Academic literature on the topic 'Angular distribution analysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Angular distribution analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Angular distribution analysis"

1

Leitner, O., Z. J. Ajaltouni, and E. Conte. "An angular distribution analysis of decays." Nuclear Physics A 755 (June 2005): 435–38. http://dx.doi.org/10.1016/j.nuclphysa.2005.03.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guo, Li, Mingqing Liu, Ronghua Lu, Shensheng Han, and Jing Chen. "Analysis of above-threshold ionization by “Wigner-distribution-like function” method." Laser and Particle Beams 37, no. 4 (September 18, 2019): 448–62. http://dx.doi.org/10.1017/s0263034619000569.

Full text
Abstract:
AbstractAbove-threshold ionization (ATI) is one of the most fundamental processess when atoms or molecules are subjected to intense laser fields. Analysis of ATI process in intense laser fields by a Wigner-distribution-like (WDL) function is reviewed in this paper. The WDL function is used to obtain various time-related distributions, such as time-energy distribution, ionization time distribution, and time-emission angle distribution and so on, of atoms in laser field pulses with different laser parameters. For the linearly polarized laser pulses, the time-energy distribution intuitively shows from a quantum point of view the relationship between the ionization moment and the final energy and clearly reveals the origin of interference structures in the photoelectron spectrum. In particular, for linearly polarized few-cycle laser pulses, all calculated distributions show the dependence of electron behavior on the ionization time, emission direction, and carrier-envelope phase (CEP). For elliptically polarized few-cycle pulses, we calculate the angular distribution, ionization time distribution, and time-emission distribution, which are compared with the semiclassical calculations. Analysis shows that the offset angle (difference between positions of the peaks in the angular distributions obtained by two methods) in the angular distributions does not correspond to the offset time (difference between positions of the peaks in the ionization time distributions obtained by two methods) in the ionization time distributions, which implies that the attosecond angular streaking technique based on this correspondence between the offset angle and time is in principle inaccurate. Furthermore, the offset time cannot be interpreted as tunneling time.
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Suichu, and David C. Joy. "A new method for quantitative analysis of EELS." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 950–51. http://dx.doi.org/10.1017/s0424820100172486.

Full text
Abstract:
Techniques to remove plural scattering from electron energy loss spectra (EELS) are important in bot hmicroanalysis and other quantitative applications of electron spectroscopy. The techniques used are either based on convolution, or Fourier transform deconvolution, methods, in which either the elastic scattering angular correction or both elastic and inelastic angular corrections are not included. In this work we propose a new method based on both angular and energy loss three-dimension Poisson statistics which includes elastic and inelastic mixed angular scattering correction in order to obtain more accurate quantitative analysis for EELS.The electron scattering distribution determined by angular and energy loss three-dimension Poissonstatistics is given by:where IT is the total incident electron intensity; t is the sample thickness; λi, λe and λT are inelastic , elastic and total scattering mean free paths; Si (θ) and Se(θ) are normalized single inelastic and elastic angular scattering distributions respectively, F(E) is the single scattering normalized energy loss distribution.
APA, Harvard, Vancouver, ISO, and other styles
4

Lees, Karen, Stephen Roberts, Pari Skamnioti, and Sarah Gurr. "Gene Microarray Analysis Using Angular Distribution Decomposition." Journal of Computational Biology 14, no. 1 (January 2007): 68–83. http://dx.doi.org/10.1089/cmb.2006.0098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tracheva, Natalya V., and Sergey A. Ukhinov. "Two-dimensional projection Monte Carlo estimators for the study of angular characteristics of polarized radiation." Russian Journal of Numerical Analysis and Mathematical Modelling 33, no. 3 (June 26, 2018): 187–97. http://dx.doi.org/10.1515/rnam-2018-0016.

Full text
Abstract:
Abstract The paper presents a Monte Carlo algorithm for the study of bidirectional angular characteristics of a scattered polarized radiation based on projection expansion of the density of the corresponding angular distribution over hemispherical harmonics. The results of numerical estimation of two-dimensional angular distributions of the intensity and the polarization degree of the radiation passed through and reflected from optically thick layers of scattering and absorbing substance are presented.
APA, Harvard, Vancouver, ISO, and other styles
6

BERNUI, ARMANDO, THYRSO VILLELA, and IVAN FERREIRA. "ANALYSIS OF THE ANGULAR DISTRIBUTION OF COSMIC OBJECTS." International Journal of Modern Physics D 13, no. 07 (August 2004): 1189–95. http://dx.doi.org/10.1142/s0218271804005304.

