Academic literature on the topic 'Annual cold production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Annual cold production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Annual cold production"

1

Радченко, Микола Іванович, Євген Іванович Трушляков, Сергій Анатолійович Кантор, Богдан Сергійович Портной, and Анатолій Анатолійович Зубарєв. "МЕТОД ВИЗНАЧЕННЯ ТЕПЛОВОГО НАВАНТАЖЕННЯ СИСТЕМИ КОНДИЦІЮВАННЯ ПОВІТРЯ ЗА МАКСИМАЛЬНИМ ТЕМПОМ ПРИРОЩЕННЯ ХОЛОДОПРОДУКТИВНОСТІ (на прикладі кондиціювання повітря енергетичного призначення)." Aerospace technic and technology, no. 4 (October 14, 2018): 44–48. http://dx.doi.org/10.32620/aktt.2018.4.05.

Full text
Abstract:
It is justified the necessity of taking into consideration changes in thermal loads on the air conditioning system (heat and moisture treatment of air by cooling it with decreasing temperature and moisture content) in accordance with the current climatic conditions of operation. Since the effect of air cooling depends on the duration of its use and the amount of cold consumption, it is suggested that it be determined by the amount of cold spent per year for air conditioning at the GTU inlet, that is, for annual refrigerating capacity. The example of heat-using air conditioning at the inlet of a gas turbine unite (energy–efficient air conditioning systems) analyzes the annual costs of cooling for cooling ambient air to the temperature of 15 °C by an absorption lithium-bromide chiller and two-stage air cooling: to a temperature of 15 °C in an absorption lithium-bromide chiller and down to temperature 10 °С – in a refrigerant ejector chiller as the stages of a two-stage absorption-ejector chiller, depending on the installed (project) refrigerating capacity of waste heat recovery chiller.It is shown that, based on the varying rate of increment in the annual production of cold (annual refrigeration capacity) due to the change in the thermal load in accordance with current climatic conditions, it is necessary to select such a design thermal load for the air conditioning system (installed refrigeration capacity of chillers), which ensures the achievement of maximum or close to it annual production of cold at a relatively high rate of its increment. It is analyzed the dependence of the increment on the annual refrigerated capacity, relative to the installed refrigeration capacity, on the installed refrigeration capacity, in order to determine the installed refrigeration capacity, which provides the maximum rate of increase in the annual refrigerating capacity (annual production of cold). Based on the results of the research, it is proposed the method for determining the rational thermal load of the air conditioning system (installed – the design refrigeration capacity of the chiller) in accordance with the changing climatic conditions of operation during the year, which provides nearby the maximum annual production of cold at relatively high rates of its growth
APA, Harvard, Vancouver, ISO, and other styles
2

Rangarajan, Anusuya, and Betsy A. Ingall. "487 Strategies to Enhance Production of Annual Globe Artichoke." HortScience 35, no. 3 (June 2000): 478B—478. http://dx.doi.org/10.21273/hortsci.35.3.478b.

Full text
Abstract:
Annual production of globe artichokes (Cynara scolymus L.) requires vernalization of the plants, either through cold treatment of transplants or from natural temperature conditions in the spring. Studies were conducted in upstate New York to determine if artificial vernalization treatments could be achieved by earlier planting dates. Initial trials evaluated two cultivars used for annual production in other parts of the country—'Imperial Star' and `Green Globe Improved'. Transplants were set in the field with or without a vernalizing cool treatment, to determine the extent of natural vernalization achieved under New York conditions. `Imperial Star' produced slightly higher marketable yields than `Green Globe Improved' in 2 years of trials. Vernalization treatment increased the number of plants producing buds and the marketable yields, when transplants were set after 15 May. Natural vernalization was achieved and cold treatment prior to transplanting did not improve yields of plants established in early May. At later planting dates, vernalizing transplants increased the number of plants producing apical buds (largest) by about 20%, yet, >57% of non-vernalized plants of each variety produced buds within the season. Average bud sizes did not vary with vernalization treatment. A similar number of days from transplanting to first bud harvest (69 to 75) was noted regardless of planting date and size of transplant.
APA, Harvard, Vancouver, ISO, and other styles
3

Rangarajan, Anusuya, Betsy A. Ingall, and Victoria C. Zeppelin. "Vernalization Strategies to Enhance Production of Annual Globe Artichoke." HortTechnology 10, no. 3 (January 2000): 585–88. http://dx.doi.org/10.21273/horttech.10.3.585.

Full text
Abstract:
Annual production of globe artichokes (Cynara scolymus L.) requires vernalization of the plants, either through cold treatment of transplants or from natural temperature conditions in the spring. Studies were conducted in upstate New York, to determine if artificial vernalization treatments could be achieved by earlier planting dates. Initial trials evaluated two varieties used for annual production in other parts of the country—`Imperial Star' and `Green Globe' Improved. Transplants were set in the field with or without a vernalizing cool treatment, to determine the extent of natural vernalization achieved under New York conditions. `Imperial Star' produced slightly higher marketable yields than `Green Globe Improved' in 2 years of trials. Vernalization treatment increased the number of plants producing buds and the marketable yields, when transplants were set after 15 May. Natural vernalization was achieved and cold treatment before transplanting did not improve yields of plants established in early May. At later planting dates, vernalizing transplants increased the number of plants producing apical buds (largest) by about 20%, yet over 57% of nonvernalized plants of each variety produced buds within the season. Average bud sizes did not vary with vernalization treatment. A similar number of days from transplanting to first bud harvest (69 to 75 days) was noted regardless of planting date and size of tran.
APA, Harvard, Vancouver, ISO, and other styles
4

Wohlfeiler, Josefina, María Soledad Alessandro, Andrés Morales, Pablo Federico Cavagnaro, and Claudio Rómulo Galmarini. "Vernalization Requirement, but Not Post-Vernalization Day Length, Conditions Flowering in Carrot (Daucus carota L.)." Plants 11, no. 8 (April 15, 2022): 1075. http://dx.doi.org/10.3390/plants11081075.

Full text
Abstract:
Carrots require a certain number of cold hours to become vernalized and proceed to the reproductive stage, and this phenomenon is genotype-dependent. Annual carrots require less cold than biennials to flower; however, quantitative variation within annuals and biennials also exists, defining a gradient for vernalization requirement (VR). The flowering response of carrots to day length, after vernalization has occurred, is controversial. This vegetable has been described both as a long-day and a neutral-day species. The objective of this study was to evaluate flowering time and frequency in response to different cold treatments and photoperiod regimes in various carrot genotypes. To this end, three annual genotypes from India, Brazil, and Pakistan, and a biennial carrot from Japan, were exposed to 7.5 °C during 30, 60, 90, or 120 days, and then transferred to either long day (LD) or short day (SD) conditions. Significant variation (p < 0.05) among the carrot genotypes and among cold treatments were found, with increased flowering rates and earlier onset of flowering being associated with longer cold exposures. No significant differences in response to photoperiod were found, suggesting that post-vernalization day length does not influence carrot flowering. These findings will likely impact carrot breeding and production of both root and seed, helping in the selection of adequate genotypes and sowing dates to manage cold exposure and day-length for different production purposes.
APA, Harvard, Vancouver, ISO, and other styles
5

Yaghmaei, L., R. Jafari, and S. Soltani. "Investigating net primary production in climate regions of central Zagros, Iran, using MODIS and meteorological data." Climate Research 83 (May 6, 2021): 173–86. http://dx.doi.org/10.3354/cr01643.

Full text
Abstract:
Rangeland production is sensitive to climate conditions. In this study, we monitored actual and potential production in the climate zones of Chaharmahal and Bakhtiari province in central Zagros, Iran, from 2000-2016. Net primary production (NPP), light use efficiency (LUE) and rain use efficiency (RUE) were extracted from climatic and MODIS satellite data using the Carnegie-Ames-Stanford approach (CASA) and Miami models. The accuracy of the modeled NPP maps was assessed using regression analysis, based on field data collected at 750 sites under different rangeland conditions. The spatial distribution of NPP and RUE indicated that annual production and photosynthetic efficiency in degraded rangelands with poor and very poor conditions have decreased compared to those of moderate-good classes. The highest relationship between the field and modeled NPP was associated with the Astragalus spp.-Ferula spp. (R2 = 0.865, p < 0.001) in the humid and cold climate zone with good rangeland conditions while the lowest was observed in the annual grasses-annual forbs (R2 = 0.198, p < 0.001) vegetation type with very poor rangeland conditions within the semi-arid and cold climate zone. Furthermore, the highest and lowest NPP values were observed in the Daphne mucronata-Prangos ferulacea (48.38 g C m-2 yr-1) and annual grasses-annual forbs (3.42 g C m-2yr-1) vegetation types with LUE values of 0.13 and 0.02 g C MJ-1 within the humid and cold and the semi-humid and cold climate zones, respectively. According to these findings, remote sensing-based differences between actual and potential NPP can be used as a valuable tool for identification of human impacts on broad rangeland ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
6

Stevens, Matthew D., Judith A. Abbott, John D. Lea-Cox, and Brent L. Black. "Consumer Preference among Three Cold-climate Strawberry Production Systems." HortScience 40, no. 4 (July 2005): 1139B—1139. http://dx.doi.org/10.21273/hortsci.40.4.1139b.

Full text
Abstract:
Three cold-climate strawberry production systems, conventional matted row, advanced matted row, and cold-climate annual hill plasticulture, were compared for consumer preference in a pick-your-own (PYO) setting. Replicated 6 × 15 m plots were established in 2002 in Maryland and cropped in 2003 and 2004. To simulate PYO marketing, volunteers were recruited to harvest 3.6-m plots in each of the three production systems and to complete a five-part questionnaire. The questionnaire collected demographic information and allowed volunteers to compare the three systems both prior to and after their harvesting experience. Harvests were carried out twice weekly, with 75 participants in 2003 and 45 participants in 2004. The 2003 season was cool and wet, with frequent rainfall and a high incidence of fruit rot. Spring 2004 was unseasonably hot, resulting in an unusually short harvest season. Consumer preference differed between years and among harvests within a season. The annual hill system was favored early in the 2003 season, with preference shifting to the other systems as the season progressed. The advanced matted row was favored early in the 2004 season. Many of the participants' comments, both positive and negative, were directed at the plastic mulch and raised beds. In several cases, participants indicated that their preferences after picking from each system did not match their initial impressions. Implications of this research to the social components of sustainability will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Takeda, Fumiomi Takeda, Stan Hokanson*, John Enns, Penelope Perkins-Veazie, and Harry Swartz. "Plugging Date and Cold Storage Affect Strawberry Transplant Production and Performance in Annual Plasticulture." HortScience 39, no. 4 (July 2004): 829A—829. http://dx.doi.org/10.21273/hortsci.39.4.829a.

Full text
Abstract:
`Chandler' strawberry plants were propagated in tissue culture and grown from April to August in a protected environment to produce stolons. July-harvested daughter plants were stuck in cell packs with rooting media and placed under mist sprinklers, or cold stored at 2 °C for 42 days. Among the July transplants, some were kept in the greenhouse until field planting (14 Sept.) and others were moved into a cold room on 14 August. Daughter plant size and position on the stolon affected rooting and quality of transplants. July-harvested daughter plants that were plugged and misted after being cold stored for 42 days developed fewer roots than daughter plants plugged immediately after detaching from mother plants in July or August. In the field, transplants produced from daughter plants harvested in July and cold stored for 42 days developed more stolons than transplants from July- and August-harvested daughters that were not exposed to cold storage treatments. Larger daughter plants produced more branch crowns than did smaller daughter plants during the fall. All transplants from daughter plants harvested in July and propagated without cold treatment bloomed by November. Fruit production ranged from 521 to 703 g per plant. `Chandler' plants from daughter plants that weighed 10 g produced 10% greater yield than those that weighed <1.0 g. Plants generated from daughter plants plugged in July produced 26% more fruit than those plants plugged in August. Greenhouse soilless systems can be used to grow `Chandler' mother plants for generating runner tips and transplants for the annual plasticulture in colder climates. `Chandler' plants produced in July can yield a late fall crop under high tunnels and more fruit in the spring than August-plugged transplants
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Jia Yi, Pavlo Sokolov, and Muhammad S. Virk. "Wind Resource Assessment in Cold Regions - A Numerical Case Study." Applied Mechanics and Materials 875 (January 2018): 94–99. http://dx.doi.org/10.4028/www.scientific.net/amm.875.94.

Full text
Abstract:
This paper describes a case study of wind resource assessment in cold climate region. One-year SCADA data from a wind park has been used to make a comparison with the Computational Fluid Dynamics (CFD) based numerical simulations of wind resource assessment and Annual Energy Production (AEP). To better understand the wind turbine wake flow effects on the energy production, ‘Jessen wake model ‘is used for the numerical simulations. Results show wind resource maps at different elevations, where wind turbine wake flow effects the wind turbine performance and resultant power production. CFD simulations provided a good insight of the flow behavior across each wind turbine, which helped to better understand the wind turbine wake flow effects on wind turbine performance and annual energy production. A good agreement is found between numerical simulations and field SCADA data analysis in this study.
APA, Harvard, Vancouver, ISO, and other styles
9

Трушляков, Євген Іванович, Андрій Миколайович Радченко, Микола Іванович Радченко, Ян Зонмін, Анатолій Анатолійович Зубарєв, and Веніамін Сергійович Ткаченко. "ХОЛОДОПРОДУКТИВНІСТЬ СИСТЕМИ КОНДИЦІЮВАННЯ ЗОВНІШНЬОГО ПОВІТРЯ ЗА ПОТОЧНИМ ТЕПЛОВИМ НАВАНТАЖЕННЯМ." Aerospace technic and technology, no. 2 (April 22, 2019): 51–55. http://dx.doi.org/10.32620/aktt.2019.2.06.

Full text
Abstract:
The efficiency of the outdoor air conditioning systems application depends on how full the installed cooling capacity is applied, that is, with a more complete load and for as long as the possible yearly duration in actual climatic conditions. The production of cold is taken as a criteria of a quantitative evaluation of the efficiency of applying the cooling capacity of air conditioning systems – the amount of cold produced in accordance with its current demand for air conditioning, which in turn depends on the current consumption of cooling capacity and its duration and equals to their multiplication. It is obvious that the maximum value of the current amount of cold produced/consumed indicates an effective application of the installed cooling capacity. However, since the current demands of cooling capacity and their duration, that is, the amount of cold produced/consumed, depending on the changing current climatic conditions, they are characterized by significant fluctuations, which makes it difficult to choose the installed cooling capacity of the air conditioning system. Obviously, if we determine the amount of cold produced/consumed by its current values and summarized during the year, it is possible to significantly simplify the choice of the installed cooling capacity. At the same time, the current amount of cold produced/consumed causes a change in the rate of increment of the annual cold production with a change in the installed cooling capacity, and the maximum rate corresponds to the installed cooling capacity, which provides its efficient use. Proceeding from a different rate of increment of annual cold production with an increase in the installed cooling capacity of the air conditioning system due to a change in heat load in accordance with current climatic conditions during the year, the value of design heat load on the air conditioning system (installed cooling capacity) that provides maximum or close to it the rate of increment of the annual production of cold, and hence the maximum efficient use of installed cooling capacity is chosen
APA, Harvard, Vancouver, ISO, and other styles
10

Ripol-Saragossi, T. L., and I. A. Smychok. "Cold production reducing energy costs using ozone-friendly refrigerants." IOP Conference Series: Earth and Environmental Science 937, no. 2 (December 1, 2021): 022091. http://dx.doi.org/10.1088/1755-1315/937/2/022091.

Full text
Abstract:
Abstract The article considers ways to reduce energy costs in the cold using ozone-safe refrigerants production. In this case, it is necessary to include an air-cooled heat exchanger-pre-condenser in the technological scheme of refrigeration. The conditions for the pre-capacitor for a certain performance selection are formulated. The results of the presented calculations prove a decrease in the annual energy consumption for cold production in comparison with the technological scheme with external cooling and a cascade system. The energy consumption reducing principle of the installation due to the air pre-condenser can also be realized by installing a heat-exchanger on the discharge of low-temperature compressors to heat water for the enterprise needs, receiving free heat energy all year round.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Annual cold production"

1

Myers, Bonnie Jean Evaline. "Variations in Community Fish Production and Diversity Across the Appalachians: Implications for Climate Change." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25803.

Full text
Abstract:
Climate change is considered a major threat to freshwater ecosystems through altering biodiversity, structure, and function. Having a thorough understanding of how diverse ecosystems respond to temperature change is vital to ecosystem management and conservation. During summer 2012, I quantified fish biomass, somatic growth, secondary production, and habitat data for fish communities in 25 Appalachian streams from Vermont to North Carolina. Multiple statistical tests were conducted to determine the relationship between community fish production and air and water temperature, species thermal guild production and air and water temperature, and the relationship between community fish production and diversity. Community fish production estimates ranged from 0.15 to 6.79 g m-2 yr-1 and community P/B ratios ranged from 0.21 to 1.07. No significant differences existed between mean community production estimates at the cold-water, cool-water, warm-water, and extreme northern sites (P=0.19), but P/B ratios in the extreme northern streams were statistically higher than mean community P/B in cold- and cool-water streams in the southern Appalachians (P=0.002). Water temperatures had a positive effect on community fish production (P=0.01) while air temperatures did not (P=0.10). Both air and water temperatures were significant in predicting whether community production would be dominated by cold-water or cool-water fish (P=0.001, P<0.0001, respectively). Community fish production was significantly, positively related to species richness (R2=0.38, P=0.001) and was one of the highest correlates of community production (R2=0.52). As climate change alters freshwater ecosystems, fish communities may transform by means of shifting fish abundance, biomass, and production among species ultimately affecting ecosystem structure, function, and biodiversity.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Трушляков, Є. І., А. М. Радченко, А. А. Зубарєв, В. С. Ткаченко, Я. Зонмін, С. Г. Фордуй, E. I. Trushliakov, et al. "Визначення встановленої холодопродуктивності системи кондиціювання зовнішнього повітря за поточними тепловими навантаженнями." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4328.

Full text
Abstract:
Визначення встановленої холодопродуктивності системи кондиціювання зовнішнього повітря за поточними тепловими навантаженнями = Determining cooling capacity of ambient air conditioning system according to current heat loads / Є. І. Трушляков, А. М. Радченко, А. А. Зубарєв, В. С. Ткаченко, Я. Зонмін, С. Г. Фордуй // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 447–451.
Анотація. Ефективність застосування систем кондиціювання зовнішнього повітря залежить від того, наскільки повно використовуються встановлені холодильні потужності в конкретних кліматичних умовах, тобто за більш повного навантаження і тривалого часу упродовж року. За показник кількісної оцінки ефективності використання холодильної потужності систем кондиціювання повітря взято виробництво холоду – кількість виробленого холоду відповідно до його поточних витрат на кондиціювання повітря, яка в свою чергу залежить від поточних витрат холодопродуктивності та тривалості роботи системи кондиціювання за цих витрат і представляє собою їх добуток. Вочевидь, що максимальна величина поточної кількості виробленого/витраченого холоду свідчить про ефективне використання встановленої холодильної потужності. Однак, оскільки поточні витрати холодопродуктивності та їх тривалість, тобто кількість виробленого/витраченого холоду, залежать від змінних поточних кліматичних умов, то вони теж характеризуються значними коливаннями, що ускладнює вибір встановленої холодопродуктивності системи кондиціювання повітря. Вочевидь, якщо визначати кількість виробленого/витраченого холоду за його поточними величинами і нарощуванням упродовж року, то можна суттєво спростити вибір встановленої холодопродуктивності. При цьому поточна кількість виробленого/витраченого холоду спричиняє зміну темпу прирощення річного виробництва холоду зі зміною встановленої холодопродуктивності і максимальному темпу відповідає встановлена холодопродуктивність, яка забезпечує її ефективне використання. Виходячи з різного темпу прирощення річного виробництва холоду зі збільшенням встановленої холодопродуктивності системи кондиціювання повітря, обумовленого зміною теплового навантаження відповідно до поточних кліматичних умов упродовж року, вибирають таку величину проектного теплового навантаження на систему кондиціювання повітря (встановлену холодопродуктивність), яка забезпечує максимальний або близький до нього темп прирощення річного виробництва холоду, а відтак і максимальну ефективність використання встановленої холодильної потужності.
Abstract. The efficiency of the use of outdoor air conditioning systems depends on how full the installed cooling capacity is used, that is, with a more complete load and for as long as possible yearly duration in actual climatic conditions. The production of cold is taken as a criteria of a quantitative evaluation of the efficiency of using the cooling capacity of air conditioning systems – the amount of cold produced in accordance with its current demand for air conditioning, which in turn depends on the current consumption of cooling capacity and its duration and equals to their multiplication. It is obvious that the maximum value of the current amount of cold produced/consumed indicates an effective use of the installed cooling capacity. However, since the current demands of cooling capacity and their duration, that is, the amount of cold produced/consumed, depend on the changing current climatic conditions, they are characterized by significant fluctuations, which makes it difficult to choose the installed cooling capacity of the air conditioning system. Obviously, if we determine the amount of cold produced/consumed by its current values and summarized during the year, it is possible to significantly simplify the choice of the installed cooling capacity. At the same time, the current amount of cold produced/consumed causes a change in the rate of increment of the annual cold production with a change in the installed cooling capacity, and the maximum rate corresponds to the installed cooling capacity, which provides its efficient use. Proceeding from a different rate of increment of annual cold production with an increase in the installed cooling capacity of the air conditioning system due to a change in heat load in accordance with current climatic conditions during the year, the value of design heat load on the air conditioning system (installed cooling capacity) that provides maximum or close to it the rate of increment of the annual production of cold, and hence the maximum efficiency use of installed cooling capacity is chosen.
Аннотация. Эффективность применения систем кондиционирования наружного воздуха зависит от того, насколько полно используются установленные холодильные мощности, то есть при более полной нагрузке и в течение как можно более длительного времени в течение года, в конкретных климатических условиях. В качестве показателя количественной оценки эффективности использования холодильной мощности систем кондиционирования воздуха взято производство холода – количество произведенного холода в соответствии с его текущим расходованием на кондиционирование воздуха, которое в свою очередь зависит от текущих затрат холодопроизводительности и продолжительности работы системы кондиционирования при этих затратах и представляет собой их произведение. Очевидно, что максимальная величина текущего количества производимого/затраченного холода свидетельствует об эффективном использовании установленной холодильной мощности. Однако, поскольку текущие затраты холодопроизводительности и их продолжительность, то есть количество производимого/затраченного холода, зависят от меняющихся текущих климатических условий, то они характеризуются значительными колебаниями, что затрудняет выбор установленной холодопроизводительности системы кондиционирования воздуха. Очевидно, если определять количество производимого/затраченного холода по его текущим величинам и наращиванию в течение года, то можно существенно упростить выбор установленной холодопроизводительности. При этом текущее количество производимого/затраченного холода вызывает изменение темпа приращения годового производства холода с изменением установленной холодопроизводительности, и максимальному темпу соответствует установленная холодопроизводительность, которая обеспечивает ее эффективное использование. Исходя из разного темпа, приращение годового производства холода с увеличением установленной холодопроизводительности системы кондиционирования воздуха, обусловленного изменением тепловой нагрузки в соответствии с текущими климатическими условиями в течение года, выбирают такую величину проектной тепловой нагрузки на систему кондиционирования воздуха (установленную холодопроизводительность), которая обеспечивает максимальный или близкий к нему темп приращения годового производства холода, а значит и максимальную эффективность использования установленной холодильной мощности.
APA, Harvard, Vancouver, ISO, and other styles
3

Трушляков, Є. І., А. М. Радченко, А. А. Зубарєв, А. В. Грич, В. С. Ткаченко, Я. Зонмін, E. I. Trushliakov, et al. "Методологічний підхід до визначення холодопродуктивності систем кондиціювання повітря." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4336.

Full text
Abstract:
Методологічний підхід до визначення холодопродуктивності систем кондиціювання повітря = A methodological approach to defining the refrigeration capacity of air conditioning systems / Є. І. Трушляков, А. М. Радченко, А. А. Зубарєв, А. В. Грич, В. С. Ткаченко, Я. Зонмін // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 592–596.
Анотація. Ефективність застосування установок кондиціювання повітря комфортного й енергетичного призначення упродовж певного періоду, як і будь-якої енергоустановки, визначається отримуваним при цьому ефектом, передусім у вигляді зменшення споживання палива за рік або збільшення виробництва електричної (механічної) енергії у разі кондиціювання повітря на вході теплового двигуна та річного виробництва холоду як показника ефективності використання холодильної потужності установок комфортного кондиціювання повітря. Оскільки в обох випадках ефект залежить від тривалості та глибини охолодження, то цілком правомірною є його оцінка у першому наближенні термочасовим потенціалом, який представляє собою добуток зниження температури повітря та тривалості експлуатації при зниженій температурі і, таким чином, враховує поточні кліматичні умови. Вочевидь, що реалізація потенціалу охолодження (кондиціювання) зовнішнього повітря залежить від встановленої (проектної) холодопродуктивності установок кондиціювання, яка, в свою чергу, повинна враховувати коливання теплових навантажень відповідно до поточних змінних тепловологісних параметрів зовнішнього повітря. Виходячи з різного темпу прирощення річного термочасового потенціалу охолодження зі збільшенням встановленої холодопродуктивності установки кондиціювання повітря, обумовленого зміною теплового навантаження відповідно до поточних кліматичних умов упродовж року, необхідно вибирати таке проектне теплове навантаження на установку кондиціювання повітря (його встановлену холодопродуктивність), яке забезпечує досягнення максимального або близького до нього річного термочасового потенціалу охолодження при відносно високих темпах його прирощення, відповідно й ефекту від охолодження у вигляді зменшення витрати палива за рік у разі кондиціювання повітря на вході теплового двигуна та річного виробництва холоду установками комфортного кондиціювання повітря. Показано, що при однакових кліматичних умовах упродовж року та глибині охолодження зовнішнього повітря раціональні значення проектної холодопродуктивності установок кондиціювання комфортного й енергетичного призначення співпадають.
Abstract. The efficiency of using air conditioning units for comfort and energetics for a certain period, as well as any power plant, is determined by the effect obtained, primarily in the form of reducing fuel consumption over the year or increasing the production of electrical (mechanical) energy in the case of air conditioning at the heat engine inlet and by annual cold production as an indicator of the efficiency of using the cooling capacity of comfort air-conditioning plants. Since in both cases the effect depends on the duration and depth of cooling, it is quite justified to estimate it in the first approximation by the thermal hourly potential, which is the result of summation hour by hour of air temperature drops multiplied by duration of operation at a lowered temperature and, thus, takes into account current climatic conditions. Obviously, the realization of the cooling potential (air conditioning) of the ambient air depends on the installed (design) cooling capacity of the air conditioning units, which, in turn, must take into account the fluctuations in thermal loads in accordance with the current variable thermal and humidity parameters of the ambient air. Based on the different rates of the increment of the annual thermal hourly cooling potential with an increase in the installed cooling capacity of the air conditioning unit due to a change in the heat load in accordance with current climatic conditions during the year, it is necessary to choose such a design thermal load on the air conditioning unit (its installed cooling capacity) that ensures maximum or close to it the annual thermo-hour cooling potential at a relatively high rate of its increment, respectively, and the effect of cooling in the form of a decrease in fuel consumption per year in the case of air conditioning at the inlet of heat engine and annual cold production of comfort air conditioning units. It is shown that under the same climatic conditions during the year and the depth of ambient air cooling, the rational values of the design cooling capacity of air conditioning units for comfort and energy purposes are the same.
Аннотация. Эффективность применения установок кондиционирования воздуха комфортного и энергетического назначения в течение определенного периода, как и любой энергоустановки, определяется получаемым при этом эффектом, прежде всего в виде уменьшения потребления топлива за год или увеличения производства электрической (механической) энергии в случае кондиционирования воздуха на входе теплового двигателя и годового производства холода как показателя эффективности использования холодильной мощности установок комфортного кондиционирования воздуха. Поскольку в обоих случаях эффект зависит от продолжительности и глубины охлаждения, то вполне правомерной является его оценка в первом приближении термочасовым потенциалом, который представляет собой произведение снижение температуры воздуха и продолжительности эксплуатации при пониженной температуре и, таким образом, учитывает текущие климатические условия. Очевидно, что реализация потенциала охлаждения (кондиционирования) наружного воздуха зависит от установленной (проектной) холодопроизводительности установок кондиционирования, которая, в свою очередь, должна учитывать колебания тепловых нагрузок в соответствии с текущими переменными тепловлажностными параметрами наружного воздуха. Показано, что при одинаковых климатических условиях в течение года и глубине охлаждения наружного воздуха рациональные значения проектной холодопроизводительности установок кондиционирования комфортного и энергетического назначения совпадают.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Annual cold production"

1

Majumdar, Sumit K. Productive Efficiency and Growth. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199641994.003.0007.

Full text
Abstract:
This chapter contains an assessment of the impact of industrial efficiency on India’s growth. Average growth rates had been 4.95%, and with a 1% rise in the efficiency score the resulting growth rate would be 5.03%. Were Indian industry to operate at the frontier, with full efficiency, then annual growth over the period of six decades would have been 6.38%. By now, India’s national income would have been two and a half times its aggregate value if in the last six-plus decades industry had reached attainable efficiency. India’s national income of $2.26 trillion could be $5.54 trillion. Liberalization has positively impacted efficiency and introducing competition has been performance enhancing. Conversely, the impact of technology on productive efficiency has been negative. As the amount of knowledge capital has increased in the economy, so has inefficiency. Indian industry has been incompetent in harnessing and managing technology.
APA, Harvard, Vancouver, ISO, and other styles
2

Vogan, Travis. Keeping the Flame in the Broadcast Era. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252038389.003.0006.

Full text
Abstract:
This chapter examines how broadcast television helped NFL Films transform pro football from a sport that appeared primarily on Sunday telecasts and evening news recaps into a spectacle that could be consumed throughout the entire week and year. It discusses NFL Films productions designed to augment and publicize exceptional National Football League (NFL) broadcast events, specifically the annual Super Bowl and ABC's Monday Night Football. It shows how NFL Films strengthened the NFL's relationship to television to attract television viewers (and sell advertising time) around the clock. The company's productions demonstrated that nonlive sports television programming could have appeal throughout the week and throughout the year. Furthermore, NFL Films anticipated and precipitated the continuous sports television that developed along with cable television.
APA, Harvard, Vancouver, ISO, and other styles
3

Romsom, Etienne, and Kathryn McPhail. Capturing economic and social value from hydrocarbon gas flaring: evaluation of the issues. 5th ed. UNU-WIDER, 2021. http://dx.doi.org/10.35188/unu-wider/2021/939-6.

Full text
Abstract:
Atmospheric emissions urgently need to reduce for natural gas to fulfill its potential role in the energy transition to achieve the Paris Agreement on climate change. This paper establishes the magnitude and trends of flaring and venting in oil and gas operations, as well as their emissions and impact on air quality, health, and climate. While global flaring and venting comprise 7.5 per cent of natural gas produced, their combined impact on health and climate (in terms of Social Cost of Atmospheric Release) accounts for 54 per cent. Many low- and middle-income countries are economically dependent on oil and gas production. Most premature deaths from air pollution in 2016 were in developing countries. Most natural gas losses and emissions are avoidable. If all natural gas flared and vented globally is captured and brought to market, it could supply annually more than the total South and Central America gas consumption, plus all of Africa’s power needs. If 75 per cent of these volumes are captured, it provides an additional natural gas sales value of US$36 billion per annum (assuming an average gas price of US$4/MMBtu).
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Annual cold production"

1

Abdalla, Elgailani, Tarig Ahmed, Omar Bakhit, Yasir Gamar, Salih Elshaikh, Yasir Mohammed, and Abdellatif Sulaiman And Hatim Mardi. "Groundnut mutants with end-of-season drought tolerance for the marginal dry lands of North Kordofan State, Sudan." In Mutation breeding, genetic diversity and crop adaptation to climate change, 243–57. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0025.

Full text
Abstract:
Abstract Groundnut (Arachis hypogaea L.), produced in the traditional small-scale rainfed sector of Western Sudan, accounts for 80% of the total annual groundnut acreage, producing 70% of the total production. Low productivity of groundnut is a characteristic feature in North Kordofan State, which is characterized as the most vulnerable state to the impact of climate change. Terminal drought stress resulting from reduction in rainfall amount and distribution at the end of the season is the most deleterious drought period, as it coincides with groundnut pod filling and maturation periods. High and stable yields under subsistence farming conditions in North Kordofan State could be realized only by using adapted high-yielding, drought-tolerant genotypes. Mutation induction by gamma-rays of 200 and 300 Gy was utilized to irradiate 500 dry seeds of the Spanish-type groundnut genotypes, Barberton, Sodari, ICGV 89104, ICGV 86743, ICGV 86744 and ICG 221, aiming at increasing the chances of obtaining genotypes with the desired drought-tolerant traits. Mutants were selected from the M3 plants using visual morphological traits. Groundnut mutants at the M4 and M5 generations, advanced by single seed descent, were evaluated for end-of-season drought tolerance. A terminal drought period of 25 days was imposed after 60 days from planting, using a rainout shelter. Mutants that survived 25 days of terminal drought stress were further evaluated for agronomic performance under rainfed field conditions. The groundnut mutant, Barberton-b-30-3-B, produced 1024 kg/ha, a significantly higher mean pod yield over 12 seasons compared with 926 kg/ha for 'Gubeish', the widely grown released check cultivar, showing overall yield advantage of 11%. Under 5 years of participatory research, Barberton-b-30-3-B was ranked the best with yield increment of 21% over 'Gubeish' under the mother trials. The GGE biplot analysis for 12 and five seasons, respectively, showed that Barberton-b-30-3-B was stable and produced a good yield in both high and low rainfall situations. Hence, Barberton-b-30-3-B was found to be a suitable mutant for sustainable profitable yields in the marginal dry lands of North Kordofan State and was officially released as 'Tafra-1' by the National Variety Release Committee during its second meeting of April 2018.
APA, Harvard, Vancouver, ISO, and other styles
2

Kamburova, Venera, Ilkhom Salakhutdinov, and Ibrokhim Y. Abdurakhmonov. "Cotton Breeding in the View of Abiotic and Biotic Stresses: Challenges and Perspectives." In Cotton [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104761.

Full text
Abstract:
Global climate change manifested in average annual temperature rise and imbalance of most natural factors, such as changes in annual mean rainfall, air humidity, average temperature of cold and warm months, soil quality, etc., lead to climatic zones displacement. All these have a significant impact on agricultural production in total, including cotton growing. Cotton is one of the most important technical crops in the world. However, it is very sensitive to environmental changes. The influence of abiotic stresses (high temperature, changes in the mean rainfall and soil salinity) causes a dramatic decrease yield of this crop. Moreover, temperature anomalies and climatic zones displacement cause a change in the area of pathogens and pests distribution, which also reduces the cotton yield. One of the possible ways to increase the cotton yield under the influence of abiotic and biotic stresses is the development of new resistant varieties, using both classical breeding methods and genetic engineering achievements.
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Raymond C., and William R. Fraser. "Climate Variability and Ecological Response of the Marine Ecosystem in the Western Antarctic Peninsula (WAP) Region." In Climate Variability and Ecosystem Response in Long-Term Ecological Research Sites. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195150599.003.0018.

Full text
Abstract:
The Antarctic Peninsula, a relatively long, narrow extension of the Antarctic continent, defines a strong climatic gradient between the cold, dry continental regime to its south and the warm, moist maritime regime to its north. The potential for these contrasting climate regimes to shift in dominance from season to season and year to year creates a highly variable environment that is sensitive to climate perturbation. Consequently, long-term studies in the western Antarctic Peninsula (WAP) region, which is the location of the Palmer LTER (figure 9.1), provide the opportunity to observe how climate-driven variability in the physical environment is related to changes in the marine ecosystem (Ross et al. 1996; Smith et al. 1996; Smith et al. 1999). This is a sea ice–dominated ecosystem where the annual advance and retreat of the sea ice is a major physical determinant of spatial and temporal change in its structure and function, from total annual primary production to the breeding success and survival of seabirds. Mounting evidence suggests that the earth is experiencing a period of rapid climate change, and air temperature records from the last half century confirm a statistically significant warming trend within the WAP during the past half century (King 1994; King and Harangozo 1998; Marshall and King 1998; Ross et al. 1996; Sansom 1989; Smith et al. 1996; Stark 1994; van den Broeke 1998; Weatherly et al. 1991). Air temperature–sea ice linkages appear to be very strong in the WAP region (Jacka 1990; Jacka and Budd 1991; King 1994; Smith et al. 1996; Weatherly et al. 1991), and a statistically significant anticorrelation between air temperatures and sea ice extent has been observed for this region. Consistent with this strong coupling, sea ice extent in the WAP area has trended down during this period of satellite observations, and the sea ice season has shortened. In addition, both air temperature and sea ice have been shown to be significantly correlated with the Southern Oscillation Index (SOI), which suggests possible linkages among sea ice, cyclonic activity, and global teleconnections.
APA, Harvard, Vancouver, ISO, and other styles
4

Borjas, George J., Barry R. Chiswick, George J. Borjas, and Barry R. Chiswick. "The Economic Benefits from Immigration." In Foundations of Migration Economics, 427–48. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198788072.003.0017.

Full text
Abstract:
Natives benefit from immigration mainly because of production complementarities between immigrant workers and other factors of production, and these benefits are larger when immigrants are sufficiently “different” from the stock of native productive inputs. The available evidence suggests that the economic benefits from immigration for the United States are small, on the order of $6 billion and almost certainly less than $20 billion annually. These gains, however, could be increased considerably if the United States pursued an immigration policy which attracted a more skilled immigrant flow.
APA, Harvard, Vancouver, ISO, and other styles
5

Oswood, Mark W., and Nicholas F. Hughes. "Running Waters of the Alaskan Boreal Forest." In Alaska's Changing Boreal Forest. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195154313.003.0015.

Full text
Abstract:
Running waters reflect the character of their landscape. Landscapes influence their streams by supplying dissolved ions to the water, determining the organic matter supply to stream foodwebs, and influencing water temperature and water flows (Gregory et al. 1991, Hynes 1975). The water that feeds streams has passed over and through the vegetation, soils, and rocks of the valley. Just as urine carries the chemical imprint of metabolic activities (such as diabetes), the kinds and amounts of dissolved matter delivered to stream channels carry the signature of the valley’s parent materials and biota. Riparian (streamside) vegetation similarly regulates the balance of carbon sources to stream consumers. In valleys with sparse riparian vegetation, abundant light at the streambed allows in-stream primary production by protists and plants to dominate. Where riparian vegetation forms a canopy over the stream, leaves and needles from shrubs and trees dominate carbon supplies to consumers because low light limits contributions from in-stream primary producers (Vannote et al. 1980). Water temperature and flow are complexly determined by climatic controls (e.g., air and soil temperatures, patterns of precipitation), landscape physiography (e.g., shading of streams by valley walls), and the filter of lightabsorbing and water-transpiring riparian vegetation. Thus, streams in the desert biome of the American Southwest, with intermittent droughts and floods, high water temperatures, and abundant light, are very different habitats from the cool, dark waters of perennial streams in the temperate rain forest of the Pacific Northwest coast (Fisher 1995). Likewise, streams in the boreal forest of Alaska (and in the cold circumboreal forests of the world) take their cues from the landscape. Cold permeates the ecology of the boreal landscape and the running waters therein. The consequences of high-latitude climate on running waters are at least three: creation of ice in both terrestrial and running water systems; limited inputs of organic matter and nutrients to foodwebs; and thermal effects of low water temperatures on biological processes (Oswood 1997). For forested streams, a good case can be made for autumn as the beginning of the stream’s “fiscal” year. Autumnal leaf fall from riparian vegetation provides a major proportion of the annual energy budget to stream foodwebs.
APA, Harvard, Vancouver, ISO, and other styles
6

Ross, Andrew. "The Road Runner’s Appetite." In Bird on Fire. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199828265.003.0008.

Full text
Abstract:
Political and business leaders know that their defects and blunders will be excused if they turn in a respectable growth performance. The quarterly or annual gains in corporate revenue or GDP are really all that matters. But when and why did these raw metrics come to surpass all other indicators of well-being? Although growth is often seen as integral to any capitalist system of accumulation, its recognition as a society’s only relevant standard of worth is largely a postwar development. For example, four-fifths of U.S. growth has occurred in the last fifty years, some part of it driven by Cold War competition to prove the superiority of a market economy. The consensus mood that developed after 1945—which historians have called “growth liberalism”—presided over an expansionist boom in the industrialized world that did not contract until the 1970s. Subsequent doctrines—the supply-side gospel of the Reagan era, the high-tech evangelism of the 1990s, and the asset ownership creed of the 2000s—were all aimed at reviving and boosting the high growth rates that managers of a consumer society had come to expect. Growthmanship spread abroad, along with the internationalization of production, and soon growth in GDP became the most important yardstick for nations, whether in the advanced or the developing world. Slowing growth rates were a cause for concern, while falling numbers were a sign that something was awry, and that close scrutiny, even intervention, from the World Bank or the International Monetary Fund was in the offing. Those who believed or behaved otherwise were not wrong; they were simply treated as dropouts from modernity. So entrenched was this orthodoxy that The Limits to Growth, the momentous 1972 Club of Rome report that concluded that current rates of industrial growth could not be sustained ecologically in the long term, was received among business and policy elites as a genuinely heretical document that had to be publicly pilloried. Subsequent surveys, drawing upon a wider range of experts and a more comprehensive collection of scientific data, amplified the 1972 warning about the ruinous impact of unrestrained growth.
APA, Harvard, Vancouver, ISO, and other styles
7

Ray Chaudhuri, Shaon. "Green Gold from Dairy Industry: A Self-Sustained Eco-Friendly Effluent Treatment Plant." In New Advances in the Dairy Industry [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101254.

Full text
Abstract:
The major bottleneck of dairy effluent treatment plant operation is the generation of 10 m3 of nutrient rich wastewater per m3 of milk processed resulting in an annual production of 7.93 tons of carbon dioxide equivalent (CO2 e) gas during treatment in a 7–8 step process. It is an expensive, non-ecofriendly, laborious process which is often not adoptable by the small segment installations. A carefully selected tailor-made bacterial consortium in biofilm reactor within 4 h of incubation in a single step operation under ambient condition could transform the total volume of wastewater into ammonia rich liquid biofertilizer generating 0.79 tons/year CO2 e gas. This biofertilizer replaces the use of fresh water and chemical fertilizer for agriculture, producing economic crops at par with chemical fertilizer. In certain cases, the production of crops is increased substantially over chemical fertilizer based growth. It reduced carbohydrate content of tuber crops. The generated liquid biofertilizer can overcome the shortage in fodder production without using chemical fertilizer and fresh water, hence solving one of the major concerns for sustaining the expansion of dairy industry, hence making dairy effluent treatment plant (ETP) operation an eco-friendly, self-sustainable operation.
APA, Harvard, Vancouver, ISO, and other styles
8

N. Aso, Sammy, Simeon C. Achinewhu, and Madu O. Iwe. "Global Fertilizer Contributions from Specific Biogas Coproduct." In Biogas - Basics, Integrated Approaches, and Case Studies. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101543.

Full text
Abstract:
The impact of Haber-Bosch process on modern agriculture is prodigious. Haber-Bosch process led to invention of chemical fertilizers that powered green revolution, minimized food scarcity, and improved human and animal nutrition. Haber–Bosch process facilitated agricultural productivity in many parts of the world, with up to 60% of crop yield increase attributed solely to nitrogen fertilizer. However, Haber-Bosch fertilizers are expensive, and their poor use efficiency exerts adverse external consequences. In European Union for example, the annual damage of up to € 320 (US$ 372.495) billion associated with chemical fertilizers outweighs their direct benefit to farmers, in terms of crops grown, of up to € 80 (US$ 93.124) billion. A substitute for chemical fertilizers is therefore needed. In this chapter, external costs of chemical fertilizers are highlighted. The capability of liquid fraction of cassava peeling residue digestate to supplant and mitigate pecuniary costs of chemical fertilizers required for production of cassava root is also analyzed and presented. Results indicate that about 25% of fund used to purchase chemical fertilizers required for cassava root production could be saved with the use of liquid fraction of cassava peeling residue digestate. The pecuniary value is estimated at US$ 0.141 (≈ € 0.121) billion for the 2019 global cassava root output. This saving excludes external costs associated with Haber-Bosch fertilizers such as ammonia air pollution, eutrophication, greenhouse gasses emissions, and contamination of potable water supply reserves. Consequently, liquid fraction digestate could reduce the cost of cassava root production, as well as minimize adverse health and environmental consequences attributed to chemical fertilizers.
APA, Harvard, Vancouver, ISO, and other styles
9

Gorfu Tessema, Bezaye, Heiko Daniel, Zenebe Adimassu, and Brian Wilson. "Soil Carbon Storage Potential of Tropical Grasses: A Review." In Botany - Recent Advances and Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97835.

Full text
Abstract:
Environmental degradation and climate change are key current threats to world agriculture and food security and human–induced changes have been significant driving forces of this global environmental change. An important component is land degradation which results in a diminished soil organic carbon (SOC) stock with concomitant loss of soil condition and function. Land management to improve soil organic matter content, condition and productivity is therefore a key strategy to safeguard agricultural production, food supply and environmental quality. Soil organic carbon sequestration through the use of plant species with high photosynthetic efficiency, deep roots and high biomass production is one important strategy to achieve this. Tropical pastures, which are adapted to a wide range of environmental conditions have particular potential in this regard and have been used extensively for land rehabilitation. Tropical pastures also have advantages over trees for biomass and carbon accumulation due to their rapid establishment, suitability for annual harvest, continual and rapid growth rates. In addition, tropical pastures have the potential for SOC storage in subsoil horizons due to their deep root systems and can be used as biomass energy crops, which could further promote their use as a climate change mitigation option. Here we aimed to review current knowledge regarding the SOC storage potential of tropical grasses worldwide and identified knowledge gaps and current research needs for the use of tropical grasses in agricultural production system.
APA, Harvard, Vancouver, ISO, and other styles
10

"Eels at the Edge: Science, Status, and Conservation Concerns." In Eels at the Edge: Science, Status, and Conservation Concerns, edited by Guy Verreault, Willy Dargere, and Rémi Tardif. American Fisheries Society, 2009. http://dx.doi.org/10.47886/9781888569964.ch9.

Full text
Abstract:
<em>Abstract.</em>—Forty thousand American eel <em>Anguilla rostrata </em>elvers were released in a 400-ha lake in an eel-free watershed in eastern Québec in 1999. Subsequent sampling enabled the measurement of poststocking movements, growth, and sex ratio. Populations showed limited movements, and occupancy extended less than 3 km into inflowing tributaries by 2003. Annual growth increments in the lake (118 mm/ year) were the highest reported for the species, but growth increments in rivers (40 mm/year) were typical of those found elsewhere. Four of seven eels whose sex could be determined were females, in contrast to other sites in the St. Lawrence watershed where females are more than 99% of the population. American eel translocation to growth areas that have been blocked by artificial barriers may be a useful means to increase production of silver eels.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Annual cold production"

1

Yuan, J., A. Babchin, and B. Tremblay. "Modeling Wormhole Flow In Cold Production." In Annual Technical Meeting. Petroleum Society of Canada, 1998. http://dx.doi.org/10.2118/98-62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Denbina, E. S., R. O. Baker, G. G. Gegunde, A. J. Klesken, and S. F. Sodero. "Modeling Cold Production For Heavy Oil Reservoirs." In Annual Technical Meeting. Petroleum Society of Canada, 1998. http://dx.doi.org/10.2118/98-44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yuan, J., J. S. Weaver, and B. Barr. "Measurement of Slurry Viscosity In Cold Production." In Annual Technical Meeting. Petroleum Society of Canada, 1997. http://dx.doi.org/10.2118/97-121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chugh, S., R. Baker, A. Telesford, and E. Zhang. "Mainstream Options For Heavy Oil: Part I-Cold Production." In Annual Technical Meeting. Petroleum Society of Canada, 1997. http://dx.doi.org/10.2118/97-99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hsu, Sheng-Yuan, Kevin Howard Searles, Yueming Liang, Lei Wang, Bruce A. Dale, Eric Russell Grueschow, Alexander Spuskanyuk, Elizabeth Templeton, Richard James Smith, and Daniel R. J. Lemoing. "Casing Integrity Study for Heavy-Oil Production in Cold Lake." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/134329-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Guo-Qing, Cenk Temizel, and Anthony Robert Kovscek. "The Role of Oil Chemistry on Cold Production of Heavy Oils." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/102365-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vittoratos, E. "Interpretation of Production Data From Cyclic Steam Stimulation at Cold Lake." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 1990. http://dx.doi.org/10.2118/20527-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jansen, Finn Erik, Allan Curtis, Laura Victoria Mejia-cana, Johannes Ramsdal, and Apr Ove Selboe. "Fullfield Heavy Oil Conversion from Cold to Hot Production; Challenges and Solutions." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2118/146695-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qin, Wenting, Andrew K. Wojtanowicz, and Christopher David White. "New Cold Production Technique for Heavy Oil with Strong Bottom Water Drive." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2118/146928-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Z. "Optimization of Cold Production with Horizontal Wells in Foamy Extra-Heavy Oil Reservoirs." In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202010871.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Annual cold production"

1

Reinhardt, Sarah. From Silos to Systems: Investing in Sustainable Nutrition Science for a Healthy Future. Union of Concerned Scientists, September 2021. http://dx.doi.org/10.47923/2021.14270.

Full text
Abstract:
Diet-related disease, climate change, and environmental degradation exact an enormous toll on human and planetary health. These challenges could be addressed in part by shifting what we eat and how we produce food, yet key questions remain about how to make such transitions effective, equitable, and sustainable. To help answer these questions, investments in “sustainable nutrition science”—research and education at the intersection of nutrition, food production, and climate and environment—are urgently needed. However, the Union of Concerned Scientists has found that US public funding for sustainable nutrition science is severely limited, totaling an estimated $16 million annually between 2016 and 2019, and recommends more than tripling that amount in response to our devastating public health and environmental crises.
APA, Harvard, Vancouver, ISO, and other styles
2

Taucher, Jan, and Markus Schartau. Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization. OceanNETs, November 2021. http://dx.doi.org/10.3289/oceannets_d5.2.

Full text
Abstract:
We applied a 1-D plankton ecosystem-biogeochemical model to assess the impacts of ocean alkalinity enhancement (OAE) on seasonal changes in biogeochemistry and plankton dynamics. Depending on deployment scenarios, OAE should theoretically have variable effects on pH and seawater pCO2, which might in turn affect (a) plankton growth conditions and (b) the efficiency of carbon dioxide removal (CDR) via OAE. Thus, a major focus of our work is how different magnitudes and temporal frequencies of OAE might affect seasonal response patterns of net primary productivity (NPP), ecosystem functioning and biogeochemical cycling. With our study we aimed at identifying a parameterization of how magnitude and frequency of OAE affect net growth rates, so that these effects could be employed for Earth System Modell applications. So far we learned that a meaningful response parameterization has to resolve positive and negative anomalies that covary with temporal shifts. As to the intricacy of the response patterns, the derivation of such parameterization is work in progress. However, our study readily provides valuable insights to how OAE can alter plankton dynamics and biogeochemistry. Our modelling study first focuses at a local site where time series data are available (European Station for Time series in the Ocean Canary Islands ESTOC), including measurements of pH, concentrations of total alkalinity, dissolved inorganic carbon (DIC), chlorophyll-a and dissolved inorganic nitrogen (DIN). These observational data were made available by Andres Cianca (personal communication, PLOCAN, Spain), Melchor Gonzalez and Magdalena Santana Casiano (personal communication, Universidad de Las Palmas de Gran Canaria). The choice of this location was underpinned by the fact that the first OAE mesocosm experiment was conducted on the Canary Island Gran Canaria, which will facilitate synthesizing our modelling approach with experimental findings. For our simulations at the ESTOC site in the Subtropical North Atlantic we found distinct, non-linear responses of NPP to different temporal modes of alkalinity deployment. In particular, phytoplankton bloom patterns displayed pronounced temporal phase shifts and changes in their amplitude. Notably, our simulations suggest that OAE can have a slightly stimulating effect on NPP, which is however variable, depending on the magnitude of OAE and the temporal mode of alkalinity addition. Furthermore, we find that increasing alkalinity perturbations can lead to a shift in phytoplankton community composition (towards coccolithophores), which even persists after OAE has stopped. In terms of CDR, we found that a decrease in efficiency with increasing magnitude of alkalinity addition, as well as substantial differences related to the timing of addition. Altogether, our results suggest that annual OAE during the right season (i.e. physical and biological conditions), could be a reasonable compromise in terms of logistical feasibility, efficiency of CDR and side-effects on marine biota. With respect to transferability to global models, the complex, non-linear responses of biological processes to OAE identified in our simulations do not allow for simple parameterizations that can easily adapted. Dedicated future work is required to transfer the observed responses at small spatiotemporal scales to the coarser resolution of global models.
APA, Harvard, Vancouver, ISO, and other styles
3

Vargas-Herrera, Hernando, Juan Jose Ospina-Tejeiro, Carlos Alfonso Huertas-Campos, Adolfo León Cobo-Serna, Edgar Caicedo-García, Juan Pablo Cote-Barón, Nicolás Martínez-Cortés, et al. Monetary Policy Report - April de 2021. Banco de la República de Colombia, July 2021. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr2-2021.

Full text
Abstract:
1.1 Macroeconomic summary Economic recovery has consistently outperformed the technical staff’s expectations following a steep decline in activity in the second quarter of 2020. At the same time, total and core inflation rates have fallen and remain at low levels, suggesting that a significant element of the reactivation of Colombia’s economy has been related to recovery in potential GDP. This would support the technical staff’s diagnosis of weak aggregate demand and ample excess capacity. The most recently available data on 2020 growth suggests a contraction in economic activity of 6.8%, lower than estimates from January’s Monetary Policy Report (-7.2%). High-frequency indicators suggest that economic performance was significantly more dynamic than expected in January, despite mobility restrictions and quarantine measures. This has also come amid declines in total and core inflation, the latter of which was below January projections if controlling for certain relative price changes. This suggests that the unexpected strength of recent growth contains elements of demand, and that excess capacity, while significant, could be lower than previously estimated. Nevertheless, uncertainty over the measurement of excess capacity continues to be unusually high and marked both by variations in the way different economic sectors and spending components have been affected by the pandemic, and by uneven price behavior. The size of excess capacity, and in particular the evolution of the pandemic in forthcoming quarters, constitute substantial risks to the macroeconomic forecast presented in this report. Despite the unexpected strength of the recovery, the technical staff continues to project ample excess capacity that is expected to remain on the forecast horizon, alongside core inflation that will likely remain below the target. Domestic demand remains below 2019 levels amid unusually significant uncertainty over the size of excess capacity in the economy. High national unemployment (14.6% for February 2021) reflects a loose labor market, while observed total and core inflation continue to be below 2%. Inflationary pressures from the exchange rate are expected to continue to be low, with relatively little pass-through on inflation. This would be compatible with a negative output gap. Excess productive capacity and the expectation of core inflation below the 3% target on the forecast horizon provide a basis for an expansive monetary policy posture. The technical staff’s assessment of certain shocks and their expected effects on the economy, as well as the presence of several sources of uncertainty and related assumptions about their potential macroeconomic impacts, remain a feature of this report. The coronavirus pandemic, in particular, continues to affect the public health environment, and the reopening of Colombia’s economy remains incomplete. The technical staff’s assessment is that the COVID-19 shock has affected both aggregate demand and supply, but that the impact on demand has been deeper and more persistent. Given this persistence, the central forecast accounts for a gradual tightening of the output gap in the absence of new waves of contagion, and as vaccination campaigns progress. The central forecast continues to include an expected increase of total and core inflation rates in the second quarter of 2021, alongside the lapse of the temporary price relief measures put in place in 2020. Additional COVID-19 outbreaks (of uncertain duration and intensity) represent a significant risk factor that could affect these projections. Additionally, the forecast continues to include an upward trend in sovereign risk premiums, reflected by higher levels of public debt that in the wake of the pandemic are likely to persist on the forecast horizon, even in the context of a fiscal adjustment. At the same time, the projection accounts for the shortterm effects on private domestic demand from a fiscal adjustment along the lines of the one currently being proposed by the national government. This would be compatible with a gradual recovery of private domestic demand in 2022. The size and characteristics of the fiscal adjustment that is ultimately implemented, as well as the corresponding market response, represent another source of forecast uncertainty. Newly available information offers evidence of the potential for significant changes to the macroeconomic scenario, though without altering the general diagnosis described above. The most recent data on inflation, growth, fiscal policy, and international financial conditions suggests a more dynamic economy than previously expected. However, a third wave of the pandemic has delayed the re-opening of Colombia’s economy and brought with it a deceleration in economic activity. Detailed descriptions of these considerations and subsequent changes to the macroeconomic forecast are presented below. The expected annual decline in GDP (-0.3%) in the first quarter of 2021 appears to have been less pronounced than projected in January (-4.8%). Partial closures in January to address a second wave of COVID-19 appear to have had a less significant negative impact on the economy than previously estimated. This is reflected in figures related to mobility, energy demand, industry and retail sales, foreign trade, commercial transactions from selected banks, and the national statistics agency’s (DANE) economic tracking indicator (ISE). Output is now expected to have declined annually in the first quarter by 0.3%. Private consumption likely continued to recover, registering levels somewhat above those from the previous year, while public consumption likely increased significantly. While a recovery in investment in both housing and in other buildings and structures is expected, overall investment levels in this case likely continued to be low, and gross fixed capital formation is expected to continue to show significant annual declines. Imports likely recovered to again outpace exports, though both are expected to register significant annual declines. Economic activity that outpaced projections, an increase in oil prices and other export products, and an expected increase in public spending this year account for the upward revision to the 2021 growth forecast (from 4.6% with a range between 2% and 6% in January, to 6.0% with a range between 3% and 7% in April). As a result, the output gap is expected to be smaller and to tighten more rapidly than projected in the previous report, though it is still expected to remain in negative territory on the forecast horizon. Wide forecast intervals reflect the fact that the future evolution of the COVID-19 pandemic remains a significant source of uncertainty on these projections. The delay in the recovery of economic activity as a result of the resurgence of COVID-19 in the first quarter appears to have been less significant than projected in the January report. The central forecast scenario expects this improved performance to continue in 2021 alongside increased consumer and business confidence. Low real interest rates and an active credit supply would also support this dynamic, and the overall conditions would be expected to spur a recovery in consumption and investment. Increased growth in public spending and public works based on the national government’s spending plan (Plan Financiero del Gobierno) are other factors to consider. Additionally, an expected recovery in global demand and higher projected prices for oil and coffee would further contribute to improved external revenues and would favor investment, in particular in the oil sector. Given the above, the technical staff’s 2021 growth forecast has been revised upward from 4.6% in January (range from 2% to 6%) to 6.0% in April (range from 3% to 7%). These projections account for the potential for the third wave of COVID-19 to have a larger and more persistent effect on the economy than the previous wave, while also supposing that there will not be any additional significant waves of the pandemic and that mobility restrictions will be relaxed as a result. Economic growth in 2022 is expected to be 3%, with a range between 1% and 5%. This figure would be lower than projected in the January report (3.6% with a range between 2% and 6%), due to a higher base of comparison given the upward revision to expected GDP in 2021. This forecast also takes into account the likely effects on private demand of a fiscal adjustment of the size currently being proposed by the national government, and which would come into effect in 2022. Excess in productive capacity is now expected to be lower than estimated in January but continues to be significant and affected by high levels of uncertainty, as reflected in the wide forecast intervals. The possibility of new waves of the virus (of uncertain intensity and duration) represents a significant downward risk to projected GDP growth, and is signaled by the lower limits of the ranges provided in this report. Inflation (1.51%) and inflation excluding food and regulated items (0.94%) declined in March compared to December, continuing below the 3% target. The decline in inflation in this period was below projections, explained in large part by unanticipated increases in the costs of certain foods (3.92%) and regulated items (1.52%). An increase in international food and shipping prices, increased foreign demand for beef, and specific upward pressures on perishable food supplies appear to explain a lower-than-expected deceleration in the consumer price index (CPI) for foods. An unexpected increase in regulated items prices came amid unanticipated increases in international fuel prices, on some utilities rates, and for regulated education prices. The decline in annual inflation excluding food and regulated items between December and March was in line with projections from January, though this included downward pressure from a significant reduction in telecommunications rates due to the imminent entry of a new operator. When controlling for the effects of this relative price change, inflation excluding food and regulated items exceeds levels forecast in the previous report. Within this indicator of core inflation, the CPI for goods (1.05%) accelerated due to a reversion of the effects of the VAT-free day in November, which was largely accounted for in February, and possibly by the transmission of a recent depreciation of the peso on domestic prices for certain items (electric and household appliances). For their part, services prices decelerated and showed the lowest rate of annual growth (0.89%) among the large consumer baskets in the CPI. Within the services basket, the annual change in rental prices continued to decline, while those services that continue to experience the most significant restrictions on returning to normal operations (tourism, cinemas, nightlife, etc.) continued to register significant price declines. As previously mentioned, telephone rates also fell significantly due to increased competition in the market. Total inflation is expected to continue to be affected by ample excesses in productive capacity for the remainder of 2021 and 2022, though less so than projected in January. As a result, convergence to the inflation target is now expected to be somewhat faster than estimated in the previous report, assuming the absence of significant additional outbreaks of COVID-19. The technical staff’s year-end inflation projections for 2021 and 2022 have increased, suggesting figures around 3% due largely to variation in food and regulated items prices. The projection for inflation excluding food and regulated items also increased, but remains below 3%. Price relief measures on indirect taxes implemented in 2020 are expected to lapse in the second quarter of 2021, generating a one-off effect on prices and temporarily affecting inflation excluding food and regulated items. However, indexation to low levels of past inflation, weak demand, and ample excess productive capacity are expected to keep core inflation below the target, near 2.3% at the end of 2021 (previously 2.1%). The reversion in 2021 of the effects of some price relief measures on utility rates from 2020 should lead to an increase in the CPI for regulated items in the second half of this year. Annual price changes are now expected to be higher than estimated in the January report due to an increased expected path for fuel prices and unanticipated increases in regulated education prices. The projection for the CPI for foods has increased compared to the previous report, taking into account certain factors that were not anticipated in January (a less favorable agricultural cycle, increased pressure from international prices, and transport costs). Given the above, year-end annual inflation for 2021 and 2022 is now expected to be 3% and 2.8%, respectively, which would be above projections from January (2.3% and 2,7%). For its part, expected inflation based on analyst surveys suggests year-end inflation in 2021 and 2022 of 2.8% and 3.1%, respectively. There remains significant uncertainty surrounding the inflation forecasts included in this report due to several factors: 1) the evolution of the pandemic; 2) the difficulty in evaluating the size and persistence of excess productive capacity; 3) the timing and manner in which price relief measures will lapse; and 4) the future behavior of food prices. Projected 2021 growth in foreign demand (4.4% to 5.2%) and the supposed average oil price (USD 53 to USD 61 per Brent benchmark barrel) were both revised upward. An increase in long-term international interest rates has been reflected in a depreciation of the peso and could result in relatively tighter external financial conditions for emerging market economies, including Colombia. Average growth among Colombia’s trade partners was greater than expected in the fourth quarter of 2020. This, together with a sizable fiscal stimulus approved in the United States and the onset of a massive global vaccination campaign, largely explains the projected increase in foreign demand growth in 2021. The resilience of the goods market in the face of global crisis and an expected normalization in international trade are additional factors. These considerations and the expected continuation of a gradual reduction of mobility restrictions abroad suggest that Colombia’s trade partners could grow on average by 5.2% in 2021 and around 3.4% in 2022. The improved prospects for global economic growth have led to an increase in current and expected oil prices. Production interruptions due to a heavy winter, reduced inventories, and increased supply restrictions instituted by producing countries have also contributed to the increase. Meanwhile, market forecasts and recent Federal Reserve pronouncements suggest that the benchmark interest rate in the U.S. will remain stable for the next two years. Nevertheless, a significant increase in public spending in the country has fostered expectations for greater growth and inflation, as well as increased uncertainty over the moment in which a normalization of monetary policy might begin. This has been reflected in an increase in long-term interest rates. In this context, emerging market economies in the region, including Colombia, have registered increases in sovereign risk premiums and long-term domestic interest rates, and a depreciation of local currencies against the dollar. Recent outbreaks of COVID-19 in several of these economies; limits on vaccine supply and the slow pace of immunization campaigns in some countries; a significant increase in public debt; and tensions between the United States and China, among other factors, all add to a high level of uncertainty surrounding interest rate spreads, external financing conditions, and the future performance of risk premiums. The impact that this environment could have on the exchange rate and on domestic financing conditions represent risks to the macroeconomic and monetary policy forecasts. Domestic financial conditions continue to favor recovery in economic activity. The transmission of reductions to the policy interest rate on credit rates has been significant. The banking portfolio continues to recover amid circumstances that have affected both the supply and demand for loans, and in which some credit risks have materialized. Preferential and ordinary commercial interest rates have fallen to a similar degree as the benchmark interest rate. As is generally the case, this transmission has come at a slower pace for consumer credit rates, and has been further delayed in the case of mortgage rates. Commercial credit levels stabilized above pre-pandemic levels in March, following an increase resulting from significant liquidity requirements for businesses in the second quarter of 2020. The consumer credit portfolio continued to recover and has now surpassed February 2020 levels, though overall growth in the portfolio remains low. At the same time, portfolio projections and default indicators have increased, and credit establishment earnings have come down. Despite this, credit disbursements continue to recover and solvency indicators remain well above regulatory minimums. 1.2 Monetary policy decision In its meetings in March and April the BDBR left the benchmark interest rate unchanged at 1.75%.
APA, Harvard, Vancouver, ISO, and other styles
4

Abbo, Shahal, Hongbin Zhang, Clarice Coyne, Amir Sherman, Dan Shtienberg, and George J. Vandemark. Winter chickpea; towards a new winter pulse for the semiarid Pacific Northwest and wider adaptation in the Mediterranean basin. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7597909.bard.

Full text
Abstract:
Original objectives: [a] Screen an array of chickpea and wild annual Cicer germplasm for winter survival. [b] Genetic analysis of winter hardiness in domesticated x wild chickpea crosses. [c] Genetic analysis of vernalization response in domesticated x wild chickpea crosses. [d] Digital expression analysis of a core selection of breeding and germplasm lines of chickpea that differ in winter hardiness and vernalization. [e] Identification of the genes involved in the chickpea winter hardiness and vernalization and construction of gene network controlling these traits. [f] Assessing the phenotypic and genetic correlations between winter hardiness, vernalization response and Ascochyta blight response in chickpea. The complexity of the vernalization response and the inefficiency of our selection experiments (below) required quitting the work on ascochyta response in the framework of this project. Background to the subject: Since its introduction to the Palouse region of WA and Idaho, and the northern Great Plains, chickpea has been a spring rotation legume due to lack of winter hardiness. The short growing season of spring chickpea limits its grain yield and leaves relatively little stubble residue for combating soil erosion. In Israel, chilling temperatures limit pod setting in early springs and narrow the effective reproductive time window of the crop. Winter hardiness and vernalization response of chickpea alleles were lost due to a series of evolutionary bottlenecks; however, such alleles are prevalent in its wild progenitor’s genepool. Major conclusions, solutions, achievements: It appears that both vernalization response and winter hardiness are polygenic traits in the wild-domesticated chickpea genepool. The main conclusion from the fieldwork in Israel is that selection of domesticated winter hardy and vernalization responsive types should be conducted in late flowering and late maturity backgrounds to minimize interference by daylength and temperature response alleles (see our Plant Breeding paper on the subject). The main conclusion from the US winter-hardiness studies is that excellent lines have been identified for germplasm release and continued genetic study. Several of the lines have good seed size and growth habit that will be useful for introgressing winter-hardiness into current chickpea cultivars to develop releases for autumn sowing. We sequenced the transcriptomes and profiled the expression of genes in 87 samples. Differential expression analysis identified a total of 2,452 differentially expressed genes (DEGs) between vernalized plants and control plants, of which 287 were shared between two or more Cicer species studied. We cloned 498 genes controlling vernalization, named CVRN genes. Each of the CVRN genes contributes to flowering date advance (FDA) by 3.85% - 10.71%, but 413 (83%) other genes had negative effects on FDA, while only 83 (17%) had positive effects on FDA, when the plant is exposed to cold temperature. The cloned CVRN genes provide new toolkits and knowledge to develop chickpea cultivars that are suitable for autumn-sowing. Scientific & agricultural implications: Unlike the winter cereals (barley, wheat) or pea, in which a single allelic change may induce a switch from winter to spring habit, we were unable to find any evidence for such major gene action in chickpea. In agricultural terms this means that an alternative strategy must be employed in order to isolate late flowering – ascochyta resistant (winter types) domesticated forms to enable autumn sowing of chickpea in the US Great Plains. An environment was identified in U.S. (eastern Washington) where autumn-sown chickpea production is possible using the levels of winter-hardiness discovered once backcrossed into advanced cultivated material with acceptable agronomic traits. The cloned CVRN genes and identified gene networks significantly advance our understanding of molecular mechanisms underlying plant vernalization in general, and chickpea in particular, and provide a new toolkit for switching chickpea from a spring-sowing to autumn-sowing crop.
APA, Harvard, Vancouver, ISO, and other styles
5

Palmer, Guy, Varda Shkap, Wendy Brown, and Thea Molad. Control of bovine anaplasmosis: cytokine enhancement of vaccine efficacy. United States Department of Agriculture, March 2007. http://dx.doi.org/10.32747/2007.7695879.bard.

Full text
Abstract:
Anaplasmosis an arthropod-born disease of cattle caused by the rickettsia Anaplasma marginale and is an impediment to efficient production of healthy livestock in both Israel and the United States. Currently the only effective vaccines are derived from the blood of infected cattle. The risk of widespread transmission of both known and newly emergent pathogens has prevented licensure of live blood-based vaccines in the U.S. and is a major concern for their continued use in Israel. Consequently development of a safe, effective vaccine is a high priority. In this collaborative project we focused on two approaches to vaccine development. The first focused o n improving antigen delivery to livestock and specifically examined how DNA vaccines could be improved to enhance priming and expansion of the immune response. This research resulted in development and testing of two novel vaccine delivery systems--one that targeted antigen spread among dendritic cells (the key cell in priming immune responses and a follow-on construct that also specifically targeted antigen to the endosomal-lysosomal compartment the processing organelle within the dendritic cell that directs vaccine antigen to the MHC class ll-CD4* T cell priming pathway). The optimized construct targeting vaccine antigen to the dendritic cell MHC class II pathway was tested for ability to prime A. marginale specific immune responses in outbred cattle. The results demonstrated both statistically significant effects of priming with a single immunization, continued expansion of the primary immune response including development of high affinity lgG antibodies and rapid recall of the memory response following antigen challenge. This portion of the study represented a significant advance in vaccine delivery for livestock. Importantly the impact of these studies is not limited to A. marginale a s the targeting motifs are optimized for cattle and can be adapted to other cattle vaccinations by inserting a relevant pathogen-specific antigen. The second approach (which represented an addition to the project for which approval was requested as part of the first annual report) was a comparative approach between A . marginale and the Israel A . centrale vaccines train. This addition was requested as studies on Major Surface Protein( MSP)- 2 have shown that this antigen is highly antigenically variable and presented solely as a "static vaccine" antigen does not give cross-strain immunity. In contrast A. . centrale is an effective vaccine which Kimron Veterinary institute has used in the field in Israel for over 50 years. Taking advantage of this expertise, a broad comparison of wild type A. marginale and vaccine strain was initiated. These studies revealed three primary findings: i) use of the vaccine is associated with superinfection, but absence of clinical disease upon superinfection with A. marginale; ii) the A. centrale vaccine strain is not only less virulent but transmission in competent in Dermacentor spp. ticks; and iii) some but not all MSPs are conserved in basic orthologous structure but there are significant polymorphisms among the strains. These studies clearly indicated that there are statistically significant differences in biology (virulence and transmission) and provide a clear path for mapping of biology with the genomes. Based on these findings, we initiated complete genome sequencing of the Israel vaccine strain (although not currently funded by BARD) and plant to proceed with a comparative genomics approach using already sequenced wild-type A. marginale. These findings and ongoing collaborative research tie together filed vaccine experience with new genomic data, providing a new approach to vaccine development against a complex pathogen.
APA, Harvard, Vancouver, ISO, and other styles
6

Baszler, Timothy, Igor Savitsky, Christopher Davies, Lauren Staska, and Varda Shkap. Identification of bovine Neospora caninum cytotoxic T-lymphocyte epitopes for development of peptide-based vaccine. United States Department of Agriculture, March 2006. http://dx.doi.org/10.32747/2006.7695592.bard.

Full text
Abstract:
The goal of the one-year feasibility study was to identify specific cytotoxic T-lymphocyte (CTL) epitopes to Neosporacaninum in the natural bovine host in order to make progress toward developing an effective peptide-based vaccine against bovine neosporosis. We tested the hypothesis that: N. caninum SRS2 peptides contain immunogenicCTLepitope clusters cross-presented by multiple bovine MHC-I and MHC-IIhaplotypes. The specific objectives were: (1) Map bovine CTLepitopes of N. caninum NcSRS-2 and identify consensus MHC-I and class-II binding motifs; and (2) Determine if subunit immunization with peptides containing N. caninum-specificCTLepitopes cross-reactive to multiple bovine MHChaplotypes induces a CTL response in cattle with disparate MHChaplotypes. Neosporosis is a major cause of infectious abortion and congenital disease in cattle, persisting in cattle herds via vertical transmission.5 N. caninum abortions are reported in Israel; a serological survey of 52 Israeli dairy herds with reported abortions indicated a 31% infection rate in cows and 16% infection rate in aborted fetuses.9,14 Broad economic loss due to bovine neosporosis is estimated at $35,000,000 per year in California, USA, and $100,000,000 (Australian) per year in Australia and New Zealand.13 Per herd losses in a Canadian herd of 50 cattle are estimated more conservatively at $2,305 (Canadian) annually.4 Up to date practical measures to reduce losses from neosporosis in cattle have not been achieved. There is no chemotherapy available and, although progress has been made toward understanding immunity to Neospora infections, no efficacious vaccine is available to limit outbreaks or prevent abortions. Vaccine development to prevent N. caninum abortion and congenital infection remains a high research priority. To this end, our research group has over the past decade: 1) Identified the importance of T-lymphocyte-mediated immunity, particularly IFN-γ responses, as necessary for immune protection to congenital neosporosis in mice,1,2,10,11 and 2) Identified MHC class II restricted CD4+ CTL in Neosporainfected Holstein cattle,16 and 3) Identified NcSRS2 as a highly conserved surface protein associated with immunity to Neospora infections in mice and cattle.7,8,15 In this BARD-funded 12 month feasibility study, we continued our study of Neospora immunity in cattle and successfully completed T-lymphocyte epitope mapping of NcSRS2 surface protein with peptides and bovine immune cells,15 fulfilling objective 1. We also documented the importance of immune responses NcSRS2 by showing that immunization with native NcSRS2 reduces congenital Neospora transmission in mice,7 and that antibodies to NcSRS2 specifically inhibition invasion of placental trophoblasts.8 Most importantly we showed that T-lymphocyte responses similar to parasite infection, namely induction of activated IFN-γ secreting Tlymphocytes, could be induced by subunit immunization with NcSRS2 peptides containing the Neospora-specificCTLepitopes (Baszler et al, In preparation) fulfilling objective 2. Both DNA and peptide-based subunit approaches were tested. Only lipopeptide-based NcSRS2 subunits, modified with N-terminal linked palmitic acid to enhance Toll-like receptors 2 and 1 (TLR2-TLR1), stimulated robust antigen-specific T-lymphocyte proliferation, IFN-γ secretion, and serum antibody production across different MHC-IIhaplotypes. The discovery of MHC-II cross-reactive T-cellinducing parasite peptides capable of inducing a potentially protective immune response following subunit immunization in cattle is of significant practical importance to vaccine development to bovine neosporosis. In addition, our findings are more widely applicable in future investigations of protective T-cell, subunit-based immunity against other infectious diseases in outbred cattle populations.
APA, Harvard, Vancouver, ISO, and other styles
7

Aharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer, and Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7593400.bard.

Full text
Abstract:
Fruit quality is determined by numerous genetic factors that affect taste, aroma, ‎color, texture, nutritional value and shelf life. To unravel the genetic components ‎involved in the metabolic pathways behind these traits, the major goal of the project was to identify novel genes that are involved in, or that regulate, these pathways using correlation analysis between genotype, metabolite and gene expression data. The original and specific research objectives were: (1) Collection of replicated fruit from a population of 96 RI lines derived from parents distinguished by great diversity in fruit development and quality phenotypes, (2) Phenotypic and metabolic profiling of mature fruit from all 96 RI lines and their parents, (3) 454 pyrosequencing of cDNA representing mRNA of mature fruit from each line to facilitate gene expression analysis based on relative EST abundance, (4) Development of a database modeled after an existing database developed for tomato introgression lines (ILs) to facilitate online data analysis by members of this project and by researchers around the world. The main functions of the database will be to store and present metabolite and gene expression data so that correlations can be drawn between variation in target traits or metabolites across the RI population members and variation in gene expression to identify candidate genes which may impact phenotypic and chemical traits of interest, (5) Selection of RI lines for segregation and/or hybridization (crosses) analysis to ascertain whether or not genes associated with traits through gene expression/metabolite correlation analysis are indeed contributors to said traits. The overall research strategy was to utilize an available recombinant inbred population of melon (Cucumis melo L.) derived from phenotypically diverse parents and for which over 800 molecular markers have been mapped for the association of metabolic trait and gene expression QTLs. Transcriptomic data were obtained by high throughput sequencing using the Illumina platform instead of the originally planned 454 platform. The change was due to the fast advancement and proven advantages of the Illumina platform, as explained in the first annual scientific report. Metabolic data were collected using both targeted (sugars, organic acids, carotenoids) and non-targeted metabolomics analysis methodologies. Genes whose expression patterns were associated with variation of particular metabolites or fruit quality traits represent candidates for the molecular mechanisms that underlie them. Candidate genes that may encode enzymes catalyzingbiosynthetic steps in the production of volatile compounds of interest, downstream catabolic processes of aromatic amino acids and regulatory genes were selected and are in the process of functional analyses. Several of these are genes represent unanticipated effectors of compound accumulation that could not be identified using traditional approaches. According to the original plan, the Cucurbit Genomics Network (http://www.icugi.org/), developed through an earlier BARD project (IS-3333-02), was expanded to serve as a public portal for the extensive metabolomics and transcriptomic data resulting from the current project. Importantly, this database was also expanded to include genomic and metabolomic resources of all the cucurbit crops, including genomes of cucumber and watermelon, EST collections, genetic maps, metabolite data and additional information. In addition, the database provides tools enabling researchers to identify genes, the expression patterns of which correlate with traits of interest. The project has significantly expanded the existing EST resource for melon and provides new molecular tools for marker-assisted selection. This information will be opened to the public by the end of 2013, upon the first publication describing the transcriptomic and metabolomics resources developed through the project. In addition, well-characterized RI lines are available to enable targeted breeding for genes of interest. Segregation of the RI lines for specific metabolites of interest has been shown, demonstrating the utility in these lines and our new molecular and metabolic data as a basis for selection targeting specific flavor, quality, nutritional and/or defensive compounds. To summarize, all the specific goals of the project have been achieved and in many cases exceeded. Large scale trascriptomic and metabolomic resources have been developed for melon and will soon become available to the community. The usefulness of these has been validated. A number of novel genes involved in fruit ripening have been selected and are currently being functionally analyzed. We thus fully addressed our obligations to the project. In our view, however, the potential value of the project outcomes as ultimately manifested may be far greater than originally anticipated. The resources developed and expanded under this project, and the tools created for using them will enable us, and others, to continue to employ resulting data and discoveries in future studies with benefits both in basic and applied agricultural - scientific research.
APA, Harvard, Vancouver, ISO, and other styles
8

Monetary Policy Report - January 2022. Banco de la República, March 2022. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr1-2022.

Full text
Abstract:
Macroeconomic summary Several factors contributed to an increase in projected inflation on the forecast horizon, keeping it above the target rate. These included inflation in December that surpassed expectations (5.62%), indexation to higher inflation rates for various baskets in the consumer price index (CPI), a significant real increase in the legal minimum wage, persistent external and domestic inflationary supply shocks, and heightened exchange rate pressures. The CPI for foods was affected by the persistence of external and domestic supply shocks and was the most significant contributor to unexpectedly high inflation in the fourth quarter. Price adjustments for fuels and certain utilities can explain the acceleration in inflation for regulated items, which was more significant than anticipated. Prices in the CPI for goods excluding food and regulated items also rose more than expected. This was partly due to a smaller effect on prices from the national government’s VAT-free day than anticipated by the technical staff and more persistent external pressures, including via peso depreciation. By contrast, the CPI for services excluding food and regulated items accelerated less than expected, partly reflecting strong competition in the communications sector. This was the only major CPI basket for which prices increased below the target inflation rate. The technical staff revised its inflation forecast upward in response to certain external shocks (prices, costs, and depreciation) and domestic shocks (e.g., on meat products) that were stronger and more persistent than anticipated in the previous report. Observed inflation and a real increase in the legal minimum wage also exceeded expectations, which would boost inflation by affecting price indexation, labor costs, and inflation expectations. The technical staff now expects year-end headline inflation of 4.3% in 2022 and 3.4% in 2023; core inflation is projected to be 4.5% and 3.6%, respectively. These forecasts consider the lapse of certain price relief measures associated with the COVID-19 health emergency, which would contribute to temporarily keeping inflation above the target on the forecast horizon. It is important to note that these estimates continue to contain a significant degree of uncertainty, mainly related to the development of external and domestic supply shocks and their ultimate effects on prices. Other contributing factors include high price volatility and measurement uncertainty related to the extension of Colombia’s health emergency and tax relief measures (such as the VAT-free days) associated with the Social Investment Law (Ley de Inversión Social). The as-yet uncertain magnitude of the effects of a recent real increase in the legal minimum wage (that was high by historical standards) and high observed and expected inflation, are additional factors weighing on the overall uncertainty of the estimates in this report. The size of excess productive capacity remaining in the economy and the degree to which it is closing are also uncertain, as the evolution of the pandemic continues to represent a significant forecast risk. margin, could be less dynamic than expected. And the normalization of monetary policy in the United States could come more quickly than projected in this report, which could negatively affect international financing costs. Finally, there remains a significant degree of uncertainty related to the duration of supply chocks and the degree to which macroeconomic and political conditions could negatively affect the recovery in investment. The technical staff revised its GDP growth projection for 2022 from 4.7% to 4.3% (Graph 1.3). This revision accounts for the likelihood that a larger portion of the recent positive dynamic in private consumption would be transitory than previously expected. This estimate also contemplates less dynamic investment behavior than forecast in the previous report amid less favorable financial conditions and a highly uncertain investment environment. Third-quarter GDP growth (12.9%), which was similar to projections from the October report, and the fourth-quarter growth forecast (8.7%) reflect a positive consumption trend, which has been revised upward. This dynamic has been driven by both public and private spending. Investment growth, meanwhile, has been weaker than forecast. Available fourth-quarter data suggest that consumption spending for the period would have exceeded estimates from October, thanks to three consecutive months that included VAT-free days, a relatively low COVID-19 caseload, and mobility indicators similar to their pre-pandemic levels. By contrast, the most recently available figures on new housing developments and machinery and equipment imports suggest that investment, while continuing to rise, is growing at a slower rate than anticipated in the previous report. The trade deficit is expected to have widened, as imports would have grown at a high level and outpaced exports. Given the above, the technical staff now expects fourth-quarter economic growth of 8.7%, with overall growth for 2021 of 9.9%. Several factors should continue to contribute to output recovery in 2022, though some of these may be less significant than previously forecast. International financial conditions are expected to be less favorable, though external demand should continue to recover and terms of trade continue to increase amid higher projected oil prices. Lower unemployment rates and subsequent positive effects on household income, despite increased inflation, would also boost output recovery, as would progress in the national vaccination campaign. The technical staff expects that the conditions that have favored recent high levels of consumption would be, in large part, transitory. Consumption spending is expected to grow at a slower rate in 2022. Gross fixed capital formation (GFCF) would continue to recover, approaching its pre-pandemic level, though at a slower rate than anticipated in the previous report. This would be due to lower observed GFCF levels and the potential impact of political and fiscal uncertainty. Meanwhile, the policy interest rate would be less expansionary as the process of monetary policy normalization continues. Given the above, growth in 2022 is forecast to decelerate to 4.3% (previously 4.7%). In 2023, that figure (3.1%) is projected to converge to levels closer to the potential growth rate. In this case, excess productive capacity would be expected to tighten at a similar rate as projected in the previous report. The trade deficit would tighten more than previously projected on the forecast horizon, due to expectations of an improved export dynamic and moderation in imports. The growth forecast for 2022 considers a low basis of comparison from the first half of 2021. However, there remain significant downside risks to this forecast. The current projection does not, for example, account for any additional effects on economic activity resulting from further waves of COVID-19. High private consumption levels, which have already surpassed pre-pandemic levels by a large margin, could be less dynamic than expected. And the normalization of monetary policy in the United States could come more quickly than projected in this report, which could negatively affect international financing costs. Finally, there remains a significant degree of uncertainty related to the duration of supply chocks and the degree to which macroeconomic and political conditions could negatively affect the recovery in investment. External demand for Colombian goods and services should continue to recover amid significant global inflation pressures, high oil prices, and less favorable international financial conditions than those estimated in October. Economic activity among Colombia’s major trade partners recovered in 2021 amid countries reopening and ample international liquidity. However, that growth has been somewhat restricted by global supply chain disruptions and new outbreaks of COVID-19. The technical staff has revised its growth forecast for Colombia’s main trade partners from 6.3% to 6.9% for 2021, and from 3.4% to 3.3% for 2022; trade partner economies are expected to grow 2.6% in 2023. Colombia’s annual terms of trade increased in 2021, largely on higher oil, coffee, and coal prices. This improvement came despite increased prices for goods and services imports. The expected oil price trajectory has been revised upward, partly to supply restrictions and lagging investment in the sector that would offset reduced growth forecasts in some major economies. Elevated freight and raw materials costs and supply chain disruptions continue to affect global goods production, and have led to increases in global prices. Coupled with the recovery in global demand, this has put upward pressure on external inflation. Several emerging market economies have continued to normalize monetary policy in this context. Meanwhile, in the United States, the Federal Reserve has anticipated an end to its asset buying program. U.S. inflation in December (7.0%) was again surprisingly high and market average inflation forecasts for 2022 have increased. The Fed is expected to increase its policy rate during the first quarter of 2022, with quarterly increases anticipated over the rest of the year. For its part, Colombia’s sovereign risk premium has increased and is forecast to remain on a higher path, to levels above the 15-year-average, on the forecast horizon. This would be partly due to the effects of a less expansionary monetary policy in the United States and the accumulation of macroeconomic imbalances in Colombia. Given the above, international financial conditions are projected to be less favorable than anticipated in the October report. The increase in Colombia’s external financing costs could be more significant if upward pressures on inflation in the United States persist and monetary policy is normalized more quickly than contemplated in this report. As detailed in Section 2.3, uncertainty surrounding international financial conditions continues to be unusually high. Along with other considerations, recent concerns over the potential effects of new COVID-19 variants, the persistence of global supply chain disruptions, energy crises in certain countries, growing geopolitical tensions, and a more significant deceleration in China are all factors underlying this uncertainty. The changing macroeconomic environment toward greater inflation and unanchoring risks on inflation expectations imply a reduction in the space available for monetary policy stimulus. Recovery in domestic demand and a reduction in excess productive capacity have come in line with the technical staff’s expectations from the October report. Some upside risks to inflation have materialized, while medium-term inflation expectations have increased and are above the 3% target. Monetary policy remains expansionary. Significant global inflationary pressures and the unexpected increase in the CPI in December point to more persistent effects from recent supply shocks. Core inflation is trending upward, but remains below the 3% target. Headline and core inflation projections have increased on the forecast horizon and are above the target rate through the end of 2023. Meanwhile, the expected dynamism of domestic demand would be in line with low levels of excess productive capacity. An accumulation of macroeconomic imbalances in Colombia and the increased likelihood of a faster normalization of monetary policy in the United States would put upward pressure on sovereign risk perceptions in a more persistent manner, with implications for the exchange rate and the natural rate of interest. Persistent disruptions to international supply chains, a high real increase in the legal minimum wage, and the indexation of various baskets in the CPI to higher inflation rates could affect price expectations and push inflation above the target more persistently. These factors suggest that the space to maintain monetary stimulus has continued to diminish, though monetary policy remains expansionary. 1.2 Monetary policy decision Banco de la República’s board of directors (BDBR) in its meetings in December 2021 and January 2022 voted to continue normalizing monetary policy. The BDBR voted by a majority in these two meetings to increase the benchmark interest rate by 50 and 100 basis points, respectively, bringing the policy rate to 4.0%.
APA, Harvard, Vancouver, ISO, and other styles
9

Monetary Policy Report - July de 2021. Banco de la República, October 2021. http://dx.doi.org/10.32468/inf-pol-mont-eng.tr3-2021.

Full text
Abstract:
Macroeconomic summary The Colombian economy sustained numerous shocks in the second quarter, pri¬marily related to costs and supply. The majority of these shocks were unantic¬ipated or proved more persistent than expected, interrupting the recovery in economic activity observed at the beginning of the year and pushing overall inflation above the target. Core inflation (excluding food and regulated items) increased but remained low, in line with the technical staff’s expectations. A third wave of the pandemic, which became more severe and prolonged than the previous outbreak, began in early April. This had both a high cost in terms of human life and a negative impact on Colombia's economic recovery. Between May and mid-June roadblocks and other disruptions to public order had a sig¬nificant negative effect on economic activity and inflation. The combination and magnitude of these two shocks likely led to a decline in gross domestic product (GDP) compared to the first quarter. Roadblocks also led to a significant in¬crease in food prices. The accumulated effects of global disruptions to certain value chains and increased international freight transportation prices, which since the end of 2020 have restricted supply and increased costs, also affected Colombia’s economy. The factors described above, which primarily affected the consumer price index (CPI) for goods and foods, explain to a significant degree the technical staff’s forecast errors and the increase in overall inflation above the 3% target. By contrast, increases in core inflation and in prices for regulated items were in line with the technical staff’s expectations, and can be explained largely by the elimination of various price relief measures put in place last year. An increase in perceived sovereign risk and the upward pressures that this im¬plies on international financing costs and the exchange rate were further con¬siderations. Despite significant negative shocks, economic growth in the first half of the year (9.1%) is now expected to be significantly higher than projected in the April re¬port (7.1%), a sign of a more dynamic economy that could recover more quickly than previously forecast. Diverse economic activity figures have indicated high¬er-than-expected growth since the end of 2020. This suggests that the negative effects on output from recurring waves of COVID-19 have grown weaker and less long-lasting with subsequent outbreaks. Nevertheless, the third wave of the coro¬navirus, and to an even greater degree the previously mentioned roadblocks and disruptions to public order, likely led to a decline in GDP in the second quar¬ter compared to the first. Despite this, data from the monthly economic tracking indicator (ISE) for April and May surpassed expectations, and new sector-level measures of economic activity suggest that the negative impact of the pandemic on output continues to moderate, amid reduced restrictions on mobility and im¬provements in the pace of vaccination programs. Freight transportation registers (June) and unregulated energy demand (July), among other indicators, suggest a significant recovery following the roadblocks in May. Given the above, annual GDP growth in the second quarter is expected to have been around 17.3% (previously 15.8%), explained in large part by a low basis of comparison. The technical staff revised its growth projection for 2021 upward from 6% to 7.5%. This forecast, which comes with an unusually high degree of uncertain¬ty, assumes no additional disruptions to public order and that any new waves of COVID-19 will not have significant additional negative effects on economic activity. Recovery in international demand, price levels for some of Colombia’s export com¬modities, and remittances from workers abroad have all performed better than projected in the previous report. This dynamic is expected to continue to drive recovery in the national income over the rest of the year. Continued ample international liquidity, an acceleration in vacci¬nation programs, and low interest rates can also be ex¬pected to favor economic activity. Improved performance in the second quarter, which led to an upward growth revision for all components of spending, is expected to continue, with the economy returning to 2019 production levels at the end of 2021, earlier than estimated in the April report. This forecast continues to account for the short-term effects on aggregate demand of a tax reform package along the lines of what is currently being pro-posed by the national government. Given the above, the central forecast scenario in this report projects growth in 2021 of 7.5% and in 2022 of 3.1% (Graph 1.1). In this scenar¬io, economic activity would nonetheless remain below potential. The noted improvement in these projections comes with a high degree of uncertainty. Annual inflation increased more than expected in June (3.63%) as a result of changes in food prices, while growth in core inflation (1.87%) was similar to projections.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography