Dissertations / Theses on the topic 'ANN Classifiers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'ANN Classifiers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eldud, Omer Ahmed Abdelkarim. "Prediction of protein secondary structure using binary classificationtrees, naive Bayes classifiers and the Logistic Regression Classifier." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1019985.
Full textJoo, Hyonam. "Binary tree classifier and context classifier." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/53076.
Full textMaster of Science
Billing, Jeffrey J. (Jeffrey Joel) 1979. "Learning classifiers from medical data." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8068.
Full textIncludes bibliographical references (leaf 32).
The goal of this thesis was to use machine-learning techniques to discover classifiers from a database of medical data. Through the use of two software programs, C5.0 and SVMLight, we analyzed a database of 150 patients who had been operated on by Dr. David Rattner of the Massachusetts General Hospital. C5.0 is an algorithm that learns decision trees from data while SVMLight learns support vector machines from the data. With both techniques we performed cross-validation analysis and both failed to produce acceptable error rates. The end result of the research was that no classifiers could be found which performed well upon cross-validation analysis. Nonetheless, this paper provides a thorough examination of the different issues that arise during the analysis of medical data as well as describes the different techniques that were used as well as the different issues with the data that affected the performance of these techniques.
by Jeffrey J. Billing.
M.Eng.and S.B.
Siegel, Kathryn I. (Kathryn Iris). "Incremental random forest classifiers in spark." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106105.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 53).
The random forest is a machine learning algorithm that has gained popularity due to its resistance to noise, good performance, and training efficiency. Random forests are typically constructed using a static dataset; to accommodate new data, random forests are usually regrown. This thesis presents two main strategies for updating random forests incrementally, rather than entirely rebuilding the forests. I implement these two strategies-incrementally growing existing trees and replacing old trees-in Spark Machine Learning(ML), a commonly used library for running ML algorithms in Spark. My implementation draws from existing methods in online learning literature, but includes several novel refinements. I evaluate the two implementations, as well as a variety of hybrid strategies, by recording their error rates and training times on four different datasets. My benchmarks show that the optimal strategy for incremental growth depends on the batch size and the presence of concept drift in a data workload. I find that workloads with large batches should be classified using a strategy that favors tree regrowth, while workloads with small batches should be classified using a strategy that favors incremental growth of existing trees. Overall, the system demonstrates significant efficiency gains when compared to the standard method of regrowing the random forest.
by Kathryn I. Siegel.
M. Eng.
Palmer-Brown, Dominic. "An adaptive resonance classifier." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334802.
Full textXue, Jinghao. "Aspects of generative and discriminative classifiers." Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/272/.
Full textPh.D. thesis submitted to the Department of Statistics, Faculty of Information and Mathematical Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Frankowsky, Maximilian, and Dan Ke. "Humanness and classifiers in Mandarin Chinese." Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-224789.
Full textLee, Yuchun. "Classifiers : adaptive modules in pattern recognition systems." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14496.
Full textChungfat, Neil C. (Neil Caye) 1979. "Context-aware activity recognition using TAN classifiers." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87220.
Full textIncludes bibliographical references (p. 73-77).
by Neil C. Chungfat.
M.Eng.
Li, Ming. "Sequence and text classification : features and classifiers." Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426966.
Full textSemnani, Shahram. "Design and analysis of discriminant pattern classifiers." Thesis, Loughborough University, 1993. https://dspace.lboro.ac.uk/2134/14143.
Full textWang, Lianqing. "Origin and Development of Classifiers in Chinese." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392056967.
Full textHalberstadt, Andrew K. (Andrew King) 1970. "Heterogeneous acoustic measurements and multiple classifiers for speech recognition." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/79971.
Full textIncludes bibliographical references (p. 165-173).
by Andrew K. Halberstadt.
Ph.D.
Haque, Mahbuba. "Comparison of Distance-Based Classifiers for Elliptically Contoured Distributions." Thesis, Uppsala universitet, Statistiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328026.
Full textÖhman, Oscar. "Rating corrumption within insurance companies using Bayesian network classifiers." Thesis, Umeå universitet, Statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160810.
Full textBayesianska nätverk (BN) är en typ av sannolikhetsmodell som används för klassificering. Inlärningsprocessen av en sådan modell består av två steg, strukturinlärning ochparameterinlärning. Fyra olika BN-klassificerare kommer att skattas. Dessa är två stycken Naive Bayes-klassificerare (NB), en Tree augmented naive Bayes-klassificerare (TAN) och enForest augmented naive Bayes-klassificerare (FAN). De två olika NB-klassificerarna kommer att skilja sig åt i att den ena använder sig av generativ parameterskattning, medan den andra använder sig av diskriminativ parameterinlärning. Chow och Lius (CL) berömda algoritm, där det ingår att beräkna betingad ömsesidig information (CMI), brukar ofta användas för att hitta den optimala trädstrukturen. Denna variant av TAN är känd som CL-TAN. FAN är en annan slags uppgradering av NB, som kan anses vara en förstärkt variant av CL-TAN, där förklaringsvariablerna är kopplade till varandra på ett sätt som ger en skogs-liknande struktur. De två olika parameterinlärningsmetoderna som används är generativ inlärning och diskriminativ inlärning. Den förstnämnda använder sig av maximum likelihood-skattning (MLE) för att optimera parametrarna. Detta är smidigt, men samtidigt skattas inte det som avsetts. Den sistnämnda metoden använder sig istället av betingad maximum likelihood-skattning (CLE), vilket ger en mer korrekt, men också mer komplicerad, skattning. Dessa sex modeller kommer att tränas i syfte att hitta den modellsom bäst skattar korruptionsnivåerna inom olika försäkringsbolag, givet dess egenskaper iform av förklaringsvariabler. En multiklassvariant av Area under the reciever operatingcharacteristics (ROC) curve (AUC) används för att bedöma skattningsprecisionen för varjemodell. Analysen resulterade i anmärkningsvärda resultat för de generativa modellerna,som med goda marginaler skattade mer precist än den diskriminativa NB-modellen.Tyvärr kan detta dock vara en indikation på optimeringsproblem vid de diskriminativa parameterinlärningen av NB. Ett annat anmärkningsvärt resultat var att av samtliga generativa modeller, så var CL-TAN den modellen med högst AUC, trots att FAN i teorinska vara en förbättrad variant av CL-TAN. Även den generativa NB-modellens resultat var anmärkningsvärd, då denna modell hade nästan lika hög AUC som de generativa CL-TAN och FAN-modellerna.
Song, Qing. "Features and statistical classifiers for face image analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0035/NQ62459.pdf.
Full textDuangsoithong, Rakkrit. "Feature selection and casual discovery for ensemble classifiers." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580345.
Full textLi, Mengxin. "Vision-based neural network classifiers and their applications." Thesis, University of Bedfordshire, 2005. http://hdl.handle.net/10547/312055.
Full textSuppharangsan, Somjet. "Comparison and performance enhancement of modern pattern classifiers." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/170393/.
Full textKo, Albert Hung-Ren. "Static and dynamic selection of ensemble of classifiers." Thèse, Montréal : École de technologie supérieure, 2007. http://proquest.umi.com/pqdweb?did=1467895171&sid=2&Fmt=2&clientId=46962&RQT=309&VName=PQD.
Full text"A thesis presented to the École de technologie supérieure in partial fulfillment of the thesis requirement for the degree of the Ph.D. engineering". CaQMUQET Bibliogr. : f. [237]-246. Également disponible en version électronique. CaQMUQET
Lavesson, Niklas. "Evaluation and Analysis of Supervised Learning Algorithms and Classifiers." Licentiate thesis, Karlskrona : Blekinge Institute of Technology, 2006. http://www.bth.se/fou/Forskinfo.nsf/allfirst2/c655a0b1f9f88d16c125714c00355e5d?OpenDocument.
Full textAu, Yeung Wai Hoo. "An interface program for parameterization of classifiers in Chinese /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?HUMA%202005%20AU.
Full textMcCrae, Richard Clyde. "The Impact of Cost on Feature Selection for Classifiers." Diss., NSUWorks, 2018. https://nsuworks.nova.edu/gscis_etd/1057.
Full textMa, Kăichén. "Robust dynamic symbol recognition : the ClockSketch classifier." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/91841.
Full textCataloged from PDF version of thesis. "May 2013."
Includes bibliographical references (page 61).
I present an automatic classifier for the digitized clock drawing test, a neurological diagnostic exam used to assess patients' mental acuity by having them draw an analog clock face using a digitizing pen. This classifier assists human examiners in clock drawing interpretation by labeling several basic components of a drawing, including its outline, numerals, hands, and noise, thereby freeing examiners to concentrate on more complex labeling problems. This is a challenging problem despite its specificity, because the average user of the clock drawing test has a high likelihood of cognitive or motor impairment. As a result, mistakes such as crossed-out numerals, messiness, missing components, and noise will be common in drawings, and a well-designed classifier must be capable of handling and correcting for various types of error. I describe in this thesis the construction of a system that is both accurate and robust enough to handle variable input, laying out its components and the principles behind its design. I demonstrate that this system accurately recognizes and classifies the basic components of a drawing, even when applied to a wide range of clinical input, and that it is able to do so because it relies both on statistical analysis and on common-sense observations about the structure of the problem at hand.
by Kaichen Ma.
M. Eng.
Chung, Poy-san, and 鍾佩珊. "Acquisition of Cantonese sortal classifiers in Cantonese-English bilinguals." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38669808.
Full textTanaka, Mitsuru. "Classifier System Learning of Good Database Schema." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/859.
Full textDias, De Macedo Filho Antonio. "Microwave neural networks and fuzzy classifiers for ES systems." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244066.
Full textZhang, Ziming. "Efficient object detection via structured learning and local classifiers." Thesis, Oxford Brookes University, 2013. https://radar.brookes.ac.uk/radar/items/420cfbee-bf00-4d53-be8b-04f83389994f/1.
Full textLubenko, Ivans. "Towards robust steganalysis : binary classifiers and large, heterogeneous data." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:c1ae44b8-94da-438d-b318-f038ad6aac57.
Full textTRONCI, ROBERTO. "Ensemble of binary classifiers: combination techniques and design issues." Doctoral thesis, Università degli Studi di Cagliari, 2008. http://hdl.handle.net/11584/265890.
Full textAlsharifi, Thamir. "Differential Mobility Classifiers in the Non-Ideal Assembly." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6054.
Full textKang, Dae-Ki. "Abstraction, aggregation and recursion for generating accurate and simple classifiers." [Ames, Iowa : Iowa State University], 2006.
Find full textJannah, Najlaa. "ECG analysis and classification using CSVM, MSVM and SIMCA classifiers." Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/78068/.
Full textKubat, Rony Daniel. "A context-sensitive meta-classifier for color-naming." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43074.
Full textIncludes bibliographical references (p. 93-97).
Humans are sensitive to situational and semantic context when applying labels to colors. This is especially challenging for algorithms which attempt to replicate human categorization for communicative tasks. Additionally, mismatched color models between dialog partners can lead to a back-and-forth negotiation of terms to find common ground. This thesis presents a color-classification algorithm that takes advantage of a dialog-like interaction model to provide fast-adaptation for a specific exchange. The model learned in each exchange is then integrated into the system as a whole. This algorithm is an incremental meta-learner, leveraging a generic online-learner and adding context-sensitivity. A human study is presented, assessing the extent of semantic contextual effects on color naming. An evaluation of the algorithm based on the corpus gathered in this experiment is then tendered.
by Rony Daniel Kubat.
S.M.
Sembrant, Andreas. "Low Overhead Online Phase Predictor and Classifier." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-146661.
Full textHoward, Gerard David. "Constructivist and spiking neural learning classifier systems." Thesis, University of the West of England, Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573442.
Full textGeisinger, Nathan P. "Classification of digital modulation schemes using linear and nonlinear classifiers." Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Mar/10Mar%5FGeisinger.pdf.
Full textThesis Advisor(s): Fargues, Monique P. ; Cristi, Roberto ; Robertson, Ralph C. "March 2010." Description based on title screen as viewed on .April 27, 2010. Author(s) subject terms: Blind Modulation Classification, Cumulants, Principal Component Analysis, Linear Discriminant Analysis, Kernel-based functions. Includes bibliographical references (p. 211-212). Also available in print.
Abd, Rahman Mohd Amiruddin. "Kernel and multi-class classifiers for multi-floor WLAN localisation." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/13768/.
Full textZhang, Xu. "English quasi-numeral classifiers : a cognitive and corpus-based study." Thesis, Lancaster University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538610.
Full textDanylenko, Antonina. "Decision Algebra: A General Approach to Learning and Using Classifiers." Doctoral thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-43238.
Full textFitzpatrick, Margo L. "Evaluating Bayesian Classifiers and Rough Sets for Corporate Bankruptcy Prediction." NSUWorks, 2004. http://nsuworks.nova.edu/gscis_etd/517.
Full textAnaya, Leticia H. "Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103284/.
Full textAlorf, Abdulaziz Abdullah. "Primary/Soft Biometrics: Performance Evaluation and Novel Real-Time Classifiers." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96942.
Full textDoctor of Philosophy
The relevance of faces in our daily lives is indisputable. We learn to recognize faces as newborns, and faces play a major role in interpersonal communication. Faces probably represent the most accurate biometric trait in our daily interactions. Thereby, it is not singular that so much effort from computer vision researchers have been invested in the analysis of faces. The automatic detection and analysis of faces within images has therefore received much attention in recent years. The spectrum of computer vision research about face analysis includes, but is not limited to, face detection and facial attribute classification, which are the focus of this dissertation. The face is a primary biometric because by itself revels the subject's identity, while facial attributes (such as hair color and eye state) are soft biometrics because by themselves they do not reveal the subject's identity. Soft biometrics have many uses in the field of biometrics such as (1) they can be utilized in a fusion framework to strengthen the performance of a primary biometric system. For example, fusing a face with voice accent information can boost the performance of the face recognition. (2) They also can be used to create qualitative descriptions about a person, such as being an "old bald male wearing a necktie and eyeglasses." Face detection and facial attribute classification are not easy problems because of many factors, such as image orientation, pose variation, clutter, facial expressions, occlusion, and illumination, among others. In this dissertation, we introduced novel techniques to classify more than 40 facial attributes in real-time. Our techniques followed the general facial attribute classification pipeline, which begins by detecting a face and ends by classifying facial attributes. We also introduced a new facial attribute related to Middle Eastern headwear along with its detector. The new facial attribute were fused with a face detector to improve the detection performance. In addition, we proposed a new method to evaluate the robustness of face detection, which is the first process in the facial attribute classification pipeline. Detecting the states of human facial attributes in real time is highly desired by many applications. For example, the real-time detection of a driver's eye state (open/closed) can prevent severe accidents. These systems are usually called driver drowsiness detection systems. For classifying 40 facial attributes, we proposed a real-time model that preprocesses faces by localizing facial landmarks to normalize faces, and then crop them based on the intended attribute. The face was cropped only if the intended attribute is inside the face region. After that, 7 types of classical and deep features were extracted from the preprocessed faces. Lastly, these 7 types of feature sets were fused together to train three different classifiers. Our proposed model yielded 91.93% on the average accuracy outperforming 7 state-of-the-art models. It also achieved state-of-the-art performance in classifying 14 out of 40 attributes. We also developed a real-time model that classifies the states of three human facial attributes: (1) eyes (open/closed), (2) mouth (open/closed), and (3) eyeglasses (present/absent). Our proposed method consisted of six main steps: (1) In the beginning, we detected the human face. (2) Then we extracted the facial landmarks. (3) Thereafter, we normalized the face, based on the eye location, to the full frontal view. (4) We then extracted the regions of interest (i.e., the regions of the mouth, left eye, right eye, and eyeglasses). (5) We extracted low-level features from each region and then described them. (6) Finally, we learned a binary classifier for each attribute to classify it using the extracted features. Our developed model achieved 30 FPS with a CPU-only implementation, and our eye-state classifier achieved the top performance, while our mouth-state and glasses classifiers were tied as the top performers with deep learning classifiers. We also introduced a new facial attribute related to Middle Eastern headwear along with its detector. After that, we fused it with a face detector to improve the detection performance. The traditional Middle Eastern headwear that men usually wear consists of two parts: (1) the shemagh or keffiyeh, which is a scarf that covers the head and usually has checkered and pure white patterns, and (2) the igal, which is a band or cord worn on top of the shemagh to hold it in place. The shemagh causes many unwanted effects on the face; for example, it usually occludes some parts of the face and adds dark shadows, especially near the eyes. These effects substantially degrade the performance of face detection. To improve the detection of people who wear the traditional Middle Eastern headwear, we developed a model that can be used as a head detector or combined with current face detectors to improve their performance. Our igal detector consists of two main steps: (1) learning a binary classifier to detect the igal and (2) refining the classier by removing false positives. Due to the similarity in real-life applications, we compared the igal detector with state-of-the-art face detectors, where the igal detector significantly outperformed the face detectors with the lowest false positives. We also fused the igal detector with a face detector to improve the detection performance. Face detection is the first process in any facial attribute classification pipeline. As a result, we reported a novel study that evaluates the robustness of current face detectors based on: (1) diffraction blur, (2) image scale, and (3) the IoU classification threshold. This study would enable users to pick the robust face detector for their intended applications. Biometric systems that use face detection suffer from huge performance fluctuation. For example, users of biometric surveillance systems that utilize face detection sometimes notice that state-of-the-art face detectors do not show good performance compared with outdated detectors. Although state-of-the-art face detectors are designed to work in the wild (i.e., no need to retrain, revalidate, and retest), they still heavily depend on the datasets they originally trained on. This condition in turn leads to variation in the detectors' performance when they are applied on a different dataset or environment. To overcome this problem, we developed a novel optics-based blur simulator that automatically introduces the diffraction blur at different image scales/magnifications. Then we evaluated different face detectors on the output images using different IoU thresholds. Users, in the beginning, choose their own values for these three settings and then run our model to produce the efficient face detector under the selected settings. That means our proposed model would enable users of biometric systems to pick the efficient face detector based on their system setup. Our results showed that sometimes outdated face detectors outperform state-of-the-art ones under certain settings and vice versa.
Na, Li. "Combination of supervised and unsupervised classifiers based on belief functions." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S041.
Full textLand cover relates to the biophysical cover of the Earth’s terrestrial surface, identifying vegetation, water, bare soil, or impervious surfaces, etc. Identifying land cover is essential for planning and managing natural resources (e.g. development, protection), understanding the distribution of habitats, and for modeling environmental variables. Identification of land cover types provides basic information for the generation of other thematic maps and establishes a baseline for monitoring activities. Therefore, land cover classification using satellite data is one of the most important applications of remote sensing. A great deal of ground information (e.g. labeled samples) is usually required to generate high-quality land cover classification. However, in complex natural areas, collecting information on the ground can be time-consuming and extremely expensive. Nowadays, multiple sensor technologies have gained great attention in land cover classification. They bring different and complementary information—spectral characteristics that may help to overcome the limitations caused by inadequate ground information. In our research, we focus on the fusion of heterogeneous information from different sources. The combination system aims to solve the problems caused by limited labeled samples and can thus be used in land cover classification for hard-to-access areas. These mantic labels for the land cover classification from each sensor can be different, and may not corresponds to the final scheme of labels that users await. For instance, land cover classification methods of different sensors provide semantic labels for the ground. However, based on these land cover maps, an accessibility map is supposed to be generated to meet users’ needs. Therefore, another objective of the combination is to provide an interface with a final scheme probably different from the input land cover maps
Çetin, Özgür. "Multi-rate modeling, model inference, and estimation for statistical classifiers /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5849.
Full textOliveira, e. Cruz Rafael Menelau. "Methods for dynamic selection and fusion of ensemble of classifiers." Universidade Federal de Pernambuco, 2011. https://repositorio.ufpe.br/handle/123456789/2436.
Full textFaculdade de Amparo à Ciência e Tecnologia do Estado de Pernambuco
Ensemble of Classifiers (EoC) é uma nova alternative para alcançar altas taxas de reconhecimento em sistemas de reconhecimento de padrões. O uso de ensemble é motivado pelo fato de que classificadores diferentes conseguem reconhecer padrões diferentes, portanto, eles são complementares. Neste trabalho, as metodologias de EoC são exploradas com o intuito de melhorar a taxa de reconhecimento em diferentes problemas. Primeiramente o problema do reconhecimento de caracteres é abordado. Este trabalho propõe uma nova metodologia que utiliza múltiplas técnicas de extração de características, cada uma utilizando uma abordagem diferente (bordas, gradiente, projeções). Cada técnica é vista como um sub-problema possuindo seu próprio classificador. As saídas deste classificador são utilizadas como entrada para um novo classificador que é treinado para fazer a combinação (fusão) dos resultados. Experimentos realizados demonstram que a proposta apresentou o melhor resultado na literatura pra problemas tanto de reconhecimento de dígitos como para o reconhecimento de letras. A segunda parte da dissertação trata da seleção dinâmica de classificadores (DCS). Esta estratégia é motivada pelo fato que nem todo classificador pertencente ao ensemble é um especialista para todo padrão de teste. A seleção dinâmica tenta selecionar apenas os classificadores que possuem melhor desempenho em uma dada região próxima ao padrão de entrada para classificar o padrão de entrada. É feito um estudo sobre o comportamento das técnicas de DCS demonstrando que elas são limitadas pela qualidade da região em volta do padrão de entrada. Baseada nesta análise, duas técnicas para seleção dinâmica de classificadores são propostas. A primeira utiliza filtros para redução de ruídos próximos do padrão de testes. A segunda é uma nova proposta que visa extrair diferentes tipos de informação, a partir do comportamento dos classificadores, e utiliza estas informações para decidir se um classificador deve ser selecionado ou não. Experimentos conduzidos em diversos problemas de reconhecimento de padrões demonstram que as técnicas propostas apresentam um aumento de performance significante
Mancini, Lorenzo <1989>. "Ordinal data supervised classification with Quantile-based and other classifiers." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amsdottorato.unibo.it/8543/1/phd%20thesis_mancini.pdf.
Full textIl lavoro di ricerca ha l'obiettivo di individuare una metodologia statistica per la classificazione supervisionata di unità statistiche misurate da un insieme di variabili ordinali. Questo tipo di dati è diffuso in diverse aree di ricerca e, in particolare, è molto comune nei sondaggi, dove le categorie di risposta sono elencate tramite scale Likert. Tipicamente, le categorie associate a queste variabili sono codificate attraverso apposite etichette le quali corrispondono solitamente a valori numerici progressivi ed equi-distanziati che riflettono l'ordine delle categorie. In fase di analisi non è però appropriato trattare questi dati come valori numerici reali, in quanto si andrebbe ad introdurre una distanza tra categorie che potrebbe non corrispondere a quella effettiva. Il progetto di ricerca si articola in diverse fasi. Inizialmente, viene effettuata un'analisi esaustiva dello stato dell'arte della letteratura, per identificare i vari approcci all'analisi dei dati ordinali, valutandone i limiti e i vantaggi. Successivamente, sulla base dei risultati di questa analisi, viene proposto un metodo basato sull'approccio response function, nel contesto dei modelli generalizzati a variabili latenti. A differenza del metodo classico, che prevede variabili latenti normalmente distribuite, la nuova metodologia proposta considera una singola variabile latente con distribuzione Beta, poiché fornisce specifici vantaggi in termini di efficienza computazionale e di adattamento ai dati. L'obiettivo è, sostanzialmente, di spostare il problema della classificazione da un insieme di variabili ordinali ad una singola variabile continua, in modo da applicare i metodi di classificazione standard. Sulla base di questo quadro teorico di riferimento è stato sviluppato un algoritmo EM, utilizzando il software statistico R. L'approccio proposto è confrontato, attraverso un ampio studio di simulazione, con diversi metodi di scoring, in particolare: raw scores, ridits, blom scores, normal median scores e conditional mean scores. Si presenta, inoltre, un'applicazione del metodo discusso ad un problema di classificazione su dati reali.
Brosnan, Timothy Myers. "Neural network and vector quantization classifiers for recognition and inspection applications." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/15378.
Full textLeon, Pasqual Maria Lourdes de. "Noun and numeral classifiers in Mixtec and Tzotzil : a referential view." Thesis, University of Sussex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232945.
Full textKomatsu, Hiroko. "Prototypes and Metaphorical Extensions: The Japanese Numeral Classifiers hiki and hatsu." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19648.
Full text