Full text
Abstract:
We investigate a method that reveals anisotropies in the angular distribution of cosmic objects. In particular, we investigate ensembles with ~ 1000 objects, which is the interesting case of some astronomical catalogs. Considering test ensembles generated with a variable degree of anisotropy, we calculate the probability of any pair of objects to be separated by a given angular distance and compare this result with the same probability for a purely isotropic ensemble. We show that the use of sub-ensembles of the original full sky test ensemble, namely partial catalogs containing objects in the polar cap regions, can reveal, at any scale, possible angular correlations in the original full sky distribution. We also show the robustness of this method by comparing it with the Kolmogorov–Smirnov and χ2 statistical tests.
APA, Harvard, Vancouver, ISO, and other styles
7

Teng, Fei, Yun Lin, Yanping Wang, Wenjie Shen, Shanshan Feng, and Wen Hong. "An Anisotropic Scattering Analysis Method Based on the Statistical Properties of Multi-Angular SAR Images." Remote Sensing 12, no. 13 (July 5, 2020): 2152. http://dx.doi.org/10.3390/rs12132152.

Full text
Abstract:
The scatterings of many targets are aspect dependent, which is called anisotropy. Multi-angular synthetic aperture radar (SAR) is a suitable means of detecting this kind of anisotropic scattering behavior by viewing targets from different aspect angles. First, the statistical properties of anisotropic and isotropic scatterings are studied in this paper. X-band chamber circular SAR data are used. The result shows that isotropic scatterings have stable distributions in different aspect viewing angles while the distributions of anisotropic scatterings are various. Then the statistical properties of single polarization high-resolution multi-angular SAR images are modeled by different distributions. G 0 distribution performs best in all types of areas. An anisotropic scattering analysis method based on the multi-angular statistical properties is proposed. A likelihood ratio test based on G 0 distribution is used to measure the anisotropy. Anisotropic scatterings can be discriminated from isotropic scatterings by thresholding. Besides, the scattering direction can also be estimated by our method. AHH polarization C-band circular SAR data are used to validate our method. The result of using G 0 distribution is compared with the result of using Rayleigh distribution. The result of using G 0 distribution is the better one.
APA, Harvard, Vancouver, ISO, and other styles
8

Chikuse, Yasuko. "The matrix angular central Gaussian distribution." Journal of Multivariate Analysis 33, no. 2 (May 1990): 265–74. http://dx.doi.org/10.1016/0047-259x(90)90050-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KIM, YONG JOO, and MOON HOE CHA. "SECOND-ORDER EIKONAL MODEL ANALYSIS OF16O+16OELASTIC SCATTERING." International Journal of Modern Physics E 10, no. 04n05 (August 2001): 373–86. http://dx.doi.org/10.1142/s0218301301000563.

Full text
Abstract:
We analyze the elastic scattering angular distributions of the16O +16O system at Elab=480 MeV and 704 MeV within the framework of the second-order eikonal model based on Coulomb trajectories of colliding nuclei. The diffractive oscillatory structure observed in the elastic angular distribution could be explained due to the interference between the near- and far-side scattering amplitudes. The presence of a nuclear rainbow in this system is evidenced through a classical deflection function. The effective optical potential is developed from the second-order non-eikonal phase shifts.
APA, Harvard, Vancouver, ISO, and other styles
10

Eifler, Matthias, Boris Brodmann, Barbara Linke, Alexander Müller, and Jörg Seewig. "Comprehensive angular scattering distribution analysis for resource-efficient manufacturing." Procedia CIRP 120 (2023): 386–91. http://dx.doi.org/10.1016/j.procir.2023.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Angular distribution analysis"

1

Marriott, P. "Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source." Thesis, University of Salford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Sanjib. "Numerical Simulations of Galaxy Formation: Angular Momentum Distribution and Phase Space Structure of Galactic Halos." Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1413%5F1%5Fm.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

EL-HAJJE, REFAAT Safety Science Faculty of Science UNSW. "A SIMULTANEOUS MEASUREMENT OF THE ANGULAR DISTRIBUTION, MASS AND KINETIC ENERGY OF 235U AND 232Th FISSION FRAGMENTS." Awarded by:University of New South Wales. School of Safety Science, 2000. http://handle.unsw.edu.au/1959.4/17612.

Full text
Abstract:
Simultaneous measurements of the angular distribution, mass distribution and average total kinetic energy of fission fragments produced by the neutron-induced fission of 235U and 232Th have been made using a gridded ionisation chamber. The neutron energy range used was thermal to 1.9 MeV for 235U and 1.4 to 1.7 MeV for 232Th. The following topics were investigated: the interdependence of the fission fragment angular and mass distribution; the anomalous behaviour of fragment anisotropy for 235U(n,f) at neutron energies En below 150 keV; the possible existence of a third symmetric mass peak for 232Th(n,f); the mass fine structure in 235U(n,f) and 232Th(n,f); and the dependence of the fission fragment average total kinetic energy on the excitation energy of the fissioning nucleus. For this study, mono-energetic neutrons were produced by the and reactions. Four signals produced by the fission chamber were fed into a data acquisition system and processed by a specially modified comprehensive computer program. The results indicate that there is no interdependence between the angular and mass distributions of fragments for 235U(n,f) and for 232Th(n,f). The angular distribution of 235U fission fragments showed an anisotropy of less than one for En below 150 keV. For 232Th, the expected minimum in the anisotropy near En = 1.6 MeV was confirmed. No evidence for a third peak in the mass symmetry region of 232Th(n,f) was observed, within the yield sensitivity limitation of the chamber. Fine structure was observed in the mass yield distributions for 235U(n,f) and 232Th(n,f) at mass locations predicted by theory. The fission fragment average total kinetic energy for 235U(n,f) and 232Th(n,f) showed no significant dependence on the excitation energy of the fissioning nucleus. Possible reasons for some of these results are advanced.
APA, Harvard, Vancouver, ISO, and other styles
4

Kapoor, Tejhas. "Search for new physics via the analysis of angular distributions of B_d → D* ৷ ν and B_s → φ φ decays." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP069.

Full text
Abstract:
Nous étudions la physique au-delà du Modèle Standard en analysant les distributions angulaires de différentes désintégrations de mésons B. La première désintégration que nous considérons est la désintégration semileptonique B_d → D* ৷ ν, où l est un lepton léger (e ou μ). L'arrivée des nouvelles données de QCD sur réseau nous permet d'extraire de nouveaux paramètres de physique, ce qui n'était pas possible avec uniquement les données expérimentales. Ainsi, nous réanalysons les données de Belle ainsi que les données de QCD sur réseau sur les facteurs de forme de B_d → D* pour ajuster simultanément les facteurs de forme, Vcb et le couplage de nouvelle physique de type droit, dont la sensibilité est estimée à ~ 3-5%. De plus, en générant un pseudo-ensemble non groupé, nous effectuons une étude de sensibilité sur des modèles de nouvelle physique plus généraux en utilisant les données de QCD sur réseau. Nous trouvons que les couplages de nouvelle physique de type droit et tensoriel sont contraints à ~ 2-4%, tandis que la sensibilité pour le cas pseudoscalaire est moins bonne (~20-30%). La deuxième désintégration que nous étudions est B_d → D* τ ν. Étant donné que le τ n'est pas détecté directement dans les expériences, nous écrivons d'abord une distribution angulaire mesurable en considérant la désintégration τ → μ ν ν. Comme il n'y a pas de données expérimentales disponibles pour cela, nous effectuons une étude de sensibilité en générant un pseudo-ensemble à partir des résultats d'ajustement de B_d → D* ৷ ν (৷ = e, μ) pour différents modèles de nouvelle physique. Même avec moins d'événements que dans le cas précédent des leptons légers, les sensibilités sont comparables. Enfin, nous passons aux désintégrations hadroniques de B et nous étudions l'analyse angulaire dépendante du temps de la désintégration B_s → φ φ pour rechercher des signaux de nouvelle physique via des observables violant la CP. En utilisant un Hamiltonien effectif contenant des opérateurs chromomagnétiques de type gauche et droit, nous trouvons que la hiérarchie des amplitudes d'hélicité dans ce modèle nous donne un nouveau schéma de recherche expérimentale, différent de celui utilisé par LHCb dans son analyse. Pour illustrer ce nouveau schéma, nous effectuons une étude de sensibilité en utilisant deux pseudo-ensembles générés à partir des valeurs mesurées par LHCb et obtenons une sensibilité des observables violant la CP de l'ordre de 5-7% avec les statistiques actuelles de LHCb. De plus, nous explorons également la relation entre les résultats de B_s → φ φ de LHCb et ceux de B_d → φ K_s de Belle (II), et montrons qu'ensemble, ils peuvent révéler la chiralité de la nouvelle physique dans notre modèle
We investigate the physics beyond the Standard Model by studying the angular distributions of different B meson decays. The first decay we consider is the semileptonic B_d → D* ৷ ν decay, where l is a light lepton (e or μ). The arrival of the new lattice QCD data allows us to extract new physics parameters, which was not possible with only the experimental data. Thus, we reanalyze the Belle data along with the lattice QCD data on B_d → D* form factors to simultaneously fit the form factors, Vcb and right-handed new physics coupling, whose sensitivity is found to be ~ 3-5%. In addition, by generating unbinned pseudo-dataset, we perform a sensitivity study on more general new physics models along with the lattice data. We find the right-handed and tensor new physics couplings to be constrained ~ 2-4%, while it is not so good for pseudoscalar case (~ 20-30%). The second decay we study is B_d → D* τ ν. Since τ is not detected directly in experiments, we first write a measurable angular distribution by considering the τ → μ ν ν decay. As there is no experimental data available for it, we perform a sensitivity study by generating a pseudo-dataset from fit results of B_d → D* ৷ ν (৷ = e, μ) for different new physics models. Even with lesser events than the previous light lepton case, the sensitivities are comparable. Finally, we move on to hadronic B decays, and investigate the time-dependent angular analysis of B_s → φ φ decay to search for new physics signals via CP-violating observables. Using an effective Hamiltonian containing left- and right-handed Chromomagnetic operators, we find that the hierarchy of helicity amplitudes in this model gives us a new scheme of experimental search, which is different from the one LHCb has performed in its analysis. To illustrate this new scheme, we perform a sensitivity study using two pseudo-datasets generated using LHCb's measured values and obtain sensitivity of CP-violating observables to be of the order of 5-7% with the current LHCb statistics. Moreover, we also explore the relationship between LHCb's B_s → φ φ and Belle (II)'s B_d → φ K_s results, and show that together, they can give us the chirality of new physics within our model
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Angular distribution analysis"

1

Baxter, S. M., and C. L. Morfey. Angular Distribution Analysis in Acoustics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82702-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Morfey C., ed. Angular distribution analysis in acoustics. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fillius, Walker. "Pioneer 10 and 11 data analysis": Final report, grant NAG2-153, January 1, 1982 through September 30, 1996. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baxter, Stephen M., and Christopher L. Morfey. Angular Distribution Analysis in Acoustics. Island Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baxter, Stephen M., and Christopher L. Morfey. Angular Distribution Analysis in Acoustics. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

The angular power spectrum of BATSE 3B gamma-ray bursts. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Pioneer 10 and 11 data analysis": Final report, grant NAG2-153, January 1, 1982 through September 30, 1996. [Washington, DC: National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Angular distribution analysis"

1

Baxter, S. M., and C. L. Morfey. "Introduction." In Angular Distribution Analysis in Acoustics, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82702-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baxter, S. M., and C. L. Morfey. "The Free Wave Sound Field." In Angular Distribution Analysis in Acoustics, 4–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82702-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baxter, S. M., and C. L. Morfey. "Inference of the Plane Wave Weighting Function from Spectral Density Measurements." In Angular Distribution Analysis in Acoustics, 26–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82702-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baxter, S. M., and C. L. Morfey. "The Spherical Harmonic Analysis of Free Wave Fields in Practice." In Angular Distribution Analysis in Acoustics, 92–164. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82702-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baxter, S. M., and C. L. Morfey. "Summary." In Angular Distribution Analysis in Acoustics, 165. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82702-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Lo. "Angular Distribution of Meromorphic Functions in the Unit Disk." In Complex Analysis, 239–45. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-9158-5_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ordóñez, Andrés, Piero Decleva, and David Ayuso. "Symmetry-Protected Chiral Sensitivity in Photoionization with Bichromatic Fields." In Springer Proceedings in Physics, 129–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-47938-0_12.

Full text
Abstract:
AbstractWe consider photo-ionization of randomly oriented chiral molecules with bichromatic fields of frequencies $$\omega $$ ω and $$2\omega $$ 2 ω linearly polarized perpendicular to each other. Our symmetry analysis reveals a new type of enantio-sensitive signal in the photoelectron angular distribution which does not change its sign upon reversal of the two-color relative phase, i.e. upon reversal of the instantaneous ellipticity of the field. We provide a numerical estimate of the effect in methyloxirane, and propose an experimental setup for its measurement.
APA, Harvard, Vancouver, ISO, and other styles
8

Bao, S. L., F. Z. Huang, J. Q. Liu, G. Y. Tang, H. Y. Zhou, G. Y. Fan, C. L. Wen, and M. Hua. "Measurement of 7Li(n,n′γ) (478 keV) Inelastic Angular Distribution Derived via the Shape Analysis of the Doppler Shifted γ-Ray Spectrum (DSM) at 14.9 MeV." In Nuclear Data for Science and Technology, 323–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58113-7_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bryngemark, Lene Kristian. "Analysis of Angular Distributions at $$\sqrt{s}= 8 $$ and 13 TeV." In Search for New Phenomena in Dijet Angular Distributions at √s = 8 and 13 TeV, 119–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67346-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Massopust, Peter R. "On angularly perturbed Laplace equations in the unit ball and their distributional boundary values." In Analysis of Divergence, 359–77. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-2236-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Angular distribution analysis"

1

Otgooloi, B., N. Enkhbat, Dugersuren Dashdorj, Undraa Agvaanluvsan, and Gary E. Mitchell. "Systematical Analysis on Angular Distribution of Bremsstrahlung Radiation." In NUCLEAR PHYSICS AND APPLICATIONS: Proceedings of the First Ulaanbaatar Conference on Nuclear Physics and Applications. AIP, 2009. http://dx.doi.org/10.1063/1.3122236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tegmark, Max, Dieter H. Hartmann, Michael S. Briggs, and Charles A. Meegan. "Spherical harmonic analysis of the angular distribution of GRBs." In Gamma-ray bursts: 3rd Huntsville symposium. AIP, 1996. http://dx.doi.org/10.1063/1.51721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoon, Huisu, Geunho Jung, Semin Kim, Chanhyuk Lee, Sangwook Yoo, and Jongha Lee. "Deep-learning-guided independent component analysis for characterizing facial skin melanin and hemoglobin distribution." In Polarized Light and Optical Angular Momentum for Biomedical Diagnostics 2024, edited by Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson, and Tatiana Novikova. SPIE, 2024. http://dx.doi.org/10.1117/12.3002337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yang, Yuling Chen, Zi Ouyang, and Alison Lennon. "General Framework for Light Trapping Analysis Using Angular Distribution Matrices." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/pv.2014.ptu2c.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuzmin, Audrey, Xiang Zhang, Jonathan Finche, Micha Feigin, Brian W. Anthony, and Victor Lempitsky. "Fast low-cost single element ultrasound reflectivity tomography using angular distribution analysis." In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dong, L. J., J. Zhou, Xianchun Zhou, and Hisakazu Kikuchi. "Correlation and Capacity Analysis of MIMO with UCA and Laplacian Angular Distribution." In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2008. http://dx.doi.org/10.1109/wicom.2008.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lopez, G. J., J. D. Restrepo, J. Castano, I. A. Isaac, H. A. Cardona, and J. W. Gonzalez. "New indices for the angular analysis of the electrical power systems based on PMU measurements." In 2012 IEEE/PES Transmission & Distribution Conference & Exposition: Latin America. IEEE, 2012. http://dx.doi.org/10.1109/tdc-la.2012.6319126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Yanying, Wei Lv, Jingchao Zhang, Minjuan Jing, Jie Li, and Xiaowei Guan. "Orbital angular momentum density distribution and its simulation analysis of Gauss vortex beam." In International Conference on Optical Instrumentation and Technology, edited by Xiaocong Yuan, Yinmei Li, Arthur Chiou, Min Gu, Dennis Matthews, and Colin Sheppard. SPIE, 2009. http://dx.doi.org/10.1117/12.837963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sunaba, Yuji, and Keiji Sasaki. "Analysis of angular momentum transfer from photon to multimer nanoantenna." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctua16d_02.

Full text
Abstract:
We numerically analyzed the localized plasmonic field. In this paper, we show the mechanism of angular momentum transfer from photon to the plasmonic nanoantenna in terms of nano scale energy flux and electric field distribution.
APA, Harvard, Vancouver, ISO, and other styles
10

Celik, I. C. "Gamma-ray angular distribution analysis of transfer reaction data for excited states of 26Na." In TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography