Academic literature on the topic 'Anatomical simulator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anatomical simulator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anatomical simulator"

1

Corte, Giuliano M., Melanie Humpenöder, Marcel Pfützner, Roswitha Merle, Mechthild Wiegard, Katharina Hohlbaum, Ken Richardson, Christa Thöne-Reineke, and Johanna Plendl. "Anatomical Evaluation of Rat and Mouse Simulators for Laboratory Animal Science Courses." Animals 11, no. 12 (December 1, 2021): 3432. http://dx.doi.org/10.3390/ani11123432.

Full text
Abstract:
According to the European Directive 63/2010/EU, education and training involving living rats and mice are classified as an animal experiment and demands the implementation of the 3Rs. Therefore, as a method of refinement, rat and mouse simulators were developed to serve as an initial training device for various techniques, prior to working on living animals. Nevertheless, little is known about the implementation, anatomical correctness, learning efficiency and practical suitability of these simulators. With this in mind, a collaborative research project called “SimulRATor” was initiated to systematically evaluate the existing rat and mouse simulators in a multi-perspective approach. The objective of the study presented here was to identify the anatomical strengths and weaknesses of the available rat and mouse simulators and to determine anatomical requirements for a new anatomically correct rat simulator, specifically adapted to the needs of Laboratory Animal Science (LAS) training courses. Consequently, experts of Veterinary Anatomy and LAS evaluated the anatomy of all currently available rat and mouse simulators. The evaluation showed that compared to the anatomy of living rats and mice, the tails were perceived as the most anatomically realistic body part, followed by the general exterior and the limbs. The heads were rated as the least favored body part.
APA, Harvard, Vancouver, ISO, and other styles
2

Coelho, Giselle, Samuel Zymberg, Marcos Lyra, Nelci Zanon, and Benjamin Warf. "New anatomical simulator for pediatric neuroendoscopic practice." Child's Nervous System 31, no. 2 (September 3, 2014): 213–19. http://dx.doi.org/10.1007/s00381-014-2538-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

White, Eoin, Muireann McMahon, Michael Walsh, J. Calvin Coffey, and Leonard O’Sullivan. "Creating Biofidelic Phantom Anatomies of the Colorectal Region for Innovations in Colorectal Surgery." Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 3, no. 1 (June 2014): 277–82. http://dx.doi.org/10.1177/2327857914031045.

Full text
Abstract:
The aim of this research was to develop a replicated colorectal region for use in laparoscopic instrument innovation.Testing of both surgical skills and laparoscopic surgical instruments takes place in a controlled lab setting. Cadaverous tissue or laparoscopic simulators are the tools of choice for skill testing.However, in the instance of colorectal surgery, porcine intestines remain the gold standard for laparoscopic testing(Lamata et al. 2004). There exists data in current literature which discuss the use of anatomical simulators (also known as simulator boxes) for both researching surgical methods, and testing laparoscopic instruments. There is little focus in the literature on the materials used to create surrogate environments which mimic those of the real world. Simulator boxes exist, and are of high fidelity, but can be quite cumbersome, with some being left in storage areas indefinitely, with some remaining inaccessible for many centers around the world. There are also many peripheral devices which need to accompany these simulators, such as laparoscopes and external monitoring equipment for recording and review. As they are highly specialized pieces of research equipment, in the majority of cases, they are not designed to be portable or readily reconfigurable. These limitations make high end laparoscopic simulators inappropriate choices for early stage HFE (Human Factors Engineering) studies.The authors propose the creation of a laparoscopic simulator which contains anatomically accurate, 3D printed colorectal sections for use in both surgical training and instrument innovation. The colon is modeled from high quality CT data in DICOM format, using the Material Mimics Innovation Suite (Materialise, 2013). By creating virtual models of the internal anatomical structure of the colorectal region, it allows for a more accurate depiction of the anatomy encountered in a surgical setting. A maximum level of realism is required for a simulator to be effective(Lamata et al. 2004).The future application of this work lies in the validation of the 3D printed anatomy which will lead to innovation of new instruments or approaches to laparoscopic surgery.
APA, Harvard, Vancouver, ISO, and other styles
4

Venne, Gabriel, Greg Esau, Ryan T. Bicknell, and J. Tim Bryant. "3D Printed Anatomy-Specific Fixture for Consistent Glenoid Cavity Position in Shoulder Simulator." Journal of Healthcare Engineering 2018 (October 9, 2018): 1–6. http://dx.doi.org/10.1155/2018/2572730.

Full text
Abstract:
Purpose. Fixation methods for consistent anatomical structure positioning in biomechanical testing can be challenging. Image-based 3D printing is an attractive method for fabrication of biomechanical supports of anatomical structure due to its ability to precisely locate anatomical features with respect to the loading system. Method. A case study is presented to provide a design guide for fixation block fabrication. The anatomy of interest was CT scanned and reconstructed in 3D. The model was imported into commercially available CAD software and modified into a solid object and to create the fixture block. The CAD fixture block is standardized such that anatomical features are always in the same position for the testing system by subtracting the anatomy from a base fixture block. Results. This method allowed a strong immobilization of anatomical specimens and a controlled and consistent positioning feature with respect to the testing system. Furthermore, the fixture block can be easily modified and adapted to anatomical structures of interest using CAD software. Conclusion. This approach allows preservation of the bony anatomy integrity and provides a repeatable and consistent anatomical positioning with respect to the testing system. It can be adapted for other anatomical structures in various other biomechanical settings.
APA, Harvard, Vancouver, ISO, and other styles
5

Makic, Mary Beth Flynn, Karen Lovett, and M. Fareedul Azam. "Placement of an Esophageal Temperature Probe by Nurses." AACN Advanced Critical Care 23, no. 1 (January 1, 2012): 24–31. http://dx.doi.org/10.4037/nci.0b013e31823324f3.

Full text
Abstract:
Background Current guidelines support therapeutic hypothermia after cardiac arrest. An esophageal temperature probe (ETP) provides a core temperature assessment; however, accurate placement is necessary. Objectives To demonstrate accurate placement of an ETP and evaluate the effectiveness of high-fidelity simulation with anatomic imaging. Methods Registered nurses (RNs) were educated using 3-dimensional, high-fidelity simulation with VH Dissector technology (Touch of Life Technologies, Aurora, Colorado) to demonstrate ETP placement. The RNs provided survey responses on the effectiveness of simulation before and after using the simulator. Results Thirty-two RNs participated and did not demonstrate difficulties with the skill; however, 53.1% required more than 1 attempt for accurate placement in the distal esophagus. Survey results found that participants had increased confidence and high satisfaction with simulation and 3-dimensional imaging (P < .001). Conclusions Literature is lacking to guide ETP placement. In this study, RNs overestimated the depth for ETP insertion. Accurate temperature readings are highly dependent on accurate anatomical location placement. Providing skill competency training that incorporated anatomical imaging technology enhanced RNs’ awareness for effective skill acquisition.
APA, Harvard, Vancouver, ISO, and other styles
6

Tai, Bruce L., Deborah Rooney, Francesca Stephenson, Peng-Siang Liao, Oren Sagher, Albert J. Shih, and Luis E. Savastano. "Development of a 3D-printed external ventricular drain placement simulator: technical note." Journal of Neurosurgery 123, no. 4 (October 2015): 1070–76. http://dx.doi.org/10.3171/2014.12.jns141867.

Full text
Abstract:
In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.
APA, Harvard, Vancouver, ISO, and other styles
7

Robberecht, L., F. Chai, M. Dehurtevent, P. Marchandise, T. Bécavin, J. C. Hornez, and E. Deveaux. "A novel anatomical ceramic root canal simulator for endodontic training." European Journal of Dental Education 21, no. 4 (May 5, 2016): e1-e6. http://dx.doi.org/10.1111/eje.12207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Breimer, Gerben E., Vivek Bodani, Thomas Looi, and James M. Drake. "Design and evaluation of a new synthetic brain simulator for endoscopic third ventriculostomy." Journal of Neurosurgery: Pediatrics 15, no. 1 (January 2015): 82–88. http://dx.doi.org/10.3171/2014.9.peds1447.

Full text
Abstract:
OBJECT Endoscopic third ventriculostomy (ETV) is an effective but technically demanding procedure with significant risk. Current simulators, including human cadavers, animal models, and virtual reality systems, are expensive, relatively inaccessible, and can lack realistic sensory feedback. The purpose of this study was to construct a realistic, low-cost, reusable brain simulator for ETV and evaluate its fidelity. METHODS A brain silicone replica mimicking normal mechanical properties of a 4-month-old child with hydrocephalus was constructed, encased in the replicated skull, and immersed in water. Realistic intraventricular landmarks included the choroid plexus, veins, mammillary bodies, infundibular recess, and basilar artery. The thinned-out third ventricle floor, which dissects appropriately, is quickly replaceable. Standard neuroendoscopic equipment including irrigation is used. Bleeding scenarios are also incorporated. A total of 16 neurosurgical trainees (Postgraduate Years 1–6) and 9 pediatric and adult neurosurgeons tested the simulator. All participants filled out questionnaires (5-point Likert-type items) to rate the simulator for face and content validity. RESULTS The simulator is portable, robust, and sets up in minutes. More than 95% of participants agreed or strongly agreed that the simulator's anatomical features, tissue properties, and bleeding scenarios were a realistic representation of that seen during an ETV. Participants stated that the simulator helped develop the required hand-eye coordination and camera skills, and the training exercise was valuable. CONCLUSIONS A low-cost, reusable, silicone-based ETV simulator realistically represents the surgical procedure to trainees and neurosurgeons. It can help them develop the technical and cognitive skills for ETV including dealing with complications.
APA, Harvard, Vancouver, ISO, and other styles
9

Panova, I. A., E. A. Rokotyanskaya, L. A. Sytova, and L. M. Salakhova. "Effectiveness of Using a Uterine Trainer for Teaching Surgical Hemostasis Skills." Virtual Technologies in Medicine 1, no. 3 (September 17, 2021): 161–62. http://dx.doi.org/10.46594/2687-0037_2021_3_1360.

Full text
Abstract:
The use of the uterus simulator for teaching the surgical skills of performing surgery in case of ingrown placenta and surgical hemostasis in postpartum hemorrhage (patent No. 198996), which is a model of the uterus with anatomical landmarks and simulates a severe complication of pregnancy — ingrowth of the placenta, allows to increase the self-esteem of obstetricians-gynecologists in performing skills of surgical hemostasis.
APA, Harvard, Vancouver, ISO, and other styles
10

Lindquist, Nathan R., Matthew Leach, Matthew C. Simpson, and Jastin L. Antisdel. "Evaluating Simulator-Based Teaching Methods for Endoscopic Sinus Surgery." Ear, Nose & Throat Journal 98, no. 8 (April 24, 2019): 490–95. http://dx.doi.org/10.1177/0145561319844742.

Full text
Abstract:
A multitude of simulator systems for endoscopic sinus surgery (ESS) are available as training tools for residents preparing to enter the operating room. These include human cadavers, virtual reality, realistic anatomic models, and low-fidelity gelatin molds. While these models have been validated and evaluated as independent tools for surgical trainees, no study has performed direct comparison of their outcomes. To address this deficiency, we aimed to evaluate the utility of high-fidelity and low-fidelity trainers as compared to a traditional control (no simulator exposure) for novice trainees acquiring basic ESS skills. Thirty-four first-year medical students were randomized to 3 groups and taught basic sinus anatomy and instrumentation. Two groups received training with either the high-fidelity or low-fidelity trainer, while 1 group served as control. These groups were then tested with cadaveric specimens. These sessions were recorded and graded by an expert. There was no statistical difference in performance between the 3 study groups with regard to identification of anatomy, endoscopic competency, or completion of basic tasks. When the high-fidelity and low-fidelity arms were grouped into a single “trained” cohort, they demonstrated significantly improved time to completion for basic anatomy ( P = .043) and total time ( P = .041). This is the first study to perform a direct comparison of performance between high-fidelity and low-fidelity ESS simulators and controls. Although we found no difference in performance of novice trainees with regard to basic anatomical identification or procedural tasks associated with ESS, the use of ESS simulators may improve time to completion.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Anatomical simulator"

1

Dicko, Ali Hamadi. "Construction of musculoskeletal systems for anatomical simulation." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM084/document.

Full text
Abstract:
L'usage d'humains virtuels s'est démocratisé à de nombreuses activités ces dernières années.Au-delà de la chirurgie virtuelle, les corps virtuels sont de plus en plus utilisés pour concevoir des dispositifs médicaux, des véhicules et des outils de notre quotidien plus généralement.Ils se sont avérés être également d'extraordinaires supports à l'apprentissage de l'anatomie.De récents films (Avatar, Le seigneur des anneaux, etc) ont démontré que l'anatomie et la biomécanique peuvent être utilisées pour concevoir des personnages d'une grande qualité.Cependant, reproduire le comportement des structures anatomiques demeure une tâche complexe, et de nombreuses connaissances variées sont nécéssaires à la mise en place de simulation de qualité de nos organes. Ceci fait de la modélisation pour la simulation d'humains une problématique non résolue, une tâche fastidieuse, mais également un sujet de recherche fascinant.À travers ces travaux de thèse, nous abordons cette problématique de la construction de systèmes musculo-squeletiques pour ces domaines variés : animation, biomécanique et aide à l'apprentissage.Notre objectif est de simplifier le processus entier de création en le rendant plus intuitif et plus rapide.Notre approche consiste à pallier à chacune des difficultés, à savoir : la représentation et la manipulation de connaissances anatomiques, la modélisation géométrique et la simulation efficace de systèmes musculosquelettiques grâce à trois principalescontributions introduites durant ces travaux de recherche.Notre première contribution se focalise sur la construction biomécanique d'un modèle hybride du rachis lombaire.Dans ces travaux, nous montrons que les approches hybrides combinant des systèmes de corps rigides et des modèles éléments finis permettent d'obtenir des simulations en temps intéractifs, précises, et respectant les principes de l'anatomie et de la mécanique.Notre seconde contribution s'intéresse aux problématiques liées à la complexité des connaissances anatomiques, physiologiques et fonctionnelles. En se basant sur une ontologie de l'anatomie et une ontologie inédite de la physiologie humaine, nous introduisonsun pipeline pour la construction automatique de modèles simulant les fonctions de nos organes.Celles-ci permettent d'exploiter les connaissances anatomiques complexes via des requêtes simples.Les sorties de ces requêtes sont utilisées pour créer des modèles simulables retranscrivant les aspects fonctionnels tels qu'ils ont été formalisés et décrits par les anatomistes.Enfin, notre troisième contribution : le transfert d'anatomie, permet d'adapter les modèles géométriques et mécaniques à la morphologie de patients spécifiques.Cette nouvelle méthode de recalage permet de reconstruire automatiquement l'anatomie interne d'un personnage défini par sa peau en transférant les organes d'un personnage de référence.Elle permet de pallier à la nécessité de re-construire ces géometries pour chaque nouvelle simulation, et contribue ainsi à accélérer la mise en place de simulations spécifiques à une grande variété d'individus de morphologie différente
The use of virtual humans has spread in various activities in recent years.Beyond virtual surgery, virtual bodies are increasingly used to design medical devices, vehicles, and daily life hardware more generally.They also turn out to be extraordinary supports to learn anatomy.Recent movies (Avatar, Lord of the Rings, etc) demonstrated that anatomy and biomechanics can be used to design high-quality characters.However, reproducing the behavior of anatomical structures remains a complex task, and a great amount and variety of knowledge is necessary for setting up high quality simulations.This makes the modeling of human body for simulation purposes an open problem, a tedious task, but also a fascinating research subject.Through this PhD, we address the problem of the construction of biomechanical models of the musculoskeletal systems for several domains : animation, biomechanics and teaching.Our goal is to simplify the entire process of model design by making it more intuitive and faster.Our approach is to address each difficulty : the representation and use of anatomical knowledge, the geometrical modeling and the efficient simulation of the musculoskeletal system thanks to three novel contributions introduced during these research works.Our first contribution focuses on the biomechanical construction of a hybrid model of lumbar spine.In this work, we show that hybrid approaches that combine both rigid body systems and finite element models allow interactive simulations, accurate, while respecting the principles of anatomy and mechanics.Our second contribution addresses the problem of the complexity of anatomical, physiological and functional knowledge.Based on a novel ontology of anatomical functions of the human body, we introduce a novel pipeline to automatically build models that simulate physiological functions of our bodies.The ontology allows us to extract detailed knowledge using simple queries.The outputs of these queries are used to set up simulation models of the functional aspects as they were formalized and described by anatomists.Finally our third contribution, the anatomy transfer, allows the mapping of available geometrical and mechanical models to the morphology of any specific individual.This novel registration method enables the automatic construction of the internal anatomy of any character defined by his skin, by transferring organs from a reference character.It allows to overcome the need to re-construct these geometries for each new simulation, and it contributes to accelerate the simulations setup for a range of people with different morph
APA, Harvard, Vancouver, ISO, and other styles
2

Galdames, Grunberg Francisco José. "Brain magnetic resonance image segmentation for the construction of an anatomical model dedicated to mechanical simulation." Tesis, Universidad de Chile, 2012. http://www.repositorio.uchile.cl/handle/2250/112056.

Full text
Abstract:
Doctor en Ingeniería Eléctrica
Durante una neurocirugía se debe contar con información anatómica precisa, la cual es comúnmente obtenida por medio de un registro entre la posición del paciente y datos pre-operatorios. Uno de los principales problemas para realizar este registro es la deformación del cerebro durante la cirugía, fenómeno conocido como Brain Shift. Para solucionar este problema se han creado modelos mecánicos del cerebro, con los cuales es posible aproximar la deformación real. Estos modelos mecánicos requieren un modelo anatómico del paciente, el cual se obtiene, en la mayor parte de los casos, por medio de una segmentación manual o semi-manual. El objetivo de esta tesis es mejorar la obtención del modelo anatómico, proponiendo un método automático para obtener un modelo anatómico del cerebro, adaptado a la anatomía particular del paciente y adecuado para un posterior modelamiento mecánico. El método propuesto realiza una pre-segmentación del cerebro, seguida de una segmentación basada en modelos deformables para identificar las estructuras anatómicas más relevantes para el modelamiento mecánico. Se incluyen las estructuras comúnmente utilizadas en la literatura: superficie cortical, superficie interna del cráneo y ventrículos. Además, se incluyen las membranas internas del cerebro: falx cerebri y tentorium cerebelli. Estas membranas se han incorporado en los modelos de muy pocas publicaciones, aun cuando su importancia es reconocida en la literatura. La segmentación por modelos deformables que se ha implementado está principalmente basada en mallas simplex, las cuales son duales topológicos de las mallas de triángulos. Para aprovechar las cualidades complementarias de estas dos representaciones, se ha desarrollado un nuevo método de transformación entre ellas. Nuestro método usa una interpolación geométrica basada en la distancia a los planos tangentes a los vértices de las mallas. El método de transformación fue evaluado usando mallas estándar y obtuvo excelentes resultados al compararlo con el método actualmente más usado, el cual emplea el centro de gravedad de las caras de las mallas. En nuestro método de segmentación las estructuras son segmentadas de manera secuencial y respetando las relaciones anatómicas entre ellas. La segmentación obtenida fue evaluada empleando las bases de datos en linea más usadas (BrainWeb, IBSR, SVE). La segmentación de cada estructura fue evaluada de manera independiente y se realizaron algunas comparaciones con métodos de segmentación populares y establecidos, obteniendo resultados superiores. Las segmentaciones de la superficie cortical, la superficie interna del cráneo y los ventrículos fueron evaluadas usando los indices de Jaccard (J) y Dice (κ). Los resultados para la superficie cortical fueron: J = 0,904 y κ = 0,950 en BrainWeb; J = 0,902 y κ = 0,948 en IBSR; J = 0,946 y κ = 0,972 en SVE. Los resultados para la superficie interna del cráneo fueron J = 0,945 y κ = 0,972 en BrainWeb. Los resultados para los ventrículos fueron: J = 0,623 y κ = 0,766 en IBSR. Las segmentaciones de las membranas internas del cerebro fueron evaluadas midiendo la distancia entre nuestra segmentación y la posición estimada de las membranas en la base de datos IBSR. La distancia media para el tentorium cerebelli fue 1,673 mm, y para el falx cerebri fue 0,745 mm.
APA, Harvard, Vancouver, ISO, and other styles
3

Wilson, Timothy Lyle. "Using MR anatomically simulated normal image to reveal spect finited resolution effects." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/17341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fischer, Shain Ann. "A Three-Dimensional Anatomically Accurate Finite Element Model for Nerve Fiber Activation Simulation Coupling." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1365.

Full text
Abstract:
Improved knowledge of human nerve function and recruitment would enable innovation in the Biomedical Engineering field. Better understanding holds the potential for greater integration between devices and the nervous system as well as the ability to develop therapeutic devices to treat conditions affecting the nervous system. This work presents a three-dimensional volume conductor model of the human arm for coupling with code describing nerve membrane characteristics. The model utilizes an inhomogeneous medium composed of bone, muscle, skin, nerve, artery, and vein. Dielectric properties of each tissue were collected from the literature and applied to corresponding material subdomains. Both a fully anatomical version and a simplified version are presented. The computational model for this study was developed in COMSOL and formatted to be coupled with SPICE netlist code. Limitations to this model due to computational power as well as future work are discussed. The final model incorporated both anatomically correct geometries and simplified geometries to enhance computational power. A stationary study was performed implementing a boundary current source through the surface of a conventionally placed electrode. Results from the volume conductor study are presented and validated through previous studies.
APA, Harvard, Vancouver, ISO, and other styles
5

DiLorenzo, Paul Carmen. "Breathing, laughing, sneezing, coughing model and control of an anatomically inspired, physically-based human torso simulation /." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3350078.

Full text
Abstract:
Thesis (Ph. D.)--University of California, Riverside, 2009.
Includes abstract. Title from first page of PDF file (viewed January 28, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 100-106).
APA, Harvard, Vancouver, ISO, and other styles
6

Egger, Robert [Verfasser], and Marcel [Akademischer Betreuer] Oberländer. "Simulation of sensory-evoked signal flow in anatomically realistic models of neural networks / Robert Egger ; Betreuer: Marcel Oberländer." Tübingen : Universitätsbibliothek Tübingen, 2016. http://d-nb.info/1164168851/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hao, Guoliang. "Imaging of the atria and cardiac conduction system : from experiment to computer modelling." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/imaging-of-the-atria-and-cardiac-conduction-system--from-experiment-to-computer-modelling(3e5dba52-70f3-4fa8-890d-adfe2380086c).html.

Full text
Abstract:
Background: Experimental mapping and computer modelling provide important platforms to study the fundamental mechanisms underlying normal and abnormal activation of the heart. However, accurate computer modelling requires detailed anatomical models and needs support and validation from experimental data. Aims: 1) Construction of detailed anatomical heart models with the cardiac conduction system (CCS). 2) Mapping of the electrical activation sequence in rabbit atria to support and validate computer simulation. 3) Mapping of the spontaneous activity in the atrioventricular ring tissues (AV rings), which consist of nodal-like myocytes and can be a source of atrial tachycardia. Methods: High-resolution magnetic resonance imaging (MRI) and computed tomography (CT) were used to provide two-dimensional (2D) images for the construction of the detailed anatomical heart models. Immunohistochemistry and Masson’s trichrome staining were used to distinguish the CCS in the heart. LabVIEW was used in the development of a multi-electrode mapping system. The multi-electrode mapping technique was employed to map the electrical activation sequence of the rabbit atria. The cellular automaton model was used to simulate electrical activation of the rabbit atria. Results: 1) Three detailed anatomical models were constructed, including a detailed three dimensional (3D) anatomical model of the rabbit heart (whole of the atria and part of the ventricles), a 3D anatomical model of the rat heart with the CCS and AV rings, and a 3D anatomical model of the human atrioventricular node. 2) A multi-electrode mapping system was developed. 3) The electrical activation sequence of the rabbit atria was mapped in detail using the multi-electrode mapping system. The conduction velocity in the rabbit atria was measured. The mapping data showed the coronary sinus and the left superior vena cava do not provide an interatrial conduction route during sinus rhythm in the rabbit heart. 4) Electrical activation of the rabbit atria was simulated with the support of the 3D anatomical model of the rabbit atria and the experimental mapping data. 5) The spontaneous activity in the rat AV rings was mapped using the multi-electrode mapping system. Conclusions: The detailed anatomical models developed in this study can be used to support accurate computer simulation and can also be used in anatomical teaching and research. The experimental mapping data from the rabbit atria can be used to support and validate computer simulation. The computer simulation study demonstrated the importance of anatomical structure and electrophysiological heterogeneity. This study also demonstrated that the AV rings could potentially act as ectopic pacemakers.
APA, Harvard, Vancouver, ISO, and other styles
8

Nehring, Wendy M., and Felissa R. Lashley. "Nursing Simulation: A Review of the Past 40 Years." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etsu-works/6706.

Full text
Abstract:
Simulation, in its many forms, has been a part of nursing education and practice for many years. The use of games, computer-assisted instruction, standardized patients, virtual reality, and low-fidelity to high-fidelity mannequins have appeared in the past 40 years, whereas anatomical models, partial task trainers, and role playing were used earlier. A historical examination of these many forms of simulation in nursing is presented, followed by a discussion of the roles of simulation in both nursing education and practice. A viewpoint concerning the future of simulation in nursing concludes this article.
APA, Harvard, Vancouver, ISO, and other styles
9

Ginsburger, Kévin. "Modeling and simulation of the diffusion MRI signal from human brain white matter to decode its microstructure and produce an anatomic atlas at high fields (3T)." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS158/document.

Full text
Abstract:
L'imagerie par résonance magnétique du processus de diffusion (IRMd) de l'eau dans le cerveau a connu un succès fulgurant au cours de la décennie passée pour cartographier les connexions cérébrales. C'est toujours aujourd'hui la seule technique d'investigation de la connectivité anatomique du cerveau humain in vivo. Mais depuis quelques années, il a été démontré que l'IRMd est également un outil unique de biopsie virtuelle in vivo en permettant de sonder la composition du parenchyme cérébral également in vivo. Toutefois, les modèles développés à l'heure actuelle (AxCaliber, ActiveAx, CHARMED) reposent uniquement sur la modélisation des membranes axonales à l'aide de géométries cylindriques, et restent trop simplistes pour rendre compte précisément de l'ultrastructure de la substance blanche et du processus de diffusion dans l’espace extra-axonal. Dans un premier temps, un modèle analytique plus réaliste de la substance blanche cérébrale tenant compte notamment de la dépendance temporelle du processus de diffusion dans le milieu extra-axonal a été développé. Un outil de décodage complexe permettant de résoudre le problème inverse visant à estimer les divers paramètres de la cytoarchitecture de la substance blanche à partir du signal IRMd a été mis en place en choisissant un schéma d'optimisation robuste pour l'estimation des paramètres. Dans un second temps, une approche Big Data a été conduite pour améliorer le décodage de la microstructure cérébrale. Un outil de création de tissus synthétiques réalistes de la matière blanche a été développé, permettant de générer très rapidement un grand nombre de voxels virtuels. Un outil de simulation ultra-rapide du processus de diffusion des particules d'eau dans ces voxels virtuels a ensuite été mis en place, permettant la génération de signaux IRMd synthétiques associés à chaque voxel du dictionnaire. Un dictionnaire de voxels virtuels contenant un grand nombre de configurations géométriques rencontrées dans la matière blanche cérébrale a ainsi été construit, faisant en particulier varier le degré de gonflement de la membrane axonale qui peut survenir comme conséquence de pathologies neurologiques telles que l’accident vasculaire cérébral. L'ensemble des signaux simulés associés aux configurations géométriques des voxels virtuels dont ils sont issus a ensuite été utilisé comme un jeu de données permettant l'entraînement d'un algorithme de machine learning pour décoder la microstructure de la matière blanche cérébrale à partir du signal IRMd et estimer le degré de gonflement axonal. Ce décodeur a montré des résultats de régression encourageants sur des données simulées inconnues, montrant le potentiel de l’approche computationnelle présentée pour cartographier la microstructure de tissus cérébraux sains et pathologiques in vivo. Les outils de simulation développés durant cette thèse permettront, en utilisant un algorithme de recalage difféomorphe de propagateurs de diffusion d’ensemble également développé dans le cadre de cette thèse, de construire un atlas probabiliste des paramètres microstructuraux des faisceaux de matière blanche
Diffusion Magnetic Resonance Imaging of water in the brain has proven very useful to establish a cartography of brain connections. It is the only in vivo modality to study anatomical connectivity. A few years ago, it has been shown that diffusion MRI is also a unique tool to perform virtual biopsy of cerebral tissues. However, most of current analytical models (AxCaliber, ActiveAx, CHARMED) employed for the estimation of white matter microstructure rely upon a basic modeling of white matter, with axons represented by simple cylinders and extra-axonal diffusion assumed to be Gaussian. First, a more physically plausible analytical model of the human brain white matter accounting for the time-dependence of the diffusion process in the extra-axonal space was developed for Oscillating Gradient Spin Echo (OGSE) sequence signals. A decoding tool enabling to solve the inverse problem of estimating the parameters of the white matter microstructure from the OGSE-weighted diffusion MRI signal was designed using a robust optimization scheme for parameter estimation. Second, a Big Data approach was designed to further improve the brain microstructure decoding. All the simulation tools necessary to construct computational models of brain tissues were developed in the frame of this thesis. An algorithm creating realistic white matter tissue numerical phantoms based on a spherical meshing of cell shapes was designed, enabling to generate a massive amount of virtual voxels in a computationally efficient way thanks to a GPU-based implementation. An ultra-fast simulation tool of the water molecules diffusion process in those virtual voxels was designed, enabling to generate synthetic diffusion MRI signal for each virtual voxel. A dictionary of virtual voxels containing a huge set of geometrical configurations present in white matter was built. This dictionary contained virtual voxels with varying degrees of axonal beading, a swelling of the axonal membrane which occurs after strokes and other pathologies. The set of synthetic signals and associated geometrical configurations of the corresponding voxels was used as a training data set for a machine learning algorithm designed to decode white matter microstructure from the diffusion MRI signal and estimate the degree of axonal beading. This decoder showed encouraging regression results on unknown simulated data, showing the potential of the presented approach to characterize the microstructure of healthy and injured brain tissues in vivo. The microstructure decoding tools developed during this thesis will in particular be used to characterize white matter tissue microstructural parameters (axonal density, mean axonal diameter, glial density, mean glial cells diameter, microvascular density ) in short and long bundles. The simulation tools developed in the frame of this thesis will enable the construction of a probabilistic atlas of the white matter bundles microstructural parameters, using a mean propagator based diffeomorphic registration tool also designed in the frame of this thesis to register each individual
APA, Harvard, Vancouver, ISO, and other styles
10

Perchet, Diane. "Modélisation in-silico des voies aériennes : reconstruction morphologique et simulation fonctionnelle." Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00273244.

Full text
Abstract:
Dans les nouveaux protocoles thérapeutiques par voie inhalée, le dosage des particules actives reste un problème complexe qui dépend de trois principaux facteurs : leur taille, la dynamique des flux et les variations de calibre bronchique. La solution nécessite de disposer d'un modèle de distribution des gaz et aérosols administrés dans les poumons. Ventilation pulmonaire et effets du cycle respiratoire sur la dynamique des fluides deviennent deux enjeux clés de la pratique clinique.

Dans ce contexte, le projet RNTS RMOD a pour objectif de développer un simulateur morpho-fonctionnel des voies respiratoires pour l'aide au diagnostic, au geste médico-chirurgical et à l'administration de médicaments par inhalation.

Contribuant au projet RMOD, la recherche développée dans cette thèse propose une modélisation in-silico de la structure des voies aériennes supérieures (VAS) et proximales (VAP) à partir d'examens tomodensitométriques (TDM). L'investigation morphologique et la simulation fonctionnelle bénéficient alors de géométries 3D réelles, adaptées au patient et spécifiques des pathologies rencontrées.

La modélisation développée fait coopérer des méthodes originales de segmentation, de construction de surface maillée et d'analyse morpho-fonctionnelle.

La segmentation des VAP est obtenue par un schéma diffusif et agrégatif gouverné par un modèle markovien, dont l'initialisation repose sur l'opérateur de coût de connexion sous contrainte topographique. De cette segmentation, l'axe central de l'arbre bronchique est extrait de manière robuste et précise en combinant information de distance, propagation de fronts, et partition conditionnelle locale. Cet axe central est représenté sous forme d'une structure hiérarchique multivaluée synthétisant caractéristiques topologiques et géométriques de l'arbre bronchique. Une surface maillée est ensuite construite en appliquant une procédure de Marching Cubes adaptative, les paramètres des différents filtres mis en jeu étant automatiquement ajustés aux caractéristiques locales du réseau bronchique conditionnellement aux attributs de l'axe central.

La segmentation des VAS repose sur une propagation markovienne exploitant les variations locales de densité. L'initialisation combine morphologie mathématique et information de contour afin de garantir la robustesse à la topologie. Une procédure de type triangulation de Delaunay restreinte à une surface fournit ensuite la représentation maillée des VAS. Il est établi que la topologie et la géométrie des structures complexes composant les VAS sont effectivement préservées.

Pour permettre aux médecins de valider les modèles maillés ainsi construits, un environnement virtuel 3D convivial et interactif a été réalisé. En outre, la morphologie des voies aériennes exo- et endo-luminale est analysée de façon automatique à partir de simulations d'écoulement pour des géométries réelles.

Enfin, une modélisation unifiée des VAP et VAS est obtenue pour la première fois. Elle démontre la pertinence des approches développées. Elle ouvre la voie à la construction de modèles in-silico complets de l'appareil respiratoire ainsi qu'aux études fonctionnelles prenant en compte les paramètres morphologiques susceptibles d'influer localement ou globalement sur la dynamique des écoulements.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Anatomical simulator"

1

Anatomía de un simulacro. Buenos Aires: Editorial Leviatán, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1932-, Fujino Toyomi, ed. Simulation and computer-aided surgery. Chichester: Wiley, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lambrecht, J. Thomas. 3-D modeling technology in oral and maxillofacial surgery. Chicago: Quintessence Pub. Co., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

S, Suri Jasjit, and Farag Aly A, eds. Deformable models. New York: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

George, Xu Xie, and Eckerman K. F, eds. Handbook of anatomical models for radiation dosimetry. Boca Raton, FL: CRC Press/Taylor & Francis Group, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garg, Amit. Learning anatomy from rotating three dimensional virtual models: Do more views of an anatomical object improve understanding its spatial characteristics? 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

(Editor), Xie George Xu, and Keith F. Eckerman (Editor), eds. Handbook of Anatomical Models for Radiation Dosimetry (Series in Medical Physics and Biomedical Engineering). Taylor & Francis, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elkhateb, Rania, and Jill M. Mhyre. Difficult Airway: Special Considerations in Pregnancy. Edited by Matthew D. McEvoy and Cory M. Furse. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190226459.003.0053.

Full text
Abstract:
Pregnant patients are at increased risk of difficult airway management due to both anatomic and physiologic changes that occur with pregnancy and during the process of labor. While the majority of surgical procedures on labor and delivery are performed with neuraxial anesthesia, general anesthesia may be required at any time. As such, all anesthesia professionals must be prepared at all times for unplanned and emergent obstetric airway management, including management of the difficult airway in the parturient. Strategies include assessment of patient risk early in labor, maintaining difficult airway equipment in the labor and delivery suites, conducting simulation scenarios of difficult and failed airway management, and following difficult airway management algorithms.
APA, Harvard, Vancouver, ISO, and other styles
9

Biomedical Simulation Lecture Notes in Computer Science. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ratib, Osman, Nadia Magnenat-Thalmann, and Hon Fai Choi. 3D Multiscale Physiological Human. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anatomical simulator"

1

Acosta, Eric, and Bharti Temkin. "Build-and-Insert: Anatomical Structure Generation for Surgical Simulators." In Medical Simulation, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25968-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Noetscher, Gregory, Peter Serano, Ara Nazarian, and Sergey Makarov. "Computational Tool Comprising Visible Human Project® Based Anatomical Female CAD Model and Ansys HFSS/Mechanical® FEM Software for Temperature Rise Prediction Near an Orthopedic Femoral Nail Implant During a 1.5 T MRI Scan." In Brain and Human Body Modelling 2021, 133–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_9.

Full text
Abstract:
AbstractThis medical device development tool (MDDT) is categorized as a non-clinical assessment model (NAM). This MDDT is a computational modeling and simulation tool. It can predict heating of metallic orthopedic implants with the radio frequency (RF) electromagnetic fields in the magnetic resonance imaging (MRI) coils while targeting a mid-aged and elderly female population primarily affected by osteoporosis and the associated bone fracture.This MDDT uses a high resolution anatomical female CAD (computer aided design) model coupled with the proven multiphysics finite element method (FEM) software (Ansys Workbench) to simulate the complete MRI environment. The environment is consisting of a tuned MRI coil with the given output power, detailed heterogeneous human model within the coil at the given landmark and a properly embedded metallic implant within the anatomical model to compute the extent of heating generated around the implant.Specifically, this MDDT is the in silico analog of an MRI scan for an elderly female subject with a metallic orthopedic implant at 1.5 T in a full-body birdcage RF coil.
APA, Harvard, Vancouver, ISO, and other styles
3

Lloyd, Bryn, Emilio Cherubini, Silvia Farcito, Esra Neufeld, Christian Baumgartner, and Niels Kuster. "Covering Population Variability: Morphing of Computation Anatomical Models." In Simulation and Synthesis in Medical Imaging, 13–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46630-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Plantefève, Rosalie, Nazim Haouchine, Jean-Pierre Radoux, and Stephane Cotin. "Automatic Alignment of Pre and Intraoperative Data Using Anatomical Landmarks for Augmented Laparoscopic Liver Surgery." In Biomedical Simulation, 58–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12057-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lloyd, John E., Antonio Sánchez, Erik Widing, Ian Stavness, Sidney Fels, Siamak Niroomandi, Antoine Perrier, Yohan Payan, and Pascal Perrier. "New Techniques for Combined FEM-Multibody Anatomical Simulation." In Lecture Notes in Computational Vision and Biomechanics, 75–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23073-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chinzei, Kiyoyuki, Takemasa Kawamoto, Takaomi Taira, Hiroshi Iseki, and Kintomo Takakura. "Surgical Simulation in an Anatomical/Functional Atlas with HyperCAS." In Computer-Assisted Neurosurgery, 105–14. Tokyo: Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-65889-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Jun Keun, Chan Young Park, Jongwon Kim, Joo Young Park, Myoung Hee Kim, Byeong Han Lee, Byung Hyun Chung, Dong Chul Han, and Byoung Goo Min. "Anatomical Fitting Simulators (AFS) for Totally Implantable Artificial Heart Design." In Heart Replacement, 353–56. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-67020-9_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Audette, Michel A., A. Fuchs, Oliver Astley, Yoshihiko Koseki, and Kiyoyuki Chinzei. "Towards Patient-Specific Anatomical Model Generation for Finite Element-Based Surgical Simulation." In Surgery Simulation and Soft Tissue Modeling, 340–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45015-7_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van der Leeden, R., Eldad J. Avital, and G. Kenyon. "Nasal Airflow in a Realistic Anatomic Geometry." In Direct and Large-Eddy Simulation VI, 423–30. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5152-2_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sanders, Benjamin, Paul DiLorenzo, Victor Zordan, and Donald Bakal. "Toward Anatomical Simulation for Breath Training in Mind/Body Medicine." In Recent Advances in the 3D Physiological Human, 105–19. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-565-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anatomical simulator"

1

Kuxhaus, Laurel, Patrick J. Schimoler, Jeffrey S. Vipperman, Angela M. Flamm, Daniel Budny, Mark E. Baratz, Patrick J. DeMeo, and Mark Carl Miller. "Measuring Moment Arms Using Closed-Loop Force Control With an Elbow Simulator." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176513.

Full text
Abstract:
In search of a complete understanding of a joint’s function, one must understand both the anatomic parameters and how the brain controls the joint’s actuation. Accurate measurements of anatomical parameters are critical to non-linear biomechanical modeling and control and also to a clinical understanding of orthopaedic reconstruction. Likewise, new frontiers in the study of neuromuscular control contribute to our understanding of joint structure and function. One approach to study joint function is to use a joint simulator to actuate cadaver limbs. Towards the goals of understanding and improving human elbow joint control, a physiologic elbow joint simulator was previously constructed in our laboratory. It is the first elbow simulator to operate completely under closed-loop control. The closed-loop force control used to study joint mechanics permits measurement of moment arms in cadaveric elbow specimens. We hypothesized that the approach yields comparable results to previously-reported moment arm values.[1]
APA, Harvard, Vancouver, ISO, and other styles
2

Zaitseva, Elena, Miroslav Kvassay, Vitaly Levashenko, Thomas M. Deserno, Victor Voski, and Andreas Herrler. "Qualitative evaluation of faults (mathematical incorrectness) in anatomical model for Regional Anaesthesia Simulator." In 2016 International Conference on Information and Digital Technologies (IDT). IEEE, 2016. http://dx.doi.org/10.1109/dt.2016.7557192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kurse, Manish, Hod Lipson, and Francisco Valero-Cuevas. "A Fast Simulator to Model Complex Tendon-Bone Interactions: Application to the Tendinous Networks Controlling the Fingers." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206601.

Full text
Abstract:
Forces generated by the muscles actuating the fingers are transmitted through a complex network of tendons. Current models of the hand either ignore or simplify the structure of these networks [1]. It has been shown that the deformable nature of these tendinous networks results in a nonlinear transformation of muscle forces [2]. Our long-term objective is to understand how the topology of this network affects the control of finger force and motion. To achieve this, we will use a machine learning approach to evolve models of this network that can best replicate experimental results [3]. Here we present an anatomically realistic solver developed to model mechanical force transmission by a network of tendons in the human fingers. While most existing solvers neglect mechanics of tendon networks, there has been recent work on dynamic simulators accounting for tendon-bone interactions [4]. The solver we present here advances work in this field by being able to simulate mechanics of complex networks wrapped on arbitrarily shaped objects (like bones), and can be effectively used to model isometric force production in complex biomechanical systems. Its speed makes it an ideal simulation engine for the evolutionary algorithms we use to infer complex anatomical structures from sparse experimentation [3].
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Fei, WenFeng Lu, Yoke San Wong, and Kelvin Weng Chiong Foong. "GPU-Based Haptic Simulator for Dental Bone Drilling." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47019.

Full text
Abstract:
Dental bone drilling is an inexact and often a blind art. Dentist risks damaging the invisible tooth roots, nerves and critical dental structures like mandibular canal and maxillary sinus. This paper presents a haptics-based jawbone drilling simulator for novice surgeons. Through the real-time training of tactile sensations based on patient-specific data, improved outcomes and faster procedures can be provided. Previously developed drilling simulators usually adopt penalty-based contact force models and often consider only spherical-shaped drill bits for simplicity and computational efficiency. In contrast, our simulator is equipped with a more precise force model, adapted from the Voxmap-PointShell (VPS) method to capture the essential features of the drilling procedure. In addition, the proposed force model can accommodate various shapes of drill bits. To achieve better anatomical accuracy, our oral model has been reconstructed from Cone Beam CT, using voxel-based method. To enhance the real-time response, the parallel computing power of Graphics Processing Units is exploited through extra efforts for data structure design, algorithms parallelization, and graphic memory utilization. Preliminary results show that the developed system can produce appropriate force feedback at different tissue layers.
APA, Harvard, Vancouver, ISO, and other styles
5

Perosky, Joseph, Abdul Aref, Daniel Westcott, Robert Przybylski, Derek Woodrum, Suzanne Dooley-Hash, and Pamela Andreatta. "A Low-Cost Cricothyroidotomy Trauma Simulator With a Real Time Vital Signs Feedback System." In ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32078.

Full text
Abstract:
Many trauma related surgical procedures cannot ethically be practiced by medical students or inexperienced doctors. Therefore, medical simulators that provide high anatomical and procedural fidelity are used. One of the most important things to monitor during such a procedure is the vital signs of the patient. One procedure for which this is important is a cricothyroidotomy, in which an incision through the skin and cricothyroid membrane is made to secure a patient’s airway during certain emergency situations in which an airway obstruction is present. The amount of cases per doctor is further amplified in many developing countries, with many of these clinicians not being able to practice before being in the real-life situation, partially due to the high cost of current simulators. Therefore, a low-cost cricothyroidotomy simulator with a live feedback system that tells the clinician the vital signs of the patient that they would be monitoring in such a situation that includes heart rate, blood pressure, respiratory rate, oxygen content, and ECG was developed.
APA, Harvard, Vancouver, ISO, and other styles
6

Sheshadri, Vikram B., Paul J. Rullkoetter, and Ben M. Hillberry. "In Vitro Measurement of the Six Degree-of-Freedom Kinematics of the Human Knee During Simulated Gait." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0418.

Full text
Abstract:
Abstract This paper describes a method to determine the six degree-of-freedom kinematics of the human knee. A complete description of knee motion requires information on both the patellofemoral and the tibiofemoral joints. Six degree-of-freedom spatial linkages are used to determine the relative motion of each of the joints. One linkage is connected across the tibiofemoral joint and a second is connected across the patellofemoral joint. A three cylindric open chain model is then used to describe the motion of each of the joints. Sample kinematic data were developed using the Purdue Knee Simulator with natural knee specimens. The simulator is able to recreate anatomical loading of the knee during various activities. The natural specimens were mounted in the simulator with the linkages attached. Data were recorded for level walking and six degree-of-freedom kinematics were determined for the tibiofemoral as well as the patellofemoral joints.
APA, Harvard, Vancouver, ISO, and other styles
7

Moncisvalles, E., D. Lorias, A. Minor, and J. Villalobos. "Design and Development of a Gastrointestinal Simulator System with Software That Allows to Find the Anatomical Location and a Flexible Endoscope Emulator." In 2014 IEEE 27th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2014. http://dx.doi.org/10.1109/cbms.2014.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chokhandre, Snehal, and Ahmet Erdemir. "A Multiscale Specimen-Specific Data Set to Enable Comprehensive Modeling and Simulation of the Tibiofemoral Joint." In ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fmd2013-16117.

Full text
Abstract:
The tibiofemoral joint is a complex structure and its overall mechanical response is dictated by its numerous substructures at both macro and micro levels. An in-depth understanding of the mechanics of the joint is necessary to develop preventative measures and treatment options for pathological conditions and common injuries. Finite element (FE) analysis is a widely used tool in joint biomechanics studies focused on understanding the underlying mechanical behavior at joint, tissue and cell levels [1]. Studies, regardless of their purpose (descriptive or predictive), when employing FE analysis, require anatomical and mechanical data at single or multiple scales. It is also critical that FE representations are validated and closely represent specifics of the joint of interest, anatomically and mechanically. This is an utmost need if these models are intended to be used to support clinical decision making (in surgery or for rehabilitation) and for the development of implants.
APA, Harvard, Vancouver, ISO, and other styles
9

Kia, Mohammad, Trent M. Guess, and Antonis Stylianou. "Musculoskeletal Model of the Human Knee With Representation of Menisci During the Stance Phase of a Walk Cycle." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80746.

Full text
Abstract:
Movement simulation and musculoskeletal modeling can predict muscle forces, but current methods are hindered by simplified representations of joint structures. Simulations that incorporate muscle forces, an anatomical representation of the natural knee, and contact mechanics would be a powerful tool in orthopedics. This study combined a validated anatomical model of a knee joint with menisci and a musculoskeletal model of the human lower extremity. A forward-dynamics muscle driven simulation of the stance phase of a walk cycle was simulated in LifeMOD (Lifemodeler, Inc) and muscle forces and ground reaction forces were estimated. The predicted forces were evaluated using test data provided by Vaughan CL. et al. (1999).
APA, Harvard, Vancouver, ISO, and other styles
10

Contijoch, Francisco, Jennifer M. Lynch, David D. Pokrajac, Andrew D. A. Maidment, and Predrag R. Bakic. "Shape analysis of simulated breast anatomical structures." In SPIE Medical Imaging, edited by Norbert J. Pelc, Robert M. Nishikawa, and Bruce R. Whiting. SPIE, 2012. http://dx.doi.org/10.1117/12.912275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography