Academic literature on the topic 'And shrinkage estimator (SE)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'And shrinkage estimator (SE).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "And shrinkage estimator (SE)"
Zakerzadeh, Hojatollah, Ali Akbar Jafari, and Mahdieh Karimi. "Optimal Shrinkage Estimations for the Parameters of Exponential Distribution Based on Record Values." Revista Colombiana de Estadística 39, no. 1 (January 18, 2016): 33–44. http://dx.doi.org/10.15446/rce.v39n1.55137.
Full textSaleh, A. K. Md Ehsanes, M. Arashi, M. Norouzirad, and B. M. Goalm Kibria. "On shrinkage and selection: ANOVA model." Journal of Statistical Research 51, no. 2 (February 1, 2018): 165–91. http://dx.doi.org/10.47302/jsr.2017510205.
Full textHansen, Bruce E. "SHRINKAGE EFFICIENCY BOUNDS." Econometric Theory 31, no. 4 (October 2, 2014): 860–79. http://dx.doi.org/10.1017/s0266466614000693.
Full textAfshari, Mahmoud, and Hamid Karamikabir. "The Location Parameter Estimation of Spherically Distributions with Known Covariance Matrices." Statistics, Optimization & Information Computing 8, no. 2 (February 20, 2020): 499–506. http://dx.doi.org/10.19139/soic-2310-5070-710.
Full textPrakash, Gyan. "Some Estimators for the Pareto Distribution." Journal of Scientific Research 1, no. 2 (April 22, 2009): 236–47. http://dx.doi.org/10.3329/jsr.v1i2.1642.
Full textKambo, N. S., B. R. Fanda, and Z. A. Al-Hemyari. "On huntseerger type shrinkage estimator." Communications in Statistics - Theory and Methods 21, no. 3 (January 1992): 823–41. http://dx.doi.org/10.1080/03610929208830817.
Full textHassan, N. J., J. Mahdi Hadad, and A. Hawad Nasar. "Bayesian Shrinkage Estimator of Burr XII Distribution." International Journal of Mathematics and Mathematical Sciences 2020 (June 22, 2020): 1–6. http://dx.doi.org/10.1155/2020/7953098.
Full textOKHRIN, YAREMA, and WOLFGANG SCHMID. "ESTIMATION OF OPTIMAL PORTFOLIO WEIGHTS." International Journal of Theoretical and Applied Finance 11, no. 03 (May 2008): 249–76. http://dx.doi.org/10.1142/s0219024908004798.
Full textCarriero, Andrea, George Kapetanios, and Massilimiano Marcellino. "A Shrinkage Instrumental Variable Estimator for Large Datasets." Articles 91, no. 1-2 (May 20, 2016): 67–87. http://dx.doi.org/10.7202/1036914ar.
Full textAl-Zahrani, Bander. "On the Estimation of Reliability of Weighted Weibull Distribution: A Comparative Study." International Journal of Statistics and Probability 5, no. 4 (June 11, 2016): 1. http://dx.doi.org/10.5539/ijsp.v5n4p1.
Full textDissertations / Theses on the topic "And shrinkage estimator (SE)"
Hoque, Zahirul. "Improved estimation for linear models under different loss functions." University of Southern Queensland, Faculty of Sciences, 2004. http://eprints.usq.edu.au/archive/00001438/.
Full textMahdi, Tahir Naweed. "Shrinkage estimation in prediction." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq30515.pdf.
Full textKim, Tae-Hwan. "The shrinkage least absolute deviation estimator in large samples and its application to the Treynor-Black model /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9901433.
Full textChan, Tsz-hin, and 陳子軒. "Hybrid bootstrap procedures for shrinkage-type estimators." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48521826.
Full textpublished_or_final_version
Statistics and Actuarial Science
Master
Master of Philosophy
Remenyi, Norbert. "Contributions to Bayesian wavelet shrinkage." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45898.
Full textVumbukani, Bokang C. "Comparison of ridge and other shrinkage estimation techniques." Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/4364.
Full textShrinkage estimation is an increasingly popular class of biased parameter estimation techniques, vital when the columns of the matrix of independent variables X exhibit dependencies or near dependencies. These dependencies often lead to serious problems in least squares estimation: inflated variances and mean squared errors of estimates unstable coefficients, imprecision and improper estimation. Shrinkage methods allow for a little bias and at the same time introduce smaller mean squared error and variances for the biased estimators, compared to those of unbiased estimators. However, shrinkage methods are based on the shrinkage factor, of which estimation depends on the unknown values, often computed from the OLS solution. We argue that the instability of OLS estimates may have an adverse effect on performance of shrinkage estimators. Hence a new method for estimating the shrinkage factors is proposed and applied on ridge and generalized ridge regression. We propose that the new shrinkage factors should be based on the principal components instead of the unstable OLS estimates.
Mergel, Victor. "Divergence loss for shrinkage estimation, prediction and prior selection." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0015678.
Full textUllah, Bashir. "Some contributions to positive part shrinkage estimation in various models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ30263.pdf.
Full textTang, Tianyuan, and 唐田园. "On uniform consistency of confidence regions based on shrinkage-type estimators." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47152035.
Full textSerra, Puertas Jorge. "Shrinkage corrections of sample linear estimators in the small sample size regime." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/404386.
Full textEstamos viviendo en una era en la que la dimensión de los datos, recogidos por sensores de bajo precio, está creciendo a un ritmo elevado, pero la disponibilidad de muestras estadísticamente independientes de los datos es limitada. Así, los métodos clásicos de inferencia estadística sufren una degradación importante, ya que asumen un tamaño muestral grande comparado con la dimensión de los datos. En este contexto, esta tesis se centra en un problema popular en procesado de señal, la estimación lineal de un parámetro observado mediante un modelo lineal. Por ejemplo, la conformación de haz en procesado de agrupaciones de antenas, donde un filtro enfoca el haz hacia una dirección para obtener la señal asociada a una fuente de interés (SOI). El diseño de los filtros óptimos se basa en optimizar una medida de prestación como el error cuadrático medio (MSE) o la relación señal a ruido más interferente (SINR). Cuando hay información sobre los momentos de segundo orden de la SOI, la optimización del MSE lleva a obtener el estimador lineal de mínimo error cuadrático medio (LMMSE). Cuando esa información no está disponible, se puede forzar la restricción de no distorsión de la SOI en la optimización del MSE, que es equivalente a maximizar la SINR. Esto conduce al estimador de Capon (MVDR). El LMMSE y MVDR son óptimos, pero no son realizables, ya que dependen de la inversa de la matriz de correlación de los datos, que no es conocida. El procedimiento habitual para solventar este problema es sustituirla por la inversa de la correlación muestral (SCM), esto lleva al LMMSE y MVDR muestral. Este procedimiento es óptimo cuando el tamaño muestral tiende a infinito y la dimensión de los datos es fija. En la práctica este tamaño muestral elevado no suele producirse y los métodos LMMSE y MVDR muestrales sufren una degradación importante en este régimen de tamaño muestral pequeño. Éste se puede deber a periodos cortos de estacionariedad estadística o a sistemas cuya dimensión sea elevada. El objetivo de esta tesis es proponer correcciones de los estimadores LMMSE y MVDR muestrales que permitan combatir su degradación en el régimen de tamaño muestral pequeño. Para ello se usan dos herramientas potentes, la estimación shrinkage y la teoría de matrices aleatorias (RMT). La estimación shrinkage introduce una estructura de los estimadores que mejora los estimadores muestrales mediante la optimización del compromiso entre media y varianza del estimador. La optimización directa de los métodos shrinkage lleva a métodos no realizables. Por eso luego se propone obtener una estimación consistente de ellos en el régimen asintótico en el que tanto la dimensión de los datos como el tamaño muestral tienden a infinito, pero manteniendo un ratio constante. Es decir RMT se usa para obtener estimaciones consistentes en un régimen asintótico que trata naturalmente las situaciones de tamaño muestral pequeño. Esta metodología basada en RMT no requiere suposiciones sobre el tipo de distribución de los datos. Los filtros propuestos tratan directamente la estimación de la SOI, esto lleva a ganancias de prestaciones en comparación a otros métodos basados en optimizar una métrica relacionada con la estimación de la covarianza de los datos o regularizaciones ad hoc de la SCM. La estructura de filtro propuesta es más general que otros métodos que también tratan directamente la estimación de la SOI y que se basan en un shrinkage de la SCM. Contemplamos correcciones de la inversa de la SCM y los métodos del estado del arte son casos particulares. Esto lleva a ganancias de prestaciones que son notables cuando hay una incertidumbre en el vector de firma asociado a la SOI. Esa incertidumbre y el tamaño muestral pequeño son las fuentes de degradación de los LMMSE y MVDR muestrales. Así, en la última parte de la tesis, a diferencia de métodos propuestos previamente en la tesis y en la literatura, se propone un filtro que trata de forma directa ambas fuentes de degradación.
Books on the topic "And shrinkage estimator (SE)"
Fourdrinier, Dominique, William E. Strawderman, and Martin T. Wells. Shrinkage Estimation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02185-6.
Full textTsukuma, Hisayuki, and Tatsuya Kubokawa. Shrinkage Estimation for Mean and Covariance Matrices. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1596-5.
Full textSaleh, A. K. Md Ehsanes. On shrinkage least squares estimation in a parallelism problem. Ottawa, Ont., Canada: Dept. of Mathematics and Statistics, Carleton University, 1985.
Find full textImproving efficiency by shrinkage: The James-Stein and ridge regression estimators. New York: Marcel Dekker, 1998.
Find full textTrovant, Mike. A numerical model for the estimation of volumetric shrinkage formation in metals casting. Ottawa: National Library of Canada, 1994.
Find full textMisiewicz, John M. Extension of aggregation and shrinkage techniques used in the estimation of Marine Corps Officer attrition rates. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textRead, Robert R. The use of shrinkage techniques in the estimation of attrition rates for large scale manpower models. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textDickinson, Charles R. Refinement and extension of shrinkage techniques in loss rate estimation of Marine Corps officer manpower models. Monterey, California: Naval Postgraduate School, 1988.
Find full textOttaviano, Victor B. National mechanical estimator. 2nd ed. Lilburn, GA: Fairmont Press, 1996.
Find full textKoenker, Roger W. On Boscovich's estimator. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1985.
Find full textBook chapters on the topic "And shrinkage estimator (SE)"
Chaturvedi, Anoop, Suchita Kesarwani, and Ram Chandra. "Simultaneous Prediction Based on Shrinkage Estimator." In Recent Advances in Linear Models and Related Areas, 181–204. Heidelberg: Physica-Verlag HD, 2008. http://dx.doi.org/10.1007/978-3-7908-2064-5_10.
Full textBondar, James V. "How Much Improvement can a Shrinkage Estimator Give?" In Advances in the Statistical Sciences: Foundations of Statistical Inference, 93–103. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4788-7_9.
Full textJurečková, Jana, and Xavier Milhaud. "Shrinkage of Maximum Likelihood Estimator of Multivariate Location." In Asymptotic Statistics, 303–18. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-57984-4_25.
Full textAhmed, S. Ejaz, T. Quadir, and S. Nkurunziza. "Optimal Shrinkage Estimation." In International Encyclopedia of Statistical Science, 1025–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_430.
Full textKeener, Robert W. "Empirical Bayes and Shrinkage Estimators." In Theoretical Statistics, 205–18. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-93839-4_11.
Full textRudaś, Krzysztof, and Szymon Jaroszewicz. "Shrinkage Estimators for Uplift Regression." In Machine Learning and Knowledge Discovery in Databases, 607–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46150-8_36.
Full textAhmed, S. Ejaz, S. Chitsaz, and S. Fallahpour. "Optimal Shrinkage Preliminary Test Estimation." In International Encyclopedia of Statistical Science, 1028–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_431.
Full textJudge, George G. "Shrinkage-Biased Estimation in Econometrics." In The New Palgrave Dictionary of Economics, 1–8. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_1923-1.
Full textJudge, George G. "Shrinkage-Biased Estimation in Econometrics." In The New Palgrave Dictionary of Economics, 12286–92. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_1923.
Full textLancewicki, Tomer. "Kernel Matrix Regularization via Shrinkage Estimation." In Advances in Intelligent Systems and Computing, 1292–305. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01177-2_94.
Full textConference papers on the topic "And shrinkage estimator (SE)"
Agarwal, Deepak K. "Shrinkage estimator generalizations of Proximal Support Vector Machines." In the eighth ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/775047.775073.
Full textRucci, Alessio, Stefano Tebaldini, and Fabio Rocca. "SKP-shrinkage estimator for SAR multi-baselines applications." In 2010 IEEE Radar Conference. IEEE, 2010. http://dx.doi.org/10.1109/radar.2010.5494531.
Full textPascal, Frederic, and Yacine Chitour. "Shrinkage covariance matrix estimator applied to STAP detection." In 2014 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2014. http://dx.doi.org/10.1109/ssp.2014.6884641.
Full textShenoy, H. Vikram, A. P. Vinod, and Cuntai Guan. "Shrinkage estimator based regularization for EEG motor imagery classification." In 2015 10th International Conference on Information, Communications and Signal Processing (ICICS). IEEE, 2015. http://dx.doi.org/10.1109/icics.2015.7459836.
Full textBreloy, Arnaud, Esa Ollila, and Frederic Pascal. "Spectral Shrinkage of Tyler's $M$-Estimator of Covariance Matrix." In 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2019. http://dx.doi.org/10.1109/camsap45676.2019.9022652.
Full textSrinath, K. Pavan, and Ramji Venkataramanan. "Cluster-seeking shrinkage estimators." In 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016. http://dx.doi.org/10.1109/isit.2016.7541418.
Full textDamasceno, Filipe F. R., Marcelo B. A. Veras, Diego P. P. Mesquita, Joao P. P. Gomes, and Carlos E. F. de Brito. "Shrinkage k-Means: A Clustering Algorithm Based on the James-Stein Estimator." In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2016. http://dx.doi.org/10.1109/bracis.2016.084.
Full textKontos, Kevin, and Gianluca Bontempi. "An improved shrinkage estimator to infer regulatory networks with Gaussian graphical models." In the 2009 ACM symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1529282.1529448.
Full textChakraborty, Rudrasis, Yifei Xing, Minxuan Duan, and Stella X. Yu. "C-SURE: Shrinkage Estimator and Prototype Classifier for Complex-Valued Deep Learning." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020. http://dx.doi.org/10.1109/cvprw50498.2020.00048.
Full textDimmery, Drew, Eytan Bakshy, and Jasjeet Sekhon. "Shrinkage Estimators in Online Experiments." In KDD '19: The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3292500.3330771.
Full textReports on the topic "And shrinkage estimator (SE)"
Cheng, Xu, Zhipeng Liao, and Frank Schorfheide. Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities. Cambridge, MA: National Bureau of Economic Research, January 2014. http://dx.doi.org/10.3386/w19792.
Full textGao, Hong-ye. Choice of Thresholds for Wavelet Shrinkage Estimate of the Spectrum,. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada290168.
Full textWalsh, Stephen J., and Mark F. Tardiff. Exploration of regularized covariance estimates with analytical shrinkage intensity for producing invertible covariance matrices in high dimensional hyperspectral data. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/1171912.
Full textDoersksen, R. E., and David L. Malmquist. Weld Shrinkage Study. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada457049.
Full textSpencer, J. Brock. Cure shrinkage in casting resins. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1170250.
Full textPoston, Wendy, George Rogers, Carey Priebe, and Jeffrey Solka. Resistive Grid Kernel Estimator (RGKE). Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada253520.
Full textPadgett, W. J. A Nonparametric Quantile Estimator: Computation. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada169939.
Full textLeung, Chuk L., Daniel A. Scola, Christopher D. Simone, and Parag Katijar. Development of Processable, Low Cure Shrinkage Adhesives. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada411520.
Full textLio, Y. L., and W. J. Padgett. A Generalized Quantile Estimator under Censoring. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada188280.
Full textBrazelton, Sandra. Interactive Time Recursive State Estimator Program. Fort Belvoir, VA: Defense Technical Information Center, May 1985. http://dx.doi.org/10.21236/ada189441.
Full text