Academic literature on the topic 'Animal coloration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Animal coloration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Animal coloration"

1

Caro, Tim, Mary Caswell Stoddard, and Devi Stuart-Fox. "Animal coloration research: why it matters." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1724 (May 22, 2017): 20160333. http://dx.doi.org/10.1098/rstb.2016.0333.

Full text
Abstract:
While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor, Lisa A., and Kevin J. McGraw. "Animal Coloration: Sexy Spider Scales." Current Biology 17, no. 15 (August 2007): R592—R593. http://dx.doi.org/10.1016/j.cub.2007.05.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Galán, Pedro. "Ontogenetic and sexual variation in the coloration of the lacertid lizards Iberolacerta monticola and Podarcis bocagei. Do the females prefer the greener males?" Animal Biology 58, no. 2 (2008): 173–98. http://dx.doi.org/10.1163/157075608x328026.

Full text
Abstract:
AbstractChanges in the coloration of the lacertid lizards Iberolacerta monticola and Podarcis bocagei with age in populations from NW Spain are described. The onset of sexual maturity in P. bocagei males involves a change in the ventral (yellow) and dorsal (green) colorations, which is different from immature males (dorsally brownish in color). In I. monticola males, the ventral coloration also changes to a deep green when they reach maturity, while the dorsal coloration remains brownish as in the immature specimens. In this species, the green dorsal coloration is acquired gradually after maturity. Only the oldest individuals have a predominantly green dorsal coloration. The differences between the two species in the time males take to acquire the green dorsal coloration could be related to their different longevity. The coloring is acquired gradually in the most long-lived species (I. monticola). A field study was carried out on the behaviour of adult males of I. monticola during the reproductive period. The males with green dorsal coloration were seen to pair with females significantly more frequently than those with the brownish dorsal color. The increase in the green dorsal coloration (conspicuous) with the size and age of the males of this species would appear to have a clear function as an intersexual or intrasexual signal.
APA, Harvard, Vancouver, ISO, and other styles
4

San-Jose, Luis M., and Alexandre Roulin. "Genomics of coloration in natural animal populations." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1724 (May 22, 2017): 20160337. http://dx.doi.org/10.1098/rstb.2016.0337.

Full text
Abstract:
Animal coloration has traditionally been the target of genetic and evolutionary studies. However, until very recently, the study of the genetic basis of animal coloration has been mainly restricted to model species, whereas research on non-model species has been either neglected or mainly based on candidate approaches, and thereby limited by the knowledge obtained in model species. Recent high-throughput sequencing technologies allow us to overcome previous limitations, and open new avenues to study the genetic basis of animal coloration in a broader number of species and colour traits, and to address the general relevance of different genetic structures and their implications for the evolution of colour. In this review, we highlight aspects where genome-wide studies could be of major utility to fill in the gaps in our understanding of the biology and evolution of animal coloration. The new genomic approaches have been promptly adopted to study animal coloration although substantial work is still needed to consider a larger range of species and colour traits, such as those exhibiting continuous variation or based on reflective structures. We argue that a robust advancement in the study of animal coloration will also require large efforts to validate the functional role of the genes and variants discovered using genome-wide tools. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’.
APA, Harvard, Vancouver, ISO, and other styles
5

Lakhani, Leena. "PROTECTIVE COLORATION IN ANIMALS." International Journal of Research -GRANTHAALAYAH 2, no. 3SE (December 31, 2014): 1–5. http://dx.doi.org/10.29121/granthaalayah.v2.i3se.2014.3515.

Full text
Abstract:
Animals have range of defensive markings which helps to the risk of predator detection (camouflage), warn predators of the prey’s unpalatability (aposematism) or fool a predator into mimicry, masquerade. Animals also use colors in advertising, signalling services such as cleaning to animals of other species, to signal sexual status to other members of the same species. Some animals use color to divert attacks by startle (dalmatic behaviour), surprising a predator e.g. witheyespots or other flashes of color or possibly by motion dazzle, confusing a predator attack by moving a bold pattern like zebra stripes. Some animals are colored for physical protection, such as having pigments in the skin to protect against sunburn; some animals can lighten or darken their skin for temperature regulation. This adaptive mechanism is known as protective coloration. After several years of evolution, most animals now achieved the color pattern most suited for their natural habitat and role in the food chains. Animals in the world rely on their coloration for either protection from predators, concealment from prey or sexual selection. In general the purpose of protective coloration is to decrease an organism’s visibility or to alter its appearance to other organisms. Sometimes several forms of protective coloration are superimposed on one animal.
APA, Harvard, Vancouver, ISO, and other styles
6

Stevens, Martin, Innes C. Cuthill, Amy M. M. Windsor, and Hannah J. Walker. "Disruptive contrast in animal camouflage." Proceedings of the Royal Society B: Biological Sciences 273, no. 1600 (July 5, 2006): 2433–38. http://dx.doi.org/10.1098/rspb.2006.3614.

Full text
Abstract:
Camouflage typically involves colour patterns that match the background. However, it has been argued that concealment may be achieved by strategic use of apparently conspicuous markings. Recent evidence supports the theory that the presence of contrasting patterns placed peripherally on an animal's body (disruptive coloration) provides survival advantages. However, no study has tested a key prediction from the early literature that disruptive coloration is effective even when some colour patches do not match the background and have a high contrast with both the background and adjacent pattern elements (disruptive contrast). We test this counter-intuitive idea that conspicuous patterns might aid concealment, using artificial moth-like targets with pattern elements designed to match or mismatch the average luminance (lightness) of the trees on which they were placed. Disruptive coloration was less effective when some pattern elements did not match the background luminance. However, even non-background-matching disruptive patterns reduced predation relative to equivalent non-disruptive patterns or to unpatterned controls. Therefore, concealment may still be achieved even when an animal possesses markings not found in the background. Disruptive coloration may allow animals to exploit backgrounds on which they are not perfectly matched, and to possess conspicuous markings while still retaining a degree of camouflage.
APA, Harvard, Vancouver, ISO, and other styles
7

Bar-Oz, G., and S. Lev-Yadun. "Paleolithic cave rock art, animal coloration, and specific animal habitats." Proceedings of the National Academy of Sciences 109, no. 20 (April 16, 2012): E1212. http://dx.doi.org/10.1073/pnas.1200729109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stevens, Martin. "Concealing Coloration in Animals." Animal Behaviour 86, no. 6 (December 2013): 1333–34. http://dx.doi.org/10.1016/j.anbehav.2013.09.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caro, Tim, Mary Caswell Stoddard, and Devi Stuart-Fox. "Animal coloration: production, perception, function and application." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1724 (May 22, 2017): 20170047. http://dx.doi.org/10.1098/rstb.2017.0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

STEVENS, MARTIN, C. ALEJANDRO PÁRRAGA, INNES C. CUTHILL, JULIAN C. PARTRIDGE, and TOM S. TROSCIANKO. "Using digital photography to study animal coloration." Biological Journal of the Linnean Society 90, no. 2 (January 31, 2007): 211–37. http://dx.doi.org/10.1111/j.1095-8312.2007.00725.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Animal coloration"

1

Fay, Caitlin. "Aposematic Variation and the Evolution of Warning Coloration in Mammals." Thesis, California State University, Long Beach, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10257635.

Full text
Abstract:

Aposematic prey animals use conspicuous, high contrast color patterns to warn potential predators that they possess a defense mechanism. Avian predators show an innate phobia of bold, contrasting color patterns, and can readily learn to avoid a prey item displaying bold warning coloration. Signal uniformity is important to promote predator learning and memory retention; however, there is documented variation in the aposematic pattern of many species, including the striped skunk (Mephitis mephitis). Most of the literature on aposematism refers to studies using avian predators and insect prey – we know relatively little about how mammalian predators learn about and interact with aposematic prey, despite the recognized influence of predation on the evolution of aposematism in mammals. This study examined the behavior of coyote (Canis latrans) subjects during interactions with baited black-and-white models that were able to spray a dilute skunk oil solution. Coyotes are the most common mammalian predator of striped skunks. To test their ability to generalize, after being sprayed coyotes were introduced to a variant model design based on natural documented variation in striped skunk pelage. The results demonstrate that coyotes show innate wariness of a black-and-white striped model, and most can effectively learn to avoid the model after being sprayed. Variants with proportionately more white incited more avoidance behaviors than darker patterns, although they did not allow for greater signaling power than the diagnostic black-and-white striped pattern.

APA, Harvard, Vancouver, ISO, and other styles
2

Guilford, T. "Aposematism." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Torok, Alexandra. "Halting attack : startle displays and flash coloration as anti-predator defences." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jones, Landon R. "Calcium dynamics affecting egg production, skeletal integrity, and egg coloration in ring-necked pheasants Phasianus colchicus /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2211.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quinard, Aurélie. "Diversité génétique individuelle, différenciation morphologique et comportementale entres les sexes, patterns d'appariement et paramètres démographiques chez une espèce d'oiseau tropicale et monogame, la tourterelle à queue carrée, Zenaida Aurita." Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00995585.

Full text
Abstract:
La recherche en écologie comportementale est affectée par un biais notoire en faveur des oiseaux des zones tempérées, en dépit de la plus grande diversité des espèces tropicales et des conditions naturelles radicalement éloignées qui rendent les connaissances sur les espèces tempérées peu pertinentes pour les espèces tropicales.Nous proposons de combler le manque d'informations concernant les oiseaux tropicaux via l'étude d'une espèce socialement monogame, se reproduisant et défendant un territoire toute l'année, la Tourterelle à queue carrée, Zenaida aurita. Pour commencer, nous avons cherché à déterminer le caractère sexuellement mono- ou dichromatique de la coloration du plumage et si celui-ci reflétait la qualité individuelle. Nous avons ensuite exploré les patterns d'appariements au sein des couples selon le degré d'hétérozygotie et la taille du corps. Afin d'établir la force des liens du couple, nous avons évalué le taux de divorce, les hypothèses pouvant expliquer les cas répertoriés, et les conséquences du changement de partenaire. Ceci a été suivi par la caractérisation des rôles des sexes au sein des couples selon diverses activités. Des analyses de capture-marquage-recapture ont permis d'estimer le taux de survie ainsi que l'influence du degré d'hétérozygotie et de la taille de l'aile sur la survie. La Tourterelle à queue carrée paraît suivre les spécificités comportementales, écologiques et démographiques caractérisant les espèces tropicales à monogamie pérenne
APA, Harvard, Vancouver, ISO, and other styles
6

Delhey, J. Kaspar V. "Sexual selection and blue tit (Parus caeruleus) crown coloration." Diss., Connect to this title online, 2005. http://edoc.ub.uni-muenchen.de/archive/00004716/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Servedio, Maria Rose. "Preferences, signals, and evolution : theoretical studies of mate choice copying, reinforcement, and aposematic coloration /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Örnborg, Jonas. "Ultraviolet coloration and colour communication in the blue tits parus caeruleus /." Göteborg : Département de zoologie, Université de Göteborg, 2002. http://catalogue.bnf.fr/ark:/12148/cb399304764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doucet, Stéphanie M. Hill Geoffrey E. "Plumage coloration and morphology in Chiroxiphia manakins interacting effects of natural and sexual selection /." Auburn, Ala., 2006. http://hdl.handle.net/10415/1308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Mélissa. "Fonction et maintien de la variabilité de la coloration ultraviolette chez les Lacertidae." Paris 6, 2013. http://www.theses.fr/2013PA066692.

Full text
Abstract:
Les colorations corporelles ultraviolettes (UV) sont très répandues dans le règne animal cependant nos connaissances sont encore très limitées quant aux fonctions et aux mécanismes de maintien de la variabilité de ce trait. Mes travaux de thèse, menés le lézard vivipare Zootoca vivipara et le lézard des murailles Podarcis muralis, ont permis de démontrer que ces deux espèces arborent, perçoivent et utilisent les signaux visuels UV. En effet, elles présentent des ornements colorés reflétant de manière significative dans l’UV et cette réflectance UV varie fortement au sein des populations en fonction de la saison, de l’âge et du sexe des individus. Le dichromatisme sexuel dans l’UV suggère en particulier que la coloration UV puisse jouer un rôle dans la communication intra- et/ou intersexuelle. De plus, un modèle de vision simple met en évidence que le système de vision des lézards est très bien adapté pour discriminer de fines variations de réflectance UV dans l’ornementation colorée des mâles. En manipulant expérimentalement la réflectance UV des mâles lors d’interactions sociales, nous avons également trouvé que la coloration UV des mâles peut agir comme un signal de qualité individuelle. Le signal UV peut être déterminant dans la résolution des interactions mâle-mâle et constitue un critère important de le choix pré- et potentiellement post-copulatoire des femelles pour un partenaire. Ces résultats suggèrent que le signal UV peut avoir une double fonction et que la sélection sexuelle peut être une force évolutive importante dans dans le maintien de la variabilité de la coloration UV
Ultraviolet (UV) body colors are widespread in the animal kingdom however our knowledge is still very limited in terms of functions and mechanisms for maintaining the variability of this trait. During my thesis, I studied the variability of the ultraviolet component (UV) of colour ornaments in the vivipara lizard Zootoca vivipara and wall lizard Podarcis muralis, and my works have shown that these two species bear, perceive and use UV signals. Indeed, both species have colour ornaments reflecting strongly in the UV and this UV reflectance varies considerably among populations depending on the season, age and sex of individuals. Sexual dichromatism in the UV range suggests in particular that the UV colour can play a role in intra- or inter-sexual communication or both. In addition, a simple model of vision shows that the vision system of lizards is very well adaptated to discriminate small variations of UV reflectance in male colour ornamentation. By experimentally manipulating the UV reflectance of males during social interactions, we also found that male UV coloration may act as a signal of individual quality. The UV signal can be decisive in settling of aggressive interactions between males and is an important criterion for the pre- and potentially post-copulatory female choice for a partner. These results suggest that UV signal can have a dual function and that sexual selection may be an important evolutionary force in the maintenance of the variability of the UV colour
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Animal coloration"

1

1921-, Ipsen D. C., and Gillfillan Gretchen, eds. Animal coloration: Activities on the evolution of concealing coloration in animals. Arlington, Va: National Science Teachers Association, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Concealing-coloration in the animal kingdom. [Place of publication not identified]: Rarebooksclub Com, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Petty, Kate. Animal camouflage and defense. Philadelphia: Chelsea House Publishers, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitchell, Susan K. Animal mimics: Look-alikes and copycats. Berkeley Heights, NJ: Enslow Pub., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Higgins, Nadia. Undercover animals. Minneapolis, MN: Jump!, Inc., 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Animals undercover: Camouflage. New York: Gareth Stevens Publishing, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

illustrator, Ruiz Aristides, and Mathieu Joe 1949 illustrator, eds. High? low? where did it go?: All about animal camouflage. New York: Random House, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, O'Hare Jeffrey, ed. Searchin' safari: Looking for camouflaged creatures. Honesdale, Pa: Bell Books, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kroll, Virginia L. Kingston's flowering forest. Gettysburg: Bear & Co., 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blaisdell, Muriel L. Darwinsim and its data: The adaptive coloration of animals. New York: Garland, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Animal coloration"

1

Aliano, Antonio, Giancarlo Cicero, Hossein Nili, Nicolas G. Green, Pablo García-Sánchez, Antonio Ramos, Andreas Lenshof, et al. "Animal Coloration." In Encyclopedia of Nanotechnology, 117. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, Thomas E. "Cryptic Coloration." In Encyclopedia of Animal Cognition and Behavior, 1–3. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-47829-6_665-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

White, Thomas E. "Disruptive Coloration." In Encyclopedia of Animal Cognition and Behavior, 1–3. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-47829-6_676-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lev-Yadun, Simcha. "Defensive Animal and Animal Action Mimicry by Plants." In Defensive (anti-herbivory) Coloration in Land Plants, 271–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42096-7_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lev-Yadun, Simcha. "Animal Color Vision." In Defensive (anti-herbivory) Coloration in Land Plants, 19–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42096-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mundy, Nicholas I. "Evolutionary Genetics of Coloration in Primates and Other Vertebrates." In From Genes to Animal Behavior, 297–310. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53892-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adeel, Shahid, Sana Rafi, Muhammad Abdul Mustaan, Mahwish Salman, and Abdul Ghaffar. "Animal Based Natural Dyes: A Short Review." In Handbook of Renewable Materials for Coloration and Finishing, 41–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119407850.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lev-Yadun, Simcha. "A General Perspective of Defensive Animal Mimicry by Plants." In Defensive (anti-herbivory) Coloration in Land Plants, 335. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42096-7_68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gebeshuber, Ille C., and David W. Lee. "Nanostructures for Coloration (Organisms Other Than Animals)." In Encyclopedia of Nanotechnology, 1–19. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_216-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber, et al. "Nanostructures for Coloration (Organisms other than Animals)." In Encyclopedia of Nanotechnology, 1790–803. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_216.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Animal coloration"

1

LUKYANOV, KONSTANTIN A., ARKADY F. FRADKOV, NADYA G. GURSKAYA, MIKHAIL V. MATZ, YULII A. LABAS, ALEKSANDR P. SAVITSKY, XIAONING ZHAO, YU FANG, WENYAN TAN, and SERGEY A. LUKYANOV. "NATURAL ANIMAL COLORATION CAN BE DETERMINED BY A NON-FLUORESCENT GFP HOMOLOG." In Proceedings of the 11th International Symposium. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811158_0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography