Journal articles on the topic 'Anionic Nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Anionic Nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Singh, Himanshi, Sugam Kumar, and Vinod K. Aswal. "Interplay of interactions in nanoparticle–surfactant complexes in aqueous salt solution." Journal of Applied Physics 132, no. 22 (December 14, 2022): 224701. http://dx.doi.org/10.1063/5.0118615.
Full textKanapina, A. E. "FEATURES OF THE DECAY OF EXCITED STATES OF IONIC DYES IN THE NEAR FIELD OF METAL NANOPARTICLES." Eurasian Physical Technical Journal 20, no. 2 (44) (June 21, 2023): 106–11. http://dx.doi.org/10.31489/2023no2/106-111.
Full textBaig, Mirza Wasif, and Muhammad Siddiq. "Quantum Mechanics of In Situ Synthesis of Metal Nanoparticles within Anionic Microgels." Journal of Theoretical Chemistry 2013 (December 25, 2013): 1–5. http://dx.doi.org/10.1155/2013/410417.
Full textRathod, Prakash B., Ashok K. Pandey, Sher Singh Meena, and Anjali A. Athawale. "Quaternary ammonium bearing hyper-crosslinked polymer encapsulation on Fe3O4 nanoparticles." RSC Advances 6, no. 26 (2016): 21317–25. http://dx.doi.org/10.1039/c6ra01543c.
Full textRodrigues, João M. M., Andreia S. F. Farinha, Zhi Lin, José A. S. Cavaleiro, Augusto C. Tome, and Joao P. C. Tome. "Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors." Sensors 21, no. 5 (February 26, 2021): 1632. http://dx.doi.org/10.3390/s21051632.
Full textSato, Takumi, and Yoshihiko Murakami. "Temperature-Responsive Polysaccharide Microparticles Containing Nanoparticles: Release of Multiple Cationic/Anionic Compounds." Materials 15, no. 13 (July 5, 2022): 4717. http://dx.doi.org/10.3390/ma15134717.
Full textUchida, Noriyuki, Masayoshi Yanagi, and Hiroki Hamada. "Size-Tunable Paclitaxel Nanoparticles Stabilized by Anionic Phospholipids for Transdermal Delivery Applications." Natural Product Communications 15, no. 3 (March 1, 2020): 1934578X1990068. http://dx.doi.org/10.1177/1934578x19900684.
Full textXing, Huiping, Jianwei Wang, Ouya Ma, Xiaolian Chao, Yajun Zhou, Yuhu Li, and Zhihui Jia. "Hydroxypropyltrimethyl Ammonium Chloride Chitosan Nanoparticles Coatings for Reinforcement and Concomitant Inhibition of Anionic Water-Sensitive Dyes Migration on Fragile Paper Documents." Polymers 14, no. 18 (September 6, 2022): 3717. http://dx.doi.org/10.3390/polym14183717.
Full textForeman-Ortiz, Isabel U., Dongyue Liang, Elizabeth D. Laudadio, Jorge D. Calderin, Meng Wu, Puspam Keshri, Xianzhi Zhang, et al. "Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function." Proceedings of the National Academy of Sciences 117, no. 45 (October 26, 2020): 27854–61. http://dx.doi.org/10.1073/pnas.2004736117.
Full textMiyamoto, Yoshitaka, Yumie Koshidaka, Katsutoshi Murase, Shoichiro Kanno, Hirofumi Noguchi, Kenji Miyado, Takeshi Ikeya, et al. "Functional Evaluation of 3D Liver Models Labeled with Polysaccharide Functionalized Magnetic Nanoparticles." Materials 15, no. 21 (November 5, 2022): 7823. http://dx.doi.org/10.3390/ma15217823.
Full textGanea, Gabriela M., Cristina M. Sabliov, Abiodun O. Ishola, Sayo O. Fakayode, and Isiah M. Warner. "Experimental Design and Multivariate Analysis for Optimizing Poly(d,l-lactide-co-glycolide) (PLGA) Nanoparticle Synthesis Using Molecular Micelles." Journal of Nanoscience and Nanotechnology 8, no. 1 (January 1, 2008): 280–92. http://dx.doi.org/10.1166/jnn.2008.18129.
Full textBehyan, Shirin, Olga Borozenko, Abdullah Khan, Manon Faral, Antonella Badia, and Christine DeWolf. "Nanoparticle-induced structural changes in lung surfactant membranes: an X-ray scattering study." Environmental Science: Nano 5, no. 5 (2018): 1218–30. http://dx.doi.org/10.1039/c8en00189h.
Full textUchida, Noriyuki, Masayoshi Yanagi, and Hiroki Hamada. "Transdermal Delivery of Anionic Phospholipid Nanoparticles Containing Fullerene." Natural Product Communications 17, no. 2 (February 2022): 1934578X2210784. http://dx.doi.org/10.1177/1934578x221078444.
Full textde Freitas, Erika Regina Leal, Paula Roberta Otaviano Soares, Rachel de Paula Santos, Regiane Lopes dos Santos, Joel Rocha da Silva, Elaine Paulucio Porfirio, Sônia N. Báo, Emilia Celma de Oliveira Lima, Paulo César Morais, and Lidia Andreu Guillo. "In Vitro Biological Activities of Anionic γ-Fe2O3 Nanoparticles on Human Melanoma Cells." Journal of Nanoscience and Nanotechnology 8, no. 5 (May 1, 2008): 2385–91. http://dx.doi.org/10.1166/jnn.2008.275.
Full textDaud, Muhammad, Zahiruddin Khan, Aisha Ashgar, M. Ihsan Danish, and Ishtiaq A. Qazi. "Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins." Journal of Nanotechnology 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/985984.
Full textSoto, Ernesto R., Abaigeal C. Caras, Lindsey C. Kut, Melissa K. Castle, and Gary R. Ostroff. "Glucan Particles for Macrophage Targeted Delivery of Nanoparticles." Journal of Drug Delivery 2012 (October 13, 2012): 1–13. http://dx.doi.org/10.1155/2012/143524.
Full textŠimšíková, Michaela, Marián Antalík, Mária Kaňuchová, and Jiří Škvarla. "Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles." Applied Surface Science 282 (October 2013): 342–47. http://dx.doi.org/10.1016/j.apsusc.2013.05.130.
Full textXu, Bolei, Grazia Gonella, Brendan G. DeLacy, and Hai-Lung Dai. "Adsorption of Anionic Thiols on Silver Nanoparticles." Journal of Physical Chemistry C 119, no. 10 (February 27, 2015): 5454–61. http://dx.doi.org/10.1021/jp511997w.
Full textWilhelm, Claire, and Florence Gazeau. "Universal cell labelling with anionic magnetic nanoparticles." Biomaterials 29, no. 22 (August 2008): 3161–74. http://dx.doi.org/10.1016/j.biomaterials.2008.04.016.
Full textYuan, Hong, Wei Zhang, Yong-Zhong Du, and Fu-Qiang Hu. "Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery." International Journal of Pharmaceutics 392, no. 1-2 (June 15, 2010): 224–31. http://dx.doi.org/10.1016/j.ijpharm.2010.03.025.
Full textFei, Yang, Mary Gonzalez, and Manouchehr Haghighi. "Free drainage of foam mixed with proppants in the presence of nanoparticles." APPEA Journal 58, no. 2 (2018): 710. http://dx.doi.org/10.1071/aj17047.
Full textZHAO, TIEJUN, HEZHONG CHEN, LIXIN YANG, HAI JIN, ZHIGANG LI, LIN HAN, FANGLIN LU, and ZHIYUN XU. "DDAB-MODIFIED TPGS-b-(PCL-ran-PGA) NANOPARTICLES AS ORAL ANTICANCER DRUG CARRIER FOR LUNG CANCER CHEMOTHERAPY." Nano 08, no. 02 (April 2013): 1350014. http://dx.doi.org/10.1142/s1793292013500148.
Full textAmigoni, Loredana, Lucia Salvioni, Barbara Sciandrone, Marco Giustra, Chiara Pacini, Paolo Tortora, Davide Prosperi, Miriam Colombo, and Maria Elena Regonesi. "Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in Caenorhabditis elegans." Nanomaterials 11, no. 6 (June 11, 2021): 1551. http://dx.doi.org/10.3390/nano11061551.
Full textZegan, Georgeta, Elena Mihaela Carausu, Loredana Golovcencu, Alina Sodor Botezatu, Eduard Radu Cernei, and Daniela Anistoroaei. "Antibiotic-anionic Clay Matrix Used for Drug Controlled Release." Revista de Chimie 69, no. 2 (March 15, 2018): 321–23. http://dx.doi.org/10.37358/rc.18.2.6098.
Full textIancu, Stefania D., Andrei Stefancu, Vlad Moisoiu, Loredana F. Leopold, and Nicolae Leopold. "The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes." Beilstein Journal of Nanotechnology 10 (November 27, 2019): 2338–45. http://dx.doi.org/10.3762/bjnano.10.224.
Full textChua, Ming Jing, and Yoshinori Murakami. "Influence of Surfactants and Dissolved Gases on the Silver Nanoparticle Plasmon Resonance Absorption Spectra Formed by the Laser Ablation Processes." ISRN Physical Chemistry 2013 (June 2, 2013): 1–7. http://dx.doi.org/10.1155/2013/547378.
Full textAl-Anssari, Sarmad, Zain-UL-Abedin Arain, Haider Abbas Shanshool, Alireza Keshavarz, and Mohammad Sarmadivaleh. "Synergistic effect of hydrophilic nanoparticles and anionic surfactant on the stability and viscoelastic properties of oil in water (o/w) emulations; application for enhanced oil recovery (EOR)." Journal of Petroleum Research and Studies 10, no. 4 (December 21, 2020): 33–53. http://dx.doi.org/10.52716/jprs.v10i4.366.
Full textZhao, Fang, Ya Qiong Zhao, Yuan Yuan Li, and Gang Ni. "Study on the Dispersion of Nanometer TiO2 Powder by Sol-Gel Method." Advanced Materials Research 599 (November 2012): 104–7. http://dx.doi.org/10.4028/www.scientific.net/amr.599.104.
Full textRaj, S. Irudhaya, Adhish Jaiswal, and Imran Uddin. "Tunable porous silica nanoparticles as a universal dye adsorbent." RSC Advances 9, no. 20 (2019): 11212–19. http://dx.doi.org/10.1039/c8ra10428j.
Full textEftekhari, Milad, Karin Schwarzenberger, Aliyar Javadi, and Kerstin Eckert. "The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength?" Physical Chemistry Chemical Physics 22, no. 4 (2020): 2238–48. http://dx.doi.org/10.1039/c9cp05475h.
Full textSalassi, Sebastian, Ester Canepa, Riccardo Ferrando, and Giulia Rossi. "Anionic nanoparticle-lipid membrane interactions: the protonation of anionic ligands at the membrane surface reduces membrane disruption." RSC Advances 9, no. 25 (2019): 13992–97. http://dx.doi.org/10.1039/c9ra02462j.
Full textOnizuka, Takahiro, Mikihisa Fukuda, and Tomohiro Iwasaki. "Effects of Coexisting Anions on the Formation of Hematite Nanoparticles in a Hydrothermal Process with Urea Hydrolysis and the Congo Red Dye Adsorption Properties." Powders 2, no. 2 (May 8, 2023): 338–52. http://dx.doi.org/10.3390/powders2020020.
Full textUchida, Noriyuki, Masayoshi Yanagi, and Hiroki Hamada. "Nanoformulation of Fullerene Using an Anionic Phospholipid." Natural Product Communications 17, no. 1 (January 2022): 1934578X2110528. http://dx.doi.org/10.1177/1934578x211052868.
Full textMa, Yanhang, Lei Xing, Haoquan Zheng, and Shunai Che. "Anionic−Cationic Switchable Amphoteric Monodisperse Mesoporous Silica Nanoparticles." Langmuir 27, no. 2 (January 18, 2011): 517–20. http://dx.doi.org/10.1021/la103979c.
Full textMaity, Amit Ranjan, and Nikhil R. Jana. "Chitosan−Cholesterol-Based Cellular Delivery of Anionic Nanoparticles." Journal of Physical Chemistry C 115, no. 1 (December 14, 2010): 137–44. http://dx.doi.org/10.1021/jp108828c.
Full textHur, Jae Uk, Jae Seok Choi, Sung-Churl Choi, and Gye Seok An. "Highly dispersible Fe3O4 nanoparticles via anionic surface modification." Journal of the Korean Ceramic Society 57, no. 1 (December 12, 2019): 80–84. http://dx.doi.org/10.1007/s43207-019-00001-3.
Full textUchida, Noriyuki, Masayoshi Yanagi, and Hiroki Hamada. "Piceid Nanoparticles Stabilized by Anionic Phospholipids for Transdermal Delivery." Natural Product Communications 15, no. 5 (May 2020): 1934578X2092557. http://dx.doi.org/10.1177/1934578x20925578.
Full textWatanabe, Hideo, Masayoshi Fuji, Atsuko Tada, and Minoru Takahashi. "Electrophoretic and Electrolytic Deposition of Gold Nanoparticles on a Graphite Carbon Plate." Key Engineering Materials 412 (June 2009): 71–75. http://dx.doi.org/10.4028/www.scientific.net/kem.412.71.
Full textLu, Bin, Tyler Smith, and Jacob J. Schmidt. "Nanoparticle–lipid bilayer interactions studied with lipid bilayer arrays." Nanoscale 7, no. 17 (2015): 7858–66. http://dx.doi.org/10.1039/c4nr06892k.
Full textJiang, Bing, Xiaohan Ban, Qian Wang, Kui Cheng, Kai Zhu, Ke Ye, Guiling Wang, Dianxue Cao, and Jun Yan. "Anionic P-substitution toward ternary Ni–S–P nanoparticles immobilized graphene with ultrahigh rate and long cycle life for hybrid supercapacitors." Journal of Materials Chemistry A 7, no. 42 (2019): 24374–88. http://dx.doi.org/10.1039/c9ta09902f.
Full textRotan, Olga, Katharina N. Severin, Simon Pöpsel, Alexander Peetsch, Melisa Merdanovic, Michael Ehrmann, and Matthias Epple. "Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles." Beilstein Journal of Nanotechnology 8 (February 7, 2017): 381–93. http://dx.doi.org/10.3762/bjnano.8.40.
Full textZhang, Hang, Junaid Muhammad, Kai Liu, Robin H. A. Ras, and Olli Ikkala. "Light-induced reversible hydrophobization of cationic gold nanoparticles via electrostatic adsorption of a photoacid." Nanoscale 11, no. 30 (2019): 14118–22. http://dx.doi.org/10.1039/c9nr05416b.
Full textPerret, Florent, Yannick Tauran, Kinga Suwinska, Beomjoon Kim, Cyrielle Chassain-Nely, Maxime Boulet, and Anthony W. Coleman. "Molecular Recognition and Transport of Active Pharmaceutical Ingredients on Anionic Calix[4]arene-Capped Silver Nanoparticles." Journal of Chemistry 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/191828.
Full textLievonen, Miikka, Juan José Valle-Delgado, Maija-Liisa Mattinen, Eva-Lena Hult, Kalle Lintinen, Mauri A. Kostiainen, Arja Paananen, Géza R. Szilvay, Harri Setälä, and Monika Österberg. "A simple process for lignin nanoparticle preparation." Green Chemistry 18, no. 5 (2016): 1416–22. http://dx.doi.org/10.1039/c5gc01436k.
Full textCarnerero, Jose M., Aila Jimenez-Ruiz, Elia M. Grueso, and Rafael Prado-Gotor. "Understanding and improving aggregated gold nanoparticle/dsDNA interactions by molecular spectroscopy and deconvolution methods." Physical Chemistry Chemical Physics 19, no. 24 (2017): 16113–23. http://dx.doi.org/10.1039/c7cp02219k.
Full textAkter, Salma, Mohammad Abu Sayem Karal, Sharif Hasan, Md Kabir Ahamed, Marzuk Ahmed, and Shareef Ahammed. "Effects of cholesterol on the anionic magnetite nanoparticle-induced deformation and poration of giant lipid vesicles." RSC Advances 12, no. 44 (2022): 28283–94. http://dx.doi.org/10.1039/d2ra03199j.
Full textNing, Yin, Daniel J. Whitaker, Charlotte J. Mable, Matthew J. Derry, Nicholas J. W. Penfold, Alexander N. Kulak, David C. Green, Fiona C. Meldrum, and Steven P. Armes. "Anionic block copolymer vesicles act as Trojan horses to enable efficient occlusion of guest species into host calcite crystals." Chemical Science 9, no. 44 (2018): 8396–401. http://dx.doi.org/10.1039/c8sc03623c.
Full textManin, Andrey, Daniel Golubenko, Svetlana Novikova, and Andrey Yaroslavtsev. "Composite Anion Exchange Membranes Based on Quaternary Ammonium-Functionalized Polystyrene and Cerium(IV) Phosphate with Improved Monovalent-Ion Selectivity and Antifouling Properties." Membranes 13, no. 7 (June 26, 2023): 624. http://dx.doi.org/10.3390/membranes13070624.
Full textLall, Aastha, Arnaud Kamdem Tamo, Ingo Doench, Laurent David, Paula Nunes de Oliveira, Christian Gorzelanny, and Anayancy Osorio-Madrazo. "Nanoparticles and Colloidal Hydrogels of Chitosan–Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications." International Journal of Molecular Sciences 21, no. 16 (August 5, 2020): 5602. http://dx.doi.org/10.3390/ijms21165602.
Full textMani, Hemalatha, Yi-Cheng Chen, Yen-Kai Chen, Wei-Lin Liu, Shih-Yen Lo, Shu-Hsuan Lin, and Je-Wen Liou. "Nanosized Particles Assembled by a Recombinant Virus Protein Are Able to Encapsulate Negatively Charged Molecules and Structured RNA." Polymers 13, no. 6 (March 11, 2021): 858. http://dx.doi.org/10.3390/polym13060858.
Full text