Contents
Academic literature on the topic 'Angle Resolved - XRF'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Angle Resolved - XRF.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Angle Resolved - XRF"
Szwedowski-Rammert, Veronika, Jonas Baumann, Christopher Schlesiger, Ulrich Waldschläger, Armin Gross, Birgit Kanngießer, and Ioanna Mantouvalou. "Laboratory based GIXRF and GEXRF spectrometers for multilayer structure investigations." Journal of Analytical Atomic Spectrometry 34, no. 5 (2019): 922–29. http://dx.doi.org/10.1039/c8ja00427g.
Full textEbel, Horst, Maria F. Ebel, Robert Svagera, Norbert Wirth, Roland Kaitna, and Hartinut Schandl. "Xrf With Tunable Monochromatic Excitation and Variation of the Incidence Angle." Advances in X-ray Analysis 37 (1993): 619–27. http://dx.doi.org/10.1154/s0376030800016177.
Full textCarpenter, D. A., and M. A. Taylor. "Fast, High-Resolution X-ray Microfluorescence Imaging." Advances in X-ray Analysis 34 (1990): 217–21. http://dx.doi.org/10.1154/s0376030800014506.
Full textReis, M. A., P. C. Chaves, V. Corregidor, N. P. Barradas, E. Alves, F. Dimroth, and A. W. Bett. "Detection angle resolved PIXE and the equivalent depth concept for thin film characterization." X-Ray Spectrometry 34, no. 4 (2005): 372–75. http://dx.doi.org/10.1002/xrs.841.
Full textLIU, SHUANG, CHARLES M. FALCO, and ZHIYONG ZHONG. "STUDY OF THE MICRO-STRUCTURE OF PtxSi ULTRA-THIN FILM." International Journal of Modern Physics B 25, no. 21 (August 20, 2011): 2925–29. http://dx.doi.org/10.1142/s0217979211100497.
Full textPerrillat, J. P. "Kinetics of high-pressure mineral phase transformations using in situ time-resolved X-ray diffraction in the Paris-Edinburgh cell: a practical guide for data acquisition and treatment." Mineralogical Magazine 72, no. 2 (April 2008): 683–95. http://dx.doi.org/10.1180/minmag.2008.072.2.683.
Full textBalashova, Elena, Andrey Zolotarev, Aleksandr A. Levin, Valery Davydov, Sergey Pavlov, Alexander Smirnov, Anatoly Starukhin, et al. "Crystal Structure, Raman, FTIR, UV-Vis Absorption, Photoluminescence Spectroscopy, TG–DSC and Dielectric Properties of New Semiorganic Crystals of 2-Methylbenzimidazolium Perchlorate." Materials 16, no. 5 (February 28, 2023): 1994. http://dx.doi.org/10.3390/ma16051994.
Full textKumar, Arun, Seyed Ariana Mirshokraee, Alessio Lamperti, Matteo Cantoni, Massimo Longo, and Claudia Wiemer. "Interface Analysis of MOCVD Grown GeTe/Sb2Te3 and Ge-Rich Ge-Sb-Te/Sb2Te3 Core-Shell Nanowires." Nanomaterials 12, no. 10 (May 10, 2022): 1623. http://dx.doi.org/10.3390/nano12101623.
Full textZhu, Rong, Yan Jun Wu, Jing Tao Wang, and Ke Cheng Lu. "Mechanical Anisotropy of Extruded Mg-10Gd-2Y-0.5Zr Alloy." Advanced Materials Research 320 (August 2011): 222–27. http://dx.doi.org/10.4028/www.scientific.net/amr.320.222.
Full textOverduin, Michael, and Mansoore Esmaili. "Structures and Interactions of Transmembrane Targets in Native Nanodiscs." SLAS DISCOVERY: Advancing the Science of Drug Discovery 24, no. 10 (June 26, 2019): 943–52. http://dx.doi.org/10.1177/2472555219857691.
Full textDissertations / Theses on the topic "Angle Resolved - XRF"
ORSILLI, JACOPO. "AR-XRF Techniques for the Analysis of Cultural Heritage layered samples." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/403656.
Full textIn the last decades scientific analysis has been deeply employed in the world of cultural heritage, thus, archaeologists and art historians are no more the sole front line workers of this field. Scientists, and science, have joined the team, giving new inputs and tools for the study of historical and archaeological samples, allowing to explore new paths and receive new answers, collecting information otherwise inaccessible on human history and culture. New discoveries have been made on the trade networks, migrations and on the technologies employed; besides, science also gave precious inputs on conservation and restoring procedures, allowing to better preserve fragile and sensitive artifacts. In my three years as a PhD student, I worked on the application of X-Ray Fluorescence (XRF) analysis to analyze ceramic and metal samples. XRF is a non-invasive technique that retrieves the elemental composition of a sample. In particular the aim of my PhD project is to obtain information on the layered structure of an unknown sample, distinguishing and characterizing the different layers. Indeed, artifacts usually concerning the field of Cultural Heritage present a layered structure; sometimes it is due to the presence of alteration layers, other times, instead, the objects are made of different layers from the principle, for example in the case of a glazed ceramic or of a painting. The possibility to get this information in a non-invasive way will give the possibility to analyze objects that are nowadays unattainable, because they cannot be sampled. My project has, thus, focused on the analysis of three kinds of samples employing angular dependent techniques (Angle Resolved-XRF, Grazing Emission-XRF}, Grazing Incidence-XRF}); indeed, the fluorescence signal of an analyte depends on its position inside the sample, on the sample composition and on the geometry of analysis. The chosen specimens allowed to verify the feasibility of this analytical method in an increasing complexity: a gilded laboratory-made sample, a ceramic Majolica sherd, and an Italian renaissance lustered fragment. The first two samples have been analyzed through AR-XRF where the measure is performed while tilting the sample, one spectrum is collected for each tilting angle. In the case of the gilded sample the measured profiles have been compared directly with the calculated profiles employing the Fundamental Parameters method. For the ceramic Majolica sample, instead, we studied the ratio of the profiles, as the sample surface is not flat. In the study of the metallic samples, made of gilded copper plate, we could infer the thickness of the top-layer. While in the case of the Majolica sample, we studied the different decorations, evaluating the limits of the technique, in particular in the case that the top-layer composition is similar to the underling layer, or in the case of a long-range diffusion. Instead, in the case of two well-separate layers we could retrieve information on both the composition and the thickness of the layer. Finally, the study of the lustered ceramic has been carried out at the XRF beamline of the Elettra Synchrotron of Trieste, employing grazing techniques. In this case we could only highlight and distinguish the presence of the silver nanoparticles in the luster nanolayer, which is the peculiar feature of this kind of artifacts. However, there are still many questions left, especially concerning the data analysis and the alignment of the sample, which requires more investigations.