Academic literature on the topic 'ANN CONTROLLER'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ANN CONTROLLER.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ANN CONTROLLER"
Banda, Gururaj, and Sri Gowri Kolli. "An Intelligent Adaptive Neural Network Controller for a Direct Torque Controlled eCAR Propulsion System." World Electric Vehicle Journal 12, no. 1 (March 17, 2021): 44. http://dx.doi.org/10.3390/wevj12010044.
Full textAlatshan, Mohammed Salheen, Ibrahim Alhamrouni, Tole Sutikno, and Awang Jusoh. "Improvement of the performance of STATCOM in terms of voltage profile using ANN controller." International Journal of Power Electronics and Drive Systems (IJPEDS) 11, no. 4 (December 1, 2020): 1966. http://dx.doi.org/10.11591/ijpeds.v11.i4.pp1966-1978.
Full textChen, Wei Lun, and Gong Cai Xin. "Research on ANN Dynamic Inversion Control of UAV." Advanced Materials Research 466-467 (February 2012): 1353–57. http://dx.doi.org/10.4028/www.scientific.net/amr.466-467.1353.
Full textLee, Heung-Jae, Seong-Su Jhang, Won-Kun Yu, and Jung-Hyun Oh. "Artificial Neural Network Control of Battery Energy Storage System to Damp-Out Inter-Area Oscillations in Power Systems." Energies 12, no. 17 (September 2, 2019): 3372. http://dx.doi.org/10.3390/en12173372.
Full textMugheri, N. H., M. U. Keerio, S. Chandio, and R. H. Memon. "Robust Speed Control of a Three Phase Induction Motor Using Support Vector Regression." Engineering, Technology & Applied Science Research 11, no. 6 (December 11, 2021): 7861–66. http://dx.doi.org/10.48084/etasr.4476.
Full textAlbert Alexander, S., R. Harish, M. Srinivasan, and D. Sarathkumar. "Power Quality Improvement in a Solar PV Assisted Microgrid Using Upgraded ANN-Based Controller." Mathematical Problems in Engineering 2022 (October 7, 2022): 1–12. http://dx.doi.org/10.1155/2022/2441534.
Full textLiu, Bao, Na Gao, Fei Liu, Ling Fan, and Yi Yong Sui. "An Improved ANN Controller on the Efficiency Optimization of Offshore Petroleum Platform." Applied Mechanics and Materials 571-572 (June 2014): 1042–46. http://dx.doi.org/10.4028/www.scientific.net/amm.571-572.1042.
Full textWoodford, Grant W., and Mathys C. du Plessis. "Complex Morphology Neural Network Simulation in Evolutionary Robotics." Robotica 38, no. 5 (July 22, 2019): 886–902. http://dx.doi.org/10.1017/s0263574719001140.
Full textJarupula, Somlal, Narsimha Rao Vutlapalli, and Narsimha Rao Vutlapalli. "Power Quality Improvement in Distribution System using ANN Based Shunt Active Power Filter." International Journal of Power Electronics and Drive Systems (IJPEDS) 5, no. 4 (April 1, 2015): 568. http://dx.doi.org/10.11591/ijpeds.v5.i4.pp568-575.
Full textMahar, Hina, Hafiz Mudasir Munir, Jahangir Badar Soomro, Faheem Akhtar, Rashid Hussain, Mohamed F. Elnaggar, Salah Kamel, and Josep M. Guerrero. "Implementation of ANN Controller Based UPQC Integrated with Microgrid." Mathematics 10, no. 12 (June 9, 2022): 1989. http://dx.doi.org/10.3390/math10121989.
Full textDissertations / Theses on the topic "ANN CONTROLLER"
Chamanirad, Mohsen. "Design and implementation of controller for robotic manipulators using Artificial Neural Networks." Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-6297.
Full textIn this thesis a novel method for controlling a manipulator with arbitrary number of Degrees of freedom is proposed, the proposed method has the main advantages of two common controllers, the simplicity of PID controller and the robustness and accuracy of adaptive controller. The controller architecture is based on an Artificial Neural Network (ANN) and a PID controller.
The controller has the ability of solving inverse dynamics and inverse kinematics of robot with two separate Artificial Neural Networks. Since the ANN is learning the system parameters by itself the structure of controller can easily be changed to
improve the performance of robot.
The proposed controller can be implemented on a FPGA board to control the robot in real-time or the response of the ANN can be calculated offline and be reconstructed by controller using a lookup table. Error between the desired trajectory path and the path of the robot converges to zero rapidly and as the robot performs its tasks the controller learns the robot parameters and generates better control signal. The performance of controller is tested in simulation and on a real manipulator with satisfactory results.
Thomas, Philip S. "A Reinforcement Learning Controller for Functional Electrical Stimulation of a Human Arm." Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1246922202.
Full textChang, Jen. "Hydrodynamic modeling and feasibility study of harnessing tidal power at the Bay of Fundy." View ebook online, 2008. http://digitallibrary.usc.edu/assetserver/controller/item/etd-Chang-20080312.pdf.
Full textMacGregor, Scott D. "A fault tolerant transportation controller." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43482.
Full textIncludes bibliographical references (leaf 66).
by Scott D. MacGregor.
M.Eng.
Pakalapati, Lalita Varma V. (Lalita Varma Venkata) 1976. "Controlled release microchip." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/7976.
Full textIncludes bibliographical references (leaf 34).
Microchips for constant release are not a new concept, but a controlled release chip, which does pulsatile release at variable time intervals, is clearly more efficient and useful. The process was completely understood about the theory of operation, the manufacturing procedure and the robustness of the controlled release microchip. The complete application analysis has been done along with the intellectual property study. The study involved finding out the industry opinion of the device and the usefulness of the device and all the people who might have intellectual property rights in the field. As a result numerous applications of the device have been found out along with the important parameters the device should be concentrating on have been suggested.
by Lalita Varma V. Pakalapati.
M.Eng.
Samadi, Khah Pouya. "Performance Modeling of OpenStack Controller." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195649.
Full textRaissi, Dehkordi Vahid. "Managing uncertainty in robust controller implementation." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103536.
Full textUn contrôleur robuste est souvent conçu afin de maintenir la stabilité et la performance robuste d'un système linéaire invariant dans le temps. Durant l'implantation d'un tel contrôleur, deux problèmes se présentent. Premièrement, il est intéressant de savoir s'il est possible de simplifier le contrôleur robuste et si oui, jusqu'à quel point avant de l'implanter, tout en garantissant la performance robuste. Le deuxième problème se pose dans les applications à temps réel où le contrôleur devrait être refait ou ajusté plusieurs fois après la mise en service initiale. Il est important de savoir, concernant les deux problèmes ci-dessus, jusqu'à quel point le contrôleur modifié peut s'éloigner de l'original dans le domaine des fréquences. Une condition suffisante et nécessaire pour la performance robuste ainsi qu'une condition suffisante sont dérivées sous forme de limites sur le module de la déviation maximum du contrôleur robuste sur une grille de fréquences pour un système à sortie unique et à entrée unique (SISO). Le cas d'entrées et sorties multiples (MIMO) est aussi traité en fournissant une limite sur la valeur singulière maximum de la réponse en fréquence du système calculée à chaque point de fréquence, formant une condition suffisante pour la performance robuste. Les limites ci-dessus sont utilisées avec la technique de réduction équilibrée (balanced truncation) afin de déterminer à quel point il est possible de réduire l'ordre du contrôleur sans perdre la performance robuste. Le nombre maximum d'états du contrôleur admissibles pour l'élimination est donné, sans vraiment devoir le modifier. Finalement, une méthode pratique est proposée pour réaliser un contrôleur robuste basé sur la commande par modèle interne (IMC) pour un système SISO. La réponse en fréquence du contrôleur robuste idéal est déjà fournie comme une fonction de la réponse en fréquence de toutes les composantes de système. Puis, le contrôleur idéal est approximé par un système stable et préférablement d'ordre peu élevé en gardant la performance robuste aux trois étapes : transformation inverse de Fourier rapide (IFFT), approximation par un système de réponse impulsionnelle finie (FIR) et conversion de FIR à réponse impulsionnelle infinie (IIR).
Bhuta, Dimple. "Brain Controlled Switch." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2795.
Full textBuyukkeles, Umit. "Improved Torque And Speed Control Performance In A Vector-controlled Pwm-vsi Fed Surface-mounted Pmsm Drive With Conventional P-i Controllers." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614294/index.pdf.
Full textFrancisco, Denilson de Oliveira. "Manutenção de modelos para controladores preditivos industriais." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/171396.
Full textThe objective of this dissertation is to develop a method to identify the model for the channel of the dynamic matrix that are affecting the performance of model predictive controllers (MPC), based on the assessment and diagnosis techniques for this type of controller proposed by BOTELHO et al. (2015) e BOTELHO; TRIERWEILER; FARENZENA (2016) and CLARO (2016). The proposed methodology includes two different methods. The first, called the compensated direct method, is based on the closed-loop direct identification method (LJUNG, 1987) and compensates each process measured output in order to retain only the contribution of the channel being identified. The second, called nominal error method, uses the definition of the process nominal output, proposed by BOTELHO et al. (2015), as a metric to quantify how close the model is to the actual plant behavior by minimizing the nominal error. The proposed methods were applied to the quadruple-tank system (JOHANSSON, 2000) for two distinct scenarios, the first being a nonminimum-phase 2x2 system containing a MPC working with setpoint and the second a minimum-phase 4x4 system with the MPC working by ranges. For the 2x2 system, the influence of the model mismatch location (inside or outside the main diagonal of the dynamic transfer matrix) on the effectiveness of the methods was evaluated. For the 4x4 system, the study was focused on the effectiveness of the methods with controllers that operate within limits for the variables. The identified models were compared by the capability of identifying a model with accurate plant transmission zero and dynamic RGA, for the 2x2 system, and by the step responses and Bode diagram for the 4x4 system. The compensated direct method resulted in low relative error in the value of the transmission zero for the model mismatch located in the main diagonal of the dynamic matrix and high relative error when the mismatch was outside the main diagonal. On the other hand, the nominal error method was able to identify a model whose transmission zero had low relative error against the plant zero in both scenarios. In the scenario of a controller working by range, the proposed methods obtained better estimates of the models when compared to the concurrent method, since it presented a high percentage of adherence of the simulated outputs with the measured outputs. In all the studied scenarios, the nominal error method was able to identify a more robust model, since it presented dynamic RGA compatible with the plant in the entire range of analyzed frequencies.
Books on the topic "ANN CONTROLLER"
Programmable controller circuits. Albany: Delmar Publishers, 1996.
Find full textKlein, Howard. Controlled research. Regina, Sask: Research Centre, Saskatchewan School Trustees Association, 1990.
Find full textMarasli, Elçin. Controlled denotations. Chicago, IL]: [publisher not identified], 2012.
Find full textContinuous time controller design. London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1989.
Find full textLittell, Richard. Controlled wildlife. 2nd ed. Washington, D.C: Association of Systematics Collections, 1993.
Find full textEmbedded controller hardware design. Eagle Rock, VA: LLH Technology Publishing, 2001.
Find full textIstepanian, Robert S. H., and James F. Whidborne, eds. Digital Controller Implementation and Fragility. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0265-6.
Full textW, Awdry. Thomas and the Green Controller. London: Egmont, 2010.
Find full textProgrammable logic controllers and their engineering applications. 2nd ed. London: McGraw-Hill, 1997.
Find full textProgrammable logic controllers and their engineering applications. London: McGraw-Hill, 1990.
Find full textBook chapters on the topic "ANN CONTROLLER"
Lal, Ratan, Aaron McKinnis, Dustin Hauptman, Shawn Keshmiri, and Pavithra Prabhakar. "Formally Verified Switching Logic for Recoverability of Aircraft Controller." In Computer Aided Verification, 566–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_27.
Full textVerma, Rishabh, and M. A. Ansari. "Fault Detection and Classification Using Fuzzy Logic Controller and ANN." In Micro-Electronics and Telecommunication Engineering, 25–35. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8721-1_3.
Full textBenítez-Read, Jorge S., Da Ruan, Jorge A. Ruiz-Enciso, Régulo López-Callejas, and Joel O. Pacheco-Sotelo. "Use of ANN in a Research Reactor Power Fuzzy Controller." In Computational Intelligence and Bioinspired Systems, 1132–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11494669_139.
Full textDurgesh Kumar, Ankit Gupta, Rupendra Kumar Pachauri, and Yogesh K. Chauhan. "Performance Investigation of ANN Controller-Assisted Small Hydro Power Generation System." In Proceeding of International Conference on Intelligent Communication, Control and Devices, 871–77. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_102.
Full textRuchira, Ram N. Patel, and Sanjay Kumar Sinha. "Comparison of ANN-Based MPPT Controller and Incremental Conductance for Photovoltaic System." In Lecture Notes in Electrical Engineering, 295–305. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8234-4_26.
Full textLiu, Shuguang, and Mingyuan Liu. "A Parameters Self-adjusting ANN-PI Controller Based on Homotopy BP Algorithm." In Advances in Soft Computing, 587–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01216-7_62.
Full textCharan, Godavarthi, Dasa Sampath, K. Sandeep Rao, and Y. V. Pavan Kumar. "ANN-Based Self-Tuned PID Controller for Temperature Control of Heat Exchanger." In Advances in Intelligent Systems and Computing, 149–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1543-6_14.
Full textCrelinsten, Ronald. "When controlled becomes controller." In Terrorism, Democracy, and Human Security, 212–30. Abingdon, Oxon ; New York, NY : Routledge, 2021. | Series: Political violence: Routledge, 2021. http://dx.doi.org/10.4324/9781003016816-9.
Full textMohan Murali Krishna, C. H., R. S. Ravi Sankar, Madisa V. G. Varaprasad, and K. K. Deepika. "A Novel Converter for Bidirectional Power Flow in Hybrid Electric Vehicle Systems Using ANN Controller." In Sustainable Technology and Advanced Computing in Electrical Engineering, 245–65. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4364-5_20.
Full textBouchetob, Elaid, and Bouchra Nadji. "Choosing the Adapted Artificial Intelligence Method (ANN and ANFIS) Based MPPT Controller for Thin Layer PV Array." In Lecture Notes in Networks and Systems, 322–31. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21216-1_35.
Full textConference papers on the topic "ANN CONTROLLER"
Raghoji, Dattatraya, and M. S. Aspalli. "Resonant LED Driver with ANN Controller." In 2022 IEEE North Karnataka Subsection Flagship International Conference (NKCon). IEEE, 2022. http://dx.doi.org/10.1109/nkcon56289.2022.10126705.
Full textJijith, Roy V., and S. Indulal. "Hybrid Electric Three-Wheeler with ANN Controller." In 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). IEEE, 2018. http://dx.doi.org/10.1109/iccsdet.2018.8821161.
Full textKumari, K., G. Shankar, S. Kumari, and S. Gupta. "Load frequency control using ANN-PID controller." In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). IEEE, 2016. http://dx.doi.org/10.1109/icpeices.2016.7853516.
Full textHamoodi, Safwan A., Ibrahim I. Sheet, and Rasha A. Mohammed. "A Comparison between PID controller and ANN controller for speed control of DC Motor." In 2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE). IEEE, 2019. http://dx.doi.org/10.1109/iceccpce46549.2019.203777.
Full textUpadhyay, D., N. Tarun, and T. Nayak. "ANN based intelligent controller for inverted pendulum system." In 2013 Students Conference on Engineering and Systems (SCES). IEEE, 2013. http://dx.doi.org/10.1109/sces.2013.6547526.
Full textPaul, S. "Comparison of MPPT using GA-optimized ANN employing PI controller with GA-optimized ANN employing fuzzy controller for PV system." In IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/ic.2013.0324.
Full textLiao, Kai, Yan Xu, Koh Leong Hai, and Yichen Qiao. "An ANN based damping controller for VSC-HVDC System." In 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT). IEEE, 2017. http://dx.doi.org/10.1109/acept.2017.8168584.
Full textJianhua Yang, Wei Lu, Wenqi Liu, and Linlin Teng. "Application of ANN PID Controller in District Heating System." In 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1714383.
Full textShan Xue, Huilin Fan, and Hongji Xu. "Study on ann-based intelligent self-tuning PID controller." In 2009 International Conference on Mechatronics and Automation (ICMA). IEEE, 2009. http://dx.doi.org/10.1109/icma.2009.5246587.
Full textGuiti, M., and A. Nait Seghir. "Direct Torque Control with ANN hysteresis controller for PMSM." In 2015 4th International Conference on Electrical Engineering (ICEE). IEEE, 2015. http://dx.doi.org/10.1109/intee.2015.7416764.
Full textReports on the topic "ANN CONTROLLER"
Petitt, Rodger A., Elizabeth S. Redden, and Christian B. Carstens. Scalability of Robotic Controllers: An Evaluation of Controller Options. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada481702.
Full textPettitt, Rodger A., Elizabeth S. Redden, Nicholas Fung, Christian B. Carstens, and David Baran. Scalability of Robotic Controllers: An Evaluation of Controller Options-Experiment II. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada553617.
Full textPettitt, Rodger A., Christian B. Carstens, and Elizabeth S. Redden. Scalability of Robotic Controllers: An Evaluation of Controller Options-Experiment III. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada560822.
Full textHowland. GRI-04-0066 Functional Specifications - Advanced Controls for Two-Stroke Cycle Stationary Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2013. http://dx.doi.org/10.55274/r0011051.
Full textRamasubramanian, Deepak, Jens Boemer, Evangelos Farantatos, Anish Gaikwad, Pouyan Pourbeik, and P. Zadkhast. PROPOSAL FOR NEW PLANT CONTROLLER AND ELECTRICAL CONTROLLER. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1889203.
Full textRobino, C. V., G. Knorovsky, R. C. Dykhuizen, D. O. MacCallum, and B. K. Damkroger. Transformation kinetics in controlled-power and controlled-temperature cycle testing. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/672114.
Full textKlosek, Katherine. Controlled Digital Lending. Association of Research Libraries, June 2022. http://dx.doi.org/10.29242/report.controlleddigitallending2022.
Full textBacon and Olsen. PR-179-13202-R01 Field Evaluation of a Continental Controls Corp. NSCR NOx Sensor Control System. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2014. http://dx.doi.org/10.55274/r0010203.
Full textYadrick, Robert M., J. W. Regian, Catherine C. Gomez, and Linda Robertson-Schule. Individual and Cooperative Group Learning with User-Controlled and Program-Controlled Mathematics Tutors. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada303591.
Full textMasset, Edoardo. Combining economic modelling and randomised controlled trials: An unexploited synergyCombining economic modelling and randomised controlled trials: An unexploited synergy. Edited by Radhika Menon. Centre of Excellence for Development Impact and Learning (CEDIL), 2021. http://dx.doi.org/10.51744/cmb3.
Full text