15090664.
Full textGunji, Takao, and Futoshi Matsumoto. "Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials." Inorganics 7, no. 3 (2019): 36. http://dx.doi.org/10.3390/inorganics7030036.
Full textBanti, Angeliki, Kalliopi Maria Papazisi, Stella Balomenou, and Dimitrios Tsiplakides. "Effect of Calcination Temperature on the Activity of Unsupported IrO2 Electrocatalysts for the Oxygen Evolution Reaction in Polymer Electrolyte Membrane Water Electrolyzers." Molecules 28, no. 15 (2023): 5827. http://dx.doi.org/10.3390/molecules28155827.
Full textDu, Hongfang, Qian Liu, Ningyan Cheng, Abdullah M. Asiri, Xuping Sun, and Chang Ming Li. "Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction." J. Mater. Chem. A 2, no. 36 (2014): 14812–16. http://dx.doi.org/10.1039/c4ta02368d.
Full textAli, Asad. "Electrochemical Oxidation of Lignin Biomass to Promote Low-Cost Hydrogen." ECS Meeting Abstracts MA2025-01, no. 29 (2025): 1566. https://doi.org/10.1149/ma2025-01291566mtgabs.
Full textLiu, Bin Hong, Zhou Peng Li, and Seijirau Suda. "Electrocatalysts for the anodic oxidation of borohydrides." Electrochimica Acta 49, no. 19 (2004): 3097–105. http://dx.doi.org/10.1016/j.electacta.2004.02.023.
Full textShi, Qiurong, Chengzhou Zhu, Dan Du, and Yuehe Lin. "Robust noble metal-based electrocatalysts for oxygen evolution reaction." Chemical Society Reviews 48, no. 12 (2019): 3181–92. http://dx.doi.org/10.1039/c8cs00671g.
Full textLi, Xiumin, Xiaogang Hao, Abuliti Abudula, and Guoqing Guan. "Nanostructured catalysts for electrochemical water splitting: current state and prospects." Journal of Materials Chemistry A 4, no. 31 (2016): 11973–2000. http://dx.doi.org/10.1039/c6ta02334g.
Full textBalčiūnaitė, Aldona, Kush K. Upadhyay, Kristina Radinović, Diogo M. F. Santos, M. F. Montemor та Biljana Šljukić. "Steps towards highly-efficient water splitting and oxygen reduction using nanostructured β-Ni(OH)2". RSC Advances 12, № 16 (2022): 10020–28. http://dx.doi.org/10.1039/d2ra00914e.
Full textBai, Jirong, Wangkai Zhou, Jinnan Xu, et al. "RuO2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress." Molecules 29, no. 2 (2024): 537. http://dx.doi.org/10.3390/molecules29020537.
Full textLi, Meng, Ping Liu, and Radoslav R. Adzic. "Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols." Journal of Physical Chemistry Letters 3, no. 23 (2012): 3480–85. http://dx.doi.org/10.1021/jz3016155.
Full textScott, Soren B., Albert K. Engstfeld, Zenonas Jusys, et al. "Anodic molecular hydrogen formation on Ru and Cu electrodes." Catalysis Science & Technology 10, no. 20 (2020): 6870–78. http://dx.doi.org/10.1039/d0cy01213k.
Full textXia, Meng, Xinxin Yu, Zhuangzhuang Wu, Yuzhen Zhao, Lijuan Feng, and Qi Chen. "Metal Imidazole-Modified Covalent Organic Frameworks as Electrocatalysts for Alkaline Oxygen Evolution Reaction." Molecules 29, no. 21 (2024): 5076. http://dx.doi.org/10.3390/molecules29215076.
Full textTing, Jyh-Ming, Hui-Chuan Chen, and Thi Xuyen Nguyen. "Dicarboxylferrocene Ligand Promoted Structural Reconstruction in Bimetallic Nico-Based Metal Organic Framework for Energy-Saving H2 Production via Urea Oxidation Reaction." ECS Meeting Abstracts MA2024-02, no. 39 (2024): 2601. https://doi.org/10.1149/ma2024-02392601mtgabs.
Full textYamada, Naohito, Damian Kowalski, Akira Koyama, Chunyu Zhu, Yoshitaka Aoki, and Hiroki Habazaki. "High dispersion and oxygen reduction reaction activity of Co3O4 nanoparticles on platelet-type carbon nanofibers." RSC Advances 9, no. 7 (2019): 3726–33. http://dx.doi.org/10.1039/c8ra09898k.
Full textLee, CHangsoo, Bonjae Koo, Sechan Lee, et al. "Development of Ba3TiO7-Supported IrOx Electrocatalysts for Enhanced Mass Activity in the Acidic Oxygen Evolution Reaction." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1755. http://dx.doi.org/10.1149/ma2024-01341755mtgabs.
Full textProtsenko, Vyacheslav. "Electrochemical Surface Treatment of Ni–Cu Alloy in a Deep Eutectic Solvent to form High Performance Electrocatalysts for Hydrogen Production." Journal of Mineral and Material Science (JMMS) 3, no. 2 (2022): 1–2. http://dx.doi.org/10.54026/jmms/1037.
Full textLi, Guixian, Shoudeng Wang, Hongwei Li, et al. "Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells." Nanomaterials 12, no. 23 (2022): 4210. http://dx.doi.org/10.3390/nano12234210.
Full textChen, Dayi, Fabien Giroud, and Shelley D. Minteer. "Nickel Cysteine Complexes as Anodic Electrocatalysts for Fuel Cells." Journal of The Electrochemical Society 161, no. 9 (2014): F933—F939. http://dx.doi.org/10.1149/2.0811409jes.
Full textMoreno-Hernandez, Ivan A. "(Invited) Direct Observation of Nanoscale Heterogeneity in Ruthenium Oxide Rutile Nanocrystals for the Oxygen Evolution Reaction via Liquid Phase Transmission Electron Microscopy." ECS Meeting Abstracts MA2024-02, no. 61 (2024): 4112. https://doi.org/10.1149/ma2024-02614112mtgabs.
Full textKuang, Yun, Michael J. Kenney, Yongtao Meng, et al. "Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels." Proceedings of the National Academy of Sciences 116, no. 14 (2019): 6624–29. http://dx.doi.org/10.1073/pnas.1900556116.
Full textOsman, Siti Hasanah, Siti Kartom Kamarudin, Sahriah Basri, and Nabila A. Karim. "Anodic Catalyst Support via Titanium Dioxide-Graphene Aerogel (TiO2-GA) for A Direct Methanol Fuel Cell: Response Surface Approach." Catalysts 13, no. 6 (2023): 1001. http://dx.doi.org/10.3390/catal13061001.
Full textSun, Miguang, and Jiajun Gu. "Progress in Preparation and Research of Water Electrolysis Catalyst for Transition Metal Phosphide." Journal of Physics: Conference Series 2152, no. 1 (2022): 012063. http://dx.doi.org/10.1088/1742-6596/2152/1/012063.
Full textZhen, Janet, Tucker Forbes, Timothy Lin, Jinhui Tao, Mark H. Engelhard, and Jingjing Qiu. "Investigation of Plasmon-Mediated Oxygen Evolution Reaction." ECS Meeting Abstracts MA2024-01, no. 53 (2024): 2868. http://dx.doi.org/10.1149/ma2024-01532868mtgabs.
Full textDavari, Elaheh, and Douglas G. Ivey. "Mn-Co oxide/PEDOT as a bifunctional electrocatalyst for oxygen evolution/reduction reactions." MRS Proceedings 1777 (2015): 1–6. http://dx.doi.org/10.1557/opl.2015.449.
Full textChen, D., G. G. W. Lee, and S. D. Minteer. "Utilizing DNA for Electrocatalysis: DNA-Nickel Aggregates as Anodic Electrocatalysts for Methanol, Ethanol, Glycerol, and Glucose." ECS Electrochemistry Letters 2, no. 2 (2012): F9—F13. http://dx.doi.org/10.1149/2.002302eel.
Full textKim, Min Gi, Ashish Gaur, Jin Uk Jang, Kyeong-Han Na, Won-Youl Choi, and HyukSu Han. "High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation." International Journal of Energy Research 2024 (March 6, 2024): 1–16. http://dx.doi.org/10.1155/2024/9996841.
Full textMORITA, Masayuki, Hideo KIJIMA, and Yoshiharu MATSUDA. "Anodic Oxidation of Formic Acid at Nafion-Modified Palladium Electrocatalysts." Denki Kagaku oyobi Kogyo Butsuri Kagaku 60, no. 6 (1992): 554–56. http://dx.doi.org/10.5796/electrochemistry.60.554.
Full textSriphathoorat, Rinrada, Kai Wang, and Pei Kang Shen. "Trimetallic Hollow Pt–Ni–Co Nanodendrites as Efficient Anodic Electrocatalysts." ACS Applied Energy Materials 2, no. 2 (2019): 961–65. http://dx.doi.org/10.1021/acsaem.8b01741.
Full textBosse, Jan, and Andrew Akbashev. "Probing Lattice Oxygen Oxidation in Perovskite Electrocatalysts By Resonant Inelastic X-Ray Scattering." ECS Meeting Abstracts MA2023-01, no. 47 (2023): 2517. http://dx.doi.org/10.1149/ma2023-01472517mtgabs.
Full textGiziński, Damian, Anna Brudzisz, Janaina S. Santos, Francisco Trivinho-Strixino, Wojciech J. Stępniowski, and Tomasz Czujko. "Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions." Catalysts 10, no. 11 (2020): 1338. http://dx.doi.org/10.3390/catal10111338.
Full textRivera-Maldonado, Ricardo Andres, Anthony Gironda, Jared E. Abramson, Abraham Varughese, Gerald Seidler, and Brandi Michelle Cossairt. "Probing the Stability of Ni2P Nanoparticle Electrocatalysts via Operando Benchtop X-Ray Absorption Spectroscopy." ECS Meeting Abstracts MA2024-02, no. 60 (2024): 4062. https://doi.org/10.1149/ma2024-02604062mtgabs.
Full textEskandrani, Areej A., Shimaa M. Ali, and Hibah M. Al-Otaibi. "Study of the Oxygen Evolution Reaction at Strontium Palladium Perovskite Electrocatalyst in Acidic Medium." International Journal of Molecular Sciences 21, no. 11 (2020): 3785. http://dx.doi.org/10.3390/ijms21113785.
Full textVass, Ádám, Attila Kormányos, Zsófia Kószó, Balázs Endrődi, and Csaba Janáky. "Anode Catalysts in CO2 Electrolysis: Challenges and Untapped Opportunities." ACS Catal. 12, no. 2 (2022): 1037. https://doi.org/10.1021/acscatal.1c04978.
Full textChen, Zilong, Wenxia Xu, Weizhou Wang, et al. "Bamboo‐Like Carbon Nanotube‐Encapsulated Fe2C Nanoparticles Activate Confined Fe2O3 Nanoclusters Via d‐p‐d Orbital Coupling for Alkaline Oxygen Evolution Reaction." Small, November 10, 2024. http://dx.doi.org/10.1002/smll.202409325.
Full textHossen, Jewel, and Naoki Nakatani. "Computational study of electrocatalytic chlorine evolution reaction over transition metal-embedded porphyrin substrates." Bulletin of the Chemical Society of Japan, June 2, 2025. https://doi.org/10.1093/bulcsj/uoaf051.
Full textChauhan, Payal, Zdenek Sofer, Prosun Santra, et al. "MXene-assisted CoZnCr for efficient alkaline seawater splitting and anion exchange membrane electrolyzer." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta04517g.
Full textNiyati, Ataollah, Arianna Moranda, Juan Felipe Basbus, and Ombretta Paladino. "Unlocking the Potential of NiCo2O4 Nanocomposite: Morphology Modification via Urea Quantity, Hydrothermal and Calcination Temperature." New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj01581a.
Full textKim, Minsu, Sehyun Joung, Seungjune Lee, Heedong Kwon, and Hyoyoung Lee. "Recent advances in Ni-based electrocatalysts for low-energy hydrogen production via alternative pathways to water electrolysis." Energy Materials 5, no. 8 (2025). https://doi.org/10.20517/energymater.2024.244.
Full textWang, Yan, Ming Ni, Wei Yan, et al. "Supported High‐Entropy Alloys for Electrooxidation of Benzyl Alcohol Assisted Water Electrolysis." Advanced Functional Materials, November 29, 2023. http://dx.doi.org/10.1002/adfm.202311611.
Full textCai, Linke, Yao Liu, Ying Gao, et al. "Atomically Asymmetrical Ir–O–Co Sites Enable Efficient Chloride‐mediated Ethylene Electrooxidation in Neutral Seawater." Angewandte Chemie International Edition, October 25, 2024. http://dx.doi.org/10.1002/anie.202417092.
Full textCai, Linke, Yao Liu, Ying Gao, et al. "Atomically Asymmetrical Ir–O–Co Sites Enable Efficient Chloride‐mediated Ethylene Electrooxidation in Neutral Seawater." Angewandte Chemie, October 25, 2024. http://dx.doi.org/10.1002/ange.202417092.
Full text