Academic literature on the topic 'Anatolian Fault; Earthquakes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anatolian Fault; Earthquakes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anatolian Fault; Earthquakes"

1

Doğangün, Adem, Burak Yön, Onur Onat, Mehmet Emin Öncü, and Serkan Sağıroğlu. "Seismicity of East Anatolian of Turkey and Failures of Infill Walls Induced by Major Earthquakes." Journal of Earthquake and Tsunami 15, no. 04 (March 13, 2021): 2150017. http://dx.doi.org/10.1142/s1793431121500172.

Full text
Abstract:
There are three major fault zones in Turkey scattered around the country known as East Anatolian Fault (EAF), North Anatolian Fault (NAF) and Anatolian-Aegean Subduction Zone (AASZ). Last two decades, EAF has been rather quiescent compared with NAF. However, this quiescence was broken in the beginning of the millennium. The strong shaking was started in 2003 with Bingöl earthquake (Mw = 6.3) and the last earthquake on the EAF is the Sivrice-Elazığ (Mw = 6.8) on January 24, 2020. Strong seismicity of these faults damaged the structures severely and caused death of the habitants. This study aims to present, seismotectonic of the region, general characteristics of the earthquakes and more specifically to report structural damage of infill walls of the structure’s damages caused by these earthquakes. Damage evaluation and identification of the observed infill wall damages due to 2003 Bingöl, 2011 Van earthquakes and January 24, 2020 Sivrice-Elazığ earthquake occurred Turkey’s Eastern region, were presented, and possible solutions were suggested. Moreover, the effects of the infill walls on the behavior of structures under static and dynamic load cases are discussed that experienced in these earthquakes. Damages are classified according to formations such as in-plane or out-of-plane, evaluations and the results obtained from the discussions are presented for each category.
APA, Harvard, Vancouver, ISO, and other styles
2

Acarel, Diğdem, Musavver Didem Cambaz, Fatih Turhan, Ahu Kömeç Mutlu, and Remzi Polat. "Seismotectonics of Malatya Fault, Eastern Turkey." Open Geosciences 11, no. 1 (December 31, 2019): 1098–111. http://dx.doi.org/10.1515/geo-2019-0085.

Full text
Abstract:
Abstract Turkey is located in a seismically active region with a complex tectonic history. In order to perform seismic risk assessment precisely, major fault zones (North Anatolian Fault Zone and East Anatolian Fault Zone) that are well defined are monitored continuously. It is a widely known fact that intraplate settings, such as Anatolian Plate, in which devastating earthquakes may occur, need to be observed densely. In this study, we investigate the seismotectonics of Malatya Fault within the Malatya Ovacık Fault Zone (MOFZ), which is one of the major agents responsible for internal deformation acting on Anatolian Plate. Recent geological and paleoseismological studies underline the necessity of comprehending the seismicity and latency of a major earthquake in this fault zone.We applied traditional techniques to investigate data of such a region. Earthquakes that occured in the vicinity of Malatya Fault between the years 2011 and mid-2019 are employed in a detailed analysis. The results of this study are constrained by the distribution of sensor networks in the region, yet allowing to define an active structure which is not included in the active fault map of Turkey, therefore, making a significant contribution to seismic hazard estimation.
APA, Harvard, Vancouver, ISO, and other styles
3

Ozer, Naside, and Savas Ceylan. "Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones." Research in Geophysics 2, no. 1 (February 14, 2012): 1. http://dx.doi.org/10.4081/rg.2012.e1.

Full text
Abstract:
We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ) in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0) is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0) activity, and test our results using San Andreas Fault Zone (SAFZ) data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.
APA, Harvard, Vancouver, ISO, and other styles
4

Yavaşoğlu, Hasan Hakan, Mehmet Nurullah Alkan, Serdar Bilgi, and Öykü Alkan. "Monitoring aseismic creep trends in the İsmetpaşa and Destek segments throughout the North Anatolian Fault (NAF) with a large-scale GPS network." Geoscientific Instrumentation, Methods and Data Systems 9, no. 1 (February 26, 2020): 25–40. http://dx.doi.org/10.5194/gi-9-25-2020.

Full text
Abstract:
Abstract. The North Anatolian Fault Zone (NAFZ) is an intersection area between the Anatolian and Eurasian plates. The Arabian Plate, which squeezes the Anatolian Plate from the south between the Eurasian Plate and itself, is also responsible for this formation. This tectonic motion causes the Anatolian Plate to move westwards with almost a 20 mm yr−1 velocity, which has caused destructive earthquakes in history. Block boundaries that form the faults are generally locked to the bottom of the seismogenic layer because of the friction between blocks and are responsible for these discharges. However, there are also some unique events observed around the world, which may cause partially or fully free-slipping faults. This phenomenon is called “aseismic creep” and may occur through the entire seismogenic zone or at least to some depths. Additionally, it is a rare event in the world located in two reported segments along the North Anatolian Fault (NAF), which are İsmetpaşa and Destek. In this study, we established GPS networks covering those segments and made three campaigns between 2014 and 2016. Considering the long-term geodetic movements of the blocks (Anatolian and Eurasian plates), surface velocities and fault parameters are calculated. The results of the model indicate that aseismic creep still continues with rates of 13.2±3.3 mm yr−1 at İsmetpaşa and 9.6±3.1 mm yr−1 at Destek. Additionally, aseismic creep behavior is limited to some depths and decays linearly to the bottom of the seismogenic layer at both segments. This study suggests that this aseismic creep behavior will not prevent medium- to large-scale earthquakes in the long term.
APA, Harvard, Vancouver, ISO, and other styles
5

Kutoglu, H. S., H. Akcin, H. Kemaldere, and K. S. Gormus. "Triggered creep rate on the Ismetpasa segment of the North Anatolian Fault." Natural Hazards and Earth System Sciences 8, no. 6 (December 9, 2008): 1369–73. http://dx.doi.org/10.5194/nhess-8-1369-2008.

Full text
Abstract:
Abstract. The Ismetpasa segment of the North Anatolian Fault is one of the rare places in the world where aseismic creep event has been observed. This segment was ruptured during both the 1944, Mw=7.2, Gerede and 1951, Mw=6.9, Kursunlu earthquakes. After these earthquakes, the segment has not experienced a major earthquake anymore. Starting from 1957, many studies using different technologies have been carried out to determine the creep rate of the segment. All these studies until 2002 revealed that the creep movement of the segment slowed down. The new observation campaign of the Ismetpasa geodetic network shows that the Ismetpasa segment has ceased the slowing trend and started to gain speed. This might be interpreted as an increasing earthquake risk for this segment.
APA, Harvard, Vancouver, ISO, and other styles
6

SELİM, H. HALUK, and OKAN TÜYSÜZ. "The Bursa–Gönen Depression, NW Turkey: a complex basin developed on the North Anatolian Fault." Geological Magazine 150, no. 5 (March 6, 2013): 801–21. http://dx.doi.org/10.1017/s0016756812000945.

Full text
Abstract:
AbstractIn this study, we show that the southern branch of the North Anatolian Fault has been active since Late Pliocene time and that evidence of activity is supported by geological and seismological data. The southern branch of the North Anatolian Fault consists of four segments from west to east: Yenice–Gönen, Manyas–Mustafakemalpaşa, Uluabat and Bursa. These faults delimit the Bursa–Gönen Depression, with the Bandırma–Mudanya Uplift to the north and Uludağ–Sularya Uplift to the south. The Bursa–Gönen Depression includes Upper Pliocene to Recent sediments that thicken to the south, suggesting a deposition pattern under active fault control. Study of fault kinematics suggests that the Bursa–Gönen Depression started as a small pull-apart basin during Late Pliocene time, and then evolved to a large depression. The faults delimiting this depression are still active and capable of producing future earthquakes.
APA, Harvard, Vancouver, ISO, and other styles
7

Yuce, G., and D. Ugurluoglu. "Technical NoteEarthquake dates and water level changes in wells in the Eskisehir region, Turkey." Hydrology and Earth System Sciences 7, no. 5 (October 31, 2003): 777–81. http://dx.doi.org/10.5194/hess-7-777-2003.

Full text
Abstract:
Abstract. Although satisfactory results have yet to be obtained in earthquake prediction, one of the most common indicators of an anomalous precursor is a change in groundwater level in existing wells. Further wells should thus be drilled in unconfined aquifers since these are more susceptible to seismic waves. The Eskisehir region lies in the transition zone between the Aegean extensional domain and the compressible northern Anatolian block. Limnigraphs, installed in 19 exploration wells in the Eskisehir region, recorded pre-seismic, co-seismic and post-seismic level changes during the earthquakes of 17 August Izmit (Mw= 7.4) and 12 November Duzce (Mw= 7.2) 1999 that occurred along the North Anatolian Fault Zone. The Izmit and Duzce earthquakes affected groundwater levels, especially in confined aquifers. The aquifer characteristics before and after the earthquakes were unchanged so the aquifer is elastic in its behaviour. Further detailed geo-mechanical investigation of the confined aquifer in the Eskisehir region may improve understanding of earthquake prediction. Keywords: earthquake prediction, Eskisehir, hydrological warning, monitoring groundwater levels
APA, Harvard, Vancouver, ISO, and other styles
8

Civico, R., A. Smedile, D. Pantosti, F. R. Cinti, P. M. De Martini, S. Pucci, Z. Çakır, and S. Şentürk. "New trenching results along the İznik segment of the central strand of the North Anatolian Fault (Turkey): an integration with preexisting data." Mediterranean Geoscience Reviews 3, no. 1 (March 2021): 115–28. http://dx.doi.org/10.1007/s42990-021-00054-9.

Full text
Abstract:
AbstractThis paper provides a new contribution to the construction of the complex and fragmentary mosaic of the Late Holocene earthquakes history of the İznik segment of the central strand of the North Anatolian Fault (CNAF) in Turkey. The CNAF clearly displays lower dextral slip rates with respect to the northern strand however, surface rupturing and large damaging earthquakes (M > 7) occurred in the past, leaving clear signatures in the built and natural environments. The association of these historical events to specific earthquake sources (e.g., Gemlik, İznik, or Geyve fault segments) is still a matter of debate. We excavated two trenches across the İznik fault trace near Mustafali, a village about 10 km WSW of İznik where the morphological fault scarp was visible although modified by agricultural activities. Radiocarbon and TL dating on samples collected from the trenches show that the displaced deposits are very recent and span the past 2 millennia at most. Evidence for four surface faulting events was found in the Mustafali trenches. The integration of these results with historical data and previous paleoseismological data yields an updated Late Holocene history of surface-rupturing earthquakes along the İznik Fault in 1855, 740 (715), 362, and 121 CE. Evidence for the large M7 + historical earthquake dated 1419 CE generally attributed to this fault, was not found at any trench site along the İznik fault nor in the subaqueous record. This unfit between paleoseismological, stratigraphic, and historical data highlights one more time the urge for extensive paleoseismological trenching and offshore campaigns because of the high potential to solve the uncertainties on the seismogenic history (age, earthquake location, extent of the rupture and size) of this portion of NAFZ and especially on the attribution of historical earthquakes to the causative fault.
APA, Harvard, Vancouver, ISO, and other styles
9

Yalcin, A., C. Gokceoglu, and H. Sönmez. "Liquefaction severity map for Aksaray city center (Central Anatolia, Turkey)." Natural Hazards and Earth System Sciences 8, no. 4 (July 7, 2008): 641–49. http://dx.doi.org/10.5194/nhess-8-641-2008.

Full text
Abstract:
Abstract. Turkey having a long history of large earthquakes have been subjected to progressive adjacent earthquakes. Starting in 1939, the North Anatolian Fault Zone (NAFZ) produced a sequence of major earthquakes, of which the Mw 7.4 earthquake that struck western Turkey on 17 August 1999. Following the Erzincan earthquake in 1992, the soil liquefaction has been crucial important in the agenda of Turkey. Soil liquefaction was also observed widely during the Marmara and the Düzce Earthquake in 1999 (Sönmez, 2003). Aksaray city center locates in the central part of Turkey and the Tuzgolu Fault Zone passes through near the city center. The fault zone has been generated to moderate magnitude earthquakes. The geology of the Aksaray province basin contains Quaternary alluvial deposits formed by gravel, sand, silt, and clay layers in different thickness. The Tuzgolu Fault Zone (TFZ) came into being after the sedimetation of alluvial deposits. Thus, the fault is younger from lithological units and it is active. In addition, the ground water level is very shallow, within approximately 3 m from the surface. In this study, the liquefaction potential of the Aksaray province is investigated by recent procedure suggested by Sonmez and Gokceoglu (2005). For this purpose, the liquefaction susceptibility map of the Aksaray city center for liquefaction is presented. In the analysis, the input parameters such as the depth of the upper and lower boundaries of soil layer, SPT-N values, fine content, clay content and the liquid limit were used for all layers within 20 m from the surface. As a result, the category of very high susceptibility liquefaction class was not observed for the earthquake scenario of Ms=5.2, 4.9% of the study area has high liquefaction susceptibility. The percentage of the moderately, low, and very low liquefied areas are 28.2%, 30.2%, and 36.3%, respectively. The rank of non-liquefied susceptibility area is less than 1%.
APA, Harvard, Vancouver, ISO, and other styles
10

Houseman, Gregory A. "Why Earthquakes Threaten Two Major European Cities: Istanbul and Bucharest." European Review 26, no. 1 (November 20, 2017): 30–49. http://dx.doi.org/10.1017/s1062798717000448.

Full text
Abstract:
Istanbul and Bucharest are major European cities that face a continuing threat of large earthquakes. The geological contexts for these two case studies enable us to understand the nature of the threat and to predict more precisely the consequences of future earthquakes, although we remain unable to predict the time of those events with any precision better than multi-decadal. These two cities face contrasting threats: Istanbul is located on a major geological boundary, the North Anatolian Fault, which separates a westward moving Anatolia from the stable European landmass. Bucharest is located within the stable European continent, but large-scale mass movements in the upper mantle beneath the lithosphere cause relatively frequent large earthquakes that represent a serious threat to the city and surrounding regions.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Anatolian Fault; Earthquakes"

1

Wright, Timothy John. "Crustal deformation in Turkey from synthetic aperture radar interferometry." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karasozen, Ezgi. "Earthquake Focal Mechanism And Stress Tensor Analysisalong The Central Segment Of The North Anatolian Fault." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612214/index.pdf.

Full text
Abstract:
The North Anatolian Fault (NAF) is one of the world&rsquo
s largest active continental strikeslip faults, and forms the northern margin of the Anatolian plate. Although its geologic and geomorphologic features are well defined, crustal deformation and associated seismicity around central segment of the NAF is relatively less-known. In this study, we analyzed locations and focal mechanisms of 172 events with magnitude &ge
3, which are recorded by 39 broadband seismic stations deployed by the North Anatolian Passive Seismic Experiment (2005-2008). Distribution of the events shows that the local seismicity in the area is widely distributed, suggesting a widespread continental deformation, particularly in the southern block. For the entire data set, P- and S- arrival times are picked and events are relocated using the HYPOCENTER program. Then, relocated events which have a good azimuthal coverage with a maximum gap of 120°
and at least 13 P- wave readings are selected and 1-D inversion algorithm, VELEST, is used to derive the 1-D seismic velocity model of the region. The final model with updated locations is later put together to the FOCMEC program, to obtain focal mechanisms solutions. In this step, an iterative scheme is applied by increasing the number of data errors. To obtain more unique solutions, first motions of P and SH v phases are used along with SH/P amplitude ratios. Resultant 109 well-constrained focal mechanisms later used to perform stress tensor inversion across the region. Our focal mechanisms suggest a dominant strike-slip deformation along two major fault sets in the region. In the east, E-W trending splays (Ezinepazari, Almus, and Laç
in Kizilirmak) show right-lateral strike-slip motion similar to the NAF whereas in the west, N-S trending faults (Dodurga, Eldivan) show left lateral strike-slip motion. Overall, stress orientations are found as: maximum principal stress, &sigma
1, is found to be subhorizontal striking NW-SE, the intermediate principle stress, &sigma
2, is vertically orientated and the minimum principal stress, &sigma
3, is found to be NE &ndash
SW striking, consistent with the strike-slip regime of the region.
APA, Harvard, Vancouver, ISO, and other styles
3

Kaduri, Maor. "Interplay between creep/aseismic deformation, earthquakes and fluids in fault zones, with a special emphasis on the North Anatolian fault zone, Turkey." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU040/document.

Full text
Abstract:
Le fluage asismique des failles dans la croûte supérieure est un mécanisme de déformation crucial le long des limites des plaques tectoniques. Il contribue au bilan énergétique du cycle sismique, retardant ou déclenchant le développement des grands tremblements de terre. Un enjeu majeur est de comprendre quels sont les paramètres qui contrôlent la partition entre déformations sismiques et asismiques dans les failles actives tels que la lithologie ou les transformations sous contrainte à toutes échelles et comment cette partition évolue dans le temps. Des observations géologiques réalisées dans ce travail le long de la Faille Nord Anatolienne en Turquie, combinées à des analyses de laboratoire et des traitements d’images, permettent de donner un éclairage nouveau sur ces mécanismes de fluage. En plus, les relations entre déformation finie et transfert de matière ont été utilisées en parallèle avec des données géodésiques pour comprendre l’évolution de ces mécanismes de fluage depuis le début du déplacement de cette faille.Une corrélation claire est observée entre fluage superficiel et composition des gouges de la faille : les segments sismiques sont composés de calcaires massifs sans gouge de faille argileuse alors que les segments asismiques qui fluent comprennent des gouges argileuses résultant de la transformation progressive de roches volcaniques. Dans ces zones de fluage une schistosité espacée se développe durant le premier stade de la déformation conduisant à un litage tectonique de type foliation, au début oblique puis subparallèle à la faille, qui accommode une part de la déformation asismique par dissolution cristallisation sous contrainte. En conséquence, les minéraux solubles comme le quartz et les feldspaths sont dissous conduisant à la concentration passive des phyllosilicates dans les gouges de failles qui sont ensuite altérés par des circulations de fluides produisant des minéraux argileux à faible friction. Dans le même temps les zones endommagées autour de la gouge sont fracturées et les fractures scellées par des carbonates. Ces transformations minérales et structurales amollissent les gouges de failles et durcissent les zones endommagées conduisant à une évolution de la déformation sismique – asismique de diffuse à localisée.Des modèles qui intègrent déformation finie et transfert de matière révèlent deux échelles d’espace de la déformation qui correspondent à une alternance de deux types de bandes de cisaillement avec une schistosité soit oblique soit subparallèle à la faille. Diverses valeurs de la déformation finie ont été estimées pour calculer la proportion de déplacement asismique par rapport au déplacement total sismique et asismique de la faille (80 km). Cette proportion qui dépend de la lithologie de la zone de faille varie de 0.002% dans les zones sismiques calcaires et évolue dans le temps dans les zones asismiques des roches volcaniques de 59% pour les stades précoces à 18% pour les stages récents
Aseismic fault creep in the upper crust is a key deformation process along tectonic plate boundaries. It contributes to the energy budget during the seismic cycle, delaying or triggering the occurrence of large earthquakes. One of the greatest challenges is to understand which parameters control the partition between seismic and aseismic deformation in active faults, such as lithology or stress-driven transformations at all scales and how this partition evolves with time. Geological observations along the North Anatolian Fault in Turkey combined with laboratory analyses and imaging techniques performed in the present study shed new light on these mechanisms of fault creep. Moreover, the relationship between finite strain and mass change was compared with geodesy data in order to understand the evolution of these creep mechanisms since the beginning of this fault displacement.A clear correlation is shown between shallow creep and near-surface fault gouge composition: seismic segments of the fault are mostly composed of massive limestone without clay gouges, whereas aseismic creeping segments comprising clay gouges result from a progressive change of volcanic rocks. Within these creeping zones, anastomosing cleavage develops during the first stage of deformation, leading to tectonic layering that forms a foliation, oblique at first and then sub-parallel to the fault. This foliation accommodates part of the aseismic creep by pressure solution. Consequently, the soluble minerals such as quartz and feldspars are dissolved, leading to the passive concentration of phyllosilicates in the gouges where alteration transformations by fluid flow produce low friction clay minerals. At the same time damage zones are fractured and fractures are sealed by carbonates. As a result, these mineralogical and structural transformations weaken the gouge and strengthen the damage zone leading to the change from diffuse to localized seismic-aseismic zones.Models integrating finite strain and mass change reveal two spatial scales of strain that correspond to the alternation of two types of shear bands, with cleavages oriented either oblique or sub-parallel to the fault zone. Various total strain values were estimated in order to calculate the aseismic part of the total 80 km displacement along the locked and creeping sections. The aseismic strain fraction of the total tectonic strain in the fault depends on the fault lithology and varies from 0.002% in seismic zones made of limestone and evolves with time in the creeping zones made of volcanic rocks from 59% in the early stages of fault development to 18% in the recent times
APA, Harvard, Vancouver, ISO, and other styles
4

Fraser, Jeffrey G. "Four new paleoseismic investigations on the North Anatolian fault, Turkey, in the context of existing data." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210250.

Full text
Abstract:
La faille Nord-Anatolienne est une faille décrochante dextre de 1500 km et la frontière de plaque entre l’Anatolie au sud et l’Eurasie au nord. Le mouvement vers l’Ouest de l’Anatolie par rapport à l’Eurasie à une vitesse de 21 mm/an est accommodé par le jeu de cette faille. Durant le 20ième siècle, cette faille a rompu d’est en ouest lors d’une séquence de larges tremblements de terre qui ont eu lieu à intervalles rapprochés. De nombreux géologues ont cherché à mieux comprendre l’histoire récente de cette faille, et plus parti-culièrement son histoire sismique ou paléosismologique. La recherche en paléosismologie consiste à contraindre en utilisant l’enregistrement sédimentaire existant la nature et la distribution des tremblements de terre passés. Dans cette thèse, j’ai effectué 4 investi-gations paléosismologiques le long de la faille Nord-Anatolienne dans des lieux où à chaque tremblement de terre la faille forme des escarpements à contre-pente et constitue un piège à sédiment. En étudiant la composition et la distribution des sols enfouis et ex-posés dans de larges tranchées creusées au travers de ces pièges sédimentaires, on peut identifier des « horizons sismiques » (c’est-à-dire la surface terrestre lors du séisme). En datant par le radiocarbone les matériaux déposés au-dessous (avant) et au-dessus (après) d’un horizon sismique, on peut contraindre à quel moment un paléoséisme a eu lieu. Fi-nalement dans cette thèse, j’ai compilé une base de donnée des chronologies de l’ensemble de paléoséismes documentés sur la faille Nord-Anatolienne. Grâce à cette base de données, j’ai pu déterminer l’occurrence des séismes avec une méthodologie cohérente, et analyser la chronologie obtenue à la fois qualitativement et quantitativement. L’analyse des données révèle que la faille Nord-Anatolienne ne rompt habituellement pas en cascade comme durant le 20ième siècle, et que l’activité de la faille est fortement influencé par les trois principaux régimes tectoniques existant en Turquie. Les variabilités d’activité le long de la faille pourraient résulter de contraintes normales à la faille, qui décroissent d’une façon générale de l’Est vers l’Ouest. Une décroissance des contraintes normales à la faille diminuerait localement le seuil de contrainte requis pour déclencher un séisme. Ceci explique l’observation que le temps de récurrence des séismes est plus court à l’Ouest. A l’Est, les ruptures sont plus variables, et le temps de récurrence est bimodal. Ceci peut être lié à des variations temporelles des contraintes normales à la faille, peut-être induites par le jeu sismique des failles Est-Anatolienne et de la Mer Morte.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
5

Avsar, Ulas. "Evaluation Of Alluvial Deposits In Gemlik Basin In Terms Of Earthquake Odes." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607247/index.pdf.

Full text
Abstract:
Gemlik County is located in the Marmara Region (NW Turkey), which has been affected by destructive earthquakes sourced from North Anatolian Fault System throughout its history. The bulk of the settlement rests on alluvial deposits of the Gemlik pull-apart basin. So, it is vital to investigate the foundation soils in this basin and the response of them to earthquakes. Many earthquake codes were established by the authorities in different countries of the world to estimate the possible ground shaking and seismic loads which may act on buildings. In this study, Turkish Earthquake Code (TEC-1998) and Eurocode-8 (EN-1998) have been utilized. The analyses showed that EN-1998 results in more conservative estimates relative to TEC-1998, in terms of spectral ordinates. The source of difference between TEC-1998 and EN-1998 has been investigated and three possible reasons have been identified. The variation is probably due to the different seismic characteristics of Turkey and Europe, different soil amplification levels defined by the codes, and different soil classification procedures of the codes.
APA, Harvard, Vancouver, ISO, and other styles
6

Cambazoglu, Selim. "Preparation Of A Source Model For The Eastern Marmara Region Along The North Anatolian Fault Segments And Probabilistic Seismic Hazard Assessment Of Duzce Province." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614167/index.pdf.

Full text
Abstract:
The North Anatolian Fault System is one of the most important active strike-slip fault systems in the world. The August 17, 1999 and November 12, 1999 earthquakes at Kocaeli and Dü
zce are the most recent devastating earthquakes. The study area lies in the Eastern Marmara Region and is bounded by the 28.55-33.75 E and 40.00-41.20 N, latitude and longitude coordinates, respectively. There are numerous studies conducted in the study area in terms of active tectonics and seismicity, however studies are scale dependent. Therefore, a comprehensive literature survey regarding active tectonics of the region was conducted and these previous studies were combined with the lineaments extracted from 10 ASTER images via principle component analysis manual extraction method. Therefore, a line seismic source model for the Eastern Marmara region was compiled mainly based on major seismic events of instrumental period. The seismicity of these line segments were compared with the instrumental period earthquake catalogue compiled by Kandilli Observatory and Earthquake Research Institute with a homogeneous magnitude scale between 1900 and 2005. Secondary event and completeness of this catalogue was checked. The final catalogue was matched with the compiled seismic source for historical seismicity and source-scenario-segment-weight relationships were developed. This developed seismic source model was tested by a probabilistic seismic hazard assessment for Dü
zce city center by utilizing four different ground motion prediction equations. It was observed that Gutenberg-Richter seismicity parameter &lsquo
b&rsquo
does not have significant effect over the model, however change in the segmentation model have a low but certain influence.
APA, Harvard, Vancouver, ISO, and other styles
7

Tokmak, Musa. "Earthquakes And Ancient Site Selection In West Anatolia." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614292/index.pdf.

Full text
Abstract:
This study investigates the relationship between the ancient settlements in west Anatolia and physical, environmental parameters including topography, rock and morphological classes. Modern settlements are also included in the study to analyze if the response has changed to these parameters from past to the present. The databases created in the study include three topographic attributes (elevation, slope and aspect), rock type, ancient settlements and modern settlements. Analyses performed in the study involve distance and density analyses, morphological analysis
distribution within the rock types both for ancient and modern settlements. The results of the study demonstrated that 1) the active faults produced attractive topography to settle, 2) people preferred the vicinity of the fault line as settlement location, and 3) they were not aware of the earthquake potential of their location. Therefore, because of the advantage of the location they did not consider to change the place as indicated by rebuilding their settlement repeatedly at the same place after it is damaged.
APA, Harvard, Vancouver, ISO, and other styles
8

Ugurhan, Beliz. "Stochastic Strong Ground Motion Simulations On North Anatolian Fault Zone And Central Italy: Validation, Limitation And Sensitivity Analyses." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612413/index.pdf.

Full text
Abstract:
Assessment of potential ground motions in seismically active regions is essential for purposes of seismic design and analysis. Peak ground motion intensity values and frequency content of seismic excitations are required for reliable seismic design, analysis and retrofitting of structures. In regions of sparse or no strong ground motion records, ground motion simulations provide physics-based synthetic records. These simulations provide not only the earthquake engineering parameters but also give insight into the mechanisms of the earthquakes. This thesis presents strong ground motion simulations in three regions of intense seismic activity. Stochastic finite-fault simulation methodology with a dynamic corner frequency approach is applied to three case studies performed in Dü
zce, L&rsquo
Aquila and Erzincan regions. In Dü
zce study, regional seismic source, propagation and site parameters are determined through validation of the simulations against the records. In L&rsquo
Aquila case study, in addition to study of the regional parameters, the limitations of the method in terms of simulating the directivity effects are also investigated. In Erzincan case study, where there are very few records, the optimum model parameters are determined using a large set of simulations with an error-minimization scheme. Later, a parametric sensitivity study is performed to observe the variations in simulation results to small perturbations in input parameters. Results of this study confirm that stochastic finite-fault simulation method is an effective technique for generating realistic physics-based synthetic records of large earthquakes in near field regions.
APA, Harvard, Vancouver, ISO, and other styles
9

Aksoy, Murat Ersen. "Active tectonics and paleoseismology of the ganos fault segment and seismic characteristics of the 9 august 1912 Mürefte earthquake of the north anatolian fault (Western Turkey)." Strasbourg, 2009. https://publication-theses.unistra.fr/public/theses_doctorat/2009/AKSOY_Murat_Ersen_2009.pdf.

Full text
Abstract:
Au cours de la dernière centaine d’années, la faille nord-anatolienne (FNA) a déjà généré 9 séismes de magnitude supérieure à 7 en Turquie. Dans cette thèse nous investiguons la faille de Ganos qui est le segment occidental de la FNA. Cette faille fût responsable du séisme de Mürefte du 9 août 1912 (M 7. 3). La faille de Ganos est visible en surface sur 45-km alors que le reste est en mers Egée à l’est et Marmara à l’ouest. Cette faille de Ganos forme la section occidentale d’une large zone en « step-over » qui correspond au bassin losangique (pull-apart) de Marmara où le séisme de Kocaeli de 1999 fût localisé dans sa partie est. Les deux extrémités des ruptures de 1912 et de 1999 définissent une lacune sismique dans la mer de Marmara. Des analyses géomorphologiques sur les 45-km à terre de la faille de Ganos ont permis de décrire des structures typiques des failles en décrochement (ex : pull-apparts, bombements, step-over, rides de compression et décalage de rivières). La section à terre de la faille de Ganos est d’azimut ~N68°E, segmentée en deux step-over extensifs au niveau de Gölcük and Kavak. La combinaison entre les analyses morphologiques à terre et en mer suggèrent un minimum de 04 sous-segments limités par des complexités géométriques qui est de l’est à l’ouest comme suit : Le bassin central de Marmara, le coude de Ganos, step-over de Gölcük, step-over de Kavak and la dépression Saros. La dépression de Saros et le basin central de Marmara sont les plus importantes complexités structurales le long de la faille de Ganos et peuvent as ir comme barrière à la propagation de la rupture. Le déplacement cumulé calculé sur 69 localités, de la reconstruction tectonique permettent d’avoir un aperçu sur les caractéristiques de déformation du segment de Ganos à long terme et à court terme. Les mesures des déplacements de chenaux, des crêtes et une partie d’ancienne routes nous conduisent à évaluer un décalage entre 8 et 575m. Par ailleurs, nous suggérons un décalage (offset) plus important de 200m à 9000m basé sur la reconstruction du système hydrologique actuel. Une classification des décalages de chenaux montre 8 classes distinctes d’offset de glissement cumulée. Nous avons aussi utilisé les courbes de fluctuations du niveau de la mer noire afin de contraindre les période de fortes précipitations qui peuvent générer des incisions de chenaux. 5 groupes de glissement cumulé (de 70 à 300m) montrent une bonne corrélation avec un rehaussement du niveau de la mer conséquent à 4 ka, 10. 2 ka, 12. 5 ka, 14. 5 ka et 17. 5 ka. Les estimations du taux de glissement conduisent à un taux de glissement constant de of 17. 9 mm/an pour les dernières 20. 000 années et un taux de glissement variable de 17. 7 mm/an, 17. 7 mm/an, 17. 9 mm/an et 18. 9 mm/an pour les dernières 10. 2 ka, 12. 5 ka, 14. 5 ka et 17. 5 ka, respectivement. La paléosismologie a montré sur 03 sites (Güzelköy, Yeniköy and Yörgüç) des évidences de 8 événements sismiques, 5 datés entre 1043 – 835 BC et 1500 – 830 BC à Güzelköy et Yeniköy respectivement. Une meilleure datation a été contrainte pour les trois derniers événements à Güzelköy qui sont vraisemblablement des séismes en (1) 1343 ou 1344 (2) 1659 ou 1766b and (3) 1912. Nous suggérons deux scénarios de récurrence de séismes pour les derniers séismes en relation avec la faille de Ganos. Le scénario (1) conduit à une moyenne de récurrence de 285 ± 36 ans et englobe les événements de 1912, 1659, 1354/1344, 824, 484 alors que le scénario (2) est aussi valable si une récurrence non périodique des séismes est acceptée. La combinaison entre les analyses géomorphologiques et des résultats des tranchées conduit à un taux de glissement de la faille nord anatolienne au niveau de la région de Ganos. A Güzelköy deux paleo-chenaux présentement un décalage de 16 m et 21 m et conduit à un taux de 22. 3 ± 0. 5 mm/an pour ce dernier ~700 années et 26. 9 mm/an pour les 781 dernières années respectivement. A Yeniköy des datations des couches les plus profondes montre de 46 ± 1 m de décalage de chenal et donnant ainsi un maximum de 17 mm/an de taux de glissement. Le 9 août 1912 la région de Mürefte a été secouée par un séisme (M = 7,3) a frappé le long de la faille de Ganos et a provoqué de graves dégâts (Io = X) entre Tekirdag et de Çanakkale. Un deuxième grand choc s'est produit le 13 Septembre 1912 (M = 6,8) avec une zone épicentrale à l'ouest du choc principal, causant des destruction Io = VII à l'ouest de dommages Gaziköy et le long de la péninsule de Gallipoli. Des rupture en surface ont été enregistrées le long de la totalité des 45-km de la section en surface. Nous avons déterminé un glissement maximum de 5,5 m qui a été précédemment suggéré à 3 m par Ambraseys & Finkel et al. (1987). Nous prolongeons les mesures de glissement de Altunel et al. (2004) à partir de 31 localités à 45 avec une meilleure répartition le long de la faille. La distribution d’offsets indique qu'une certaine partie de la rupture est au large, c'est à dire dans la baie de Saros et Mer de Marmara. 73 enregistrement de sismogrammes historiques ont été collectés pour les événements du 9 août, 10 août et le 13 Septembre 1912. Des paires comparables ont été numérisées à l'aide du logiciels TESEO. La modélisation et deconvolution de la forme d'ondes sismiques a permis la récupération d'une fonction temps source en utilisant les événements du 13 Septembre et du 9 Août et fourni une fonction temps source de 40 secondes pendant le tremblement de terre du 9 août. Considérant une propagation unilatérale de la rupture de 3 km/s, cette durée implique longueur de rupture de 120 km, cohérente avec la dimension du séisme (Mw 7. 4). Les polarités P des ondes à 5 stations et des N68°E d’azimut de faille nous permet de déduire un mécanisme au foyer pour l’événement du 9 aout. L'ampleur du choc Septembre 13 exige 30 ± 10 km de rupture de surface et des contraint la terminaison ouest pour les 120 ± 20km de longueur de la rupture du 9 Août. Prenant en compte les deux événements, une position de l'épicentre dans la baie de Saros pour le choc du 13 septembre de 150 ± 20 km de longueur totale de rupture et s'étendrait de Saros en propageant vers l’est et rejoignant ainsi le bassin de Marmara central, en accord avec la complexité géométriques importantes le long de cette section de la faille nord-anatolienne. Par conséquent, la terminaison est de la rupture du 09 aout 1912 et la terminaison ouest de la rupture de 1999 impliquent un minimum de 100-km de lacune sismique dans la mer de Marmara. Cette longueur de faille suggère un séisme de magnitude M>7 qui devra être pris en compte dans l’évaluation du risque sismique de la région d’Istanbul
The North Anatolian Fault generated 9 large earthquakes (M>7) in Turkey during the last 100 years. We investigate the Ganos fault, the westernmost segment of the North Anatolian Fault that was responsible for the 9 August 1912 Mürefte earthquake (M 7. 3). The Ganos fault is exposed onland for 45 km while the rest is covered up by the Aegean and Marmara seas to the west and east respectively. The Ganos fault forms the western section of a large step-over area that corresponds to the Marmara pull-apart and experienced the 1999 Kocaeli earthquake on its east. The two ends of the 1912 and 1999 earthquake ruptures define the seismic gap in the Sea of Marmara. Geomorphic analysis along the 45-km-long onland section of the Ganos fault allowed documenting typical structures of strike slip faulting; i. E. Step-overs, pull-aparts, bends, pressure ridges, sag-ponds, offset ridges, shutter ridges and stream displacement. The onland section of the Ganos fault is expressed as ~N68°E striking linear geometry, segmented by two extensional step-overs at Gölcük and Kavak. The combined analysis of offshore and onland fault morphology suggests a minimum of 4 sub-segments limited by geometrical complexities which are from east to west, the Central Marmara basin, Ganos bend, Gölcük step-over, Kavak step-over and Saros Trough. The Saros Trough and the Central Marmara basin are the largest structural complexities along the Ganos fault and may serve as barriers to earthquake rupture propagation. Cumulative displacements determined at 69 localities and tectonic reconstructions provide insights on the long-term and short-term deformation characteristic of the Ganos fault segment. Measurements of displaced streams, ridges and partly ancient roads yield right lateral offsets ranging from 8 to 575 m. Furthermore, we suggest larger offsets from 200 to 9000 m based on reconstructions of the present-day drainage system. A classification of the stream offsets shows 8 distinct classes of cumulative slip. We used sea level fluctuation curves of the Black Sea in order to constrain the timing of high precipitations periods which can trigger channel incisions. Consecutive 5 cumulative slip groups (from 70 to 300 m) show well correlations with subsequent sea level rise periods at 4 ka, 10. 2 ka, 12. 5 ka, 14. 5 ka and 17. 5 ka. Slip rate estimations yield a constant slip rate of 17. 9 mm/yr for the last 20. 000 years and a variable slip rate of 17. 7 mm/yr, 17. 7 mm/yr, 17. 9 mm/yr and 18. 9 mm/yr for the last 10. 2 ka, 12. 5 ka, 14. 5 ka and 17. 5 ka, respectively. Paleoseismology at three sites (Güzelköy, Yeniköy and Yörgüç) showed evidence of 8 faulting events, 5 of which post-date 1043 – 835 BC and 1500 – 830 BC at Güzelköy site and Yeniköy site, respectively. A better timing was constrained for the last three events at Güzelköy which are most probably the earthquakes in (1) 1344 or 1354 (2) 1659 or 1766b and (3) 1912. We suggest two earthquake recurrence scenarios for the last historical earthquakes attributed to the Ganos fault. Scenario 1 yields an average recurrence interval of 285 ± 36 years and encompasses the 1912, 1659, 1354/1344, 824, 484 events, whereas Scenario 2 gives an average recurrence interval of 285 ± 93 years and includes the 1912, 1766, 1354/1344, 824, 484 events. Considering that earthquakes occur periodic the suitable seismic history corresponds to Scenario 1. However scenario 2 is also valid if a non-periodic earthquake occurrence is accepted. The combination of geomorphic analysis and trenching results provides slip rates for the North Anatolian Fault at the Ganos region. At Güzelköy two paleo-channels offset for 16 m and 21 m yield 22. 3 ± 0. 5 mm/yr for the last ~700 years and 26. 9 mm/yr for the last 781 years, respectively. At Yeniköy dating from the lowermost units of the 46 ± 1 m offset stream provided a maximum 17 mm/yr slip rate for the last 2840 years. The 9 August 1912 Mürefte earthquake (Ms=7. 3) struck along the Ganos fault causing severe destruction (Io = X) between Tekirdağ and Çanakkale. A second large shock occurred on 13 September 1912 (Ms = 6. 8) with an epicentral region to the west of the first main shock, giving rise to Io = VII damage west of Gaziköy and along the Gallipoli peninsula. Surface breaks have been recorded along the entire 45-km-long onland section. We determined a maximum slip of 5. 5 m that was previously suggested as 3 m (Ambraseys & Finkel et al, 1987). We extend the slip measurements of Altunel et al. , (2004) from 31 localities to 45 with a better distribution along the fault. The offset distribution indicates that a certain length of the rupture is offshore, i. E. , in the Saros bay and Sea of Marmara. 73 historical seismogram recordings have been collected for the 9 August, 10 August and 13 September 1912 shocks. Comparable pairs have been digitized using TESEO software. The modelling and deconvolution of seismic waveforms allowed retrieving a relative source time function using the 13 September and 9 August shocks and provided a source duration of 40 seconds for the 9 August earthquake. Considering a unilateral rupture propagation of 3 km/s, this duration implies rupture length of 120 km, consistent with the earthquake size (Mw 7. 4). P-wave polarities at 5 stations and field based N68°E fault strike allow us to construct the focal mechanism solution for the 9 August shock. The size of the 13 September shock requires 30 ± 10 km of surface faulting and constrains the western limit for the 120 ± 20 km long 9 August rupture. Taking into account the two events, an epicentre location in the Saros bay for the 13 September shock, the 150 ± 20 km long total rupture length would extend from Saros Trough towards east and reach the Central Marmara Basin, consistent with major geometric complexities along this section of the North Anatolian Fault. Therefore, the eastern termination of the 9 August 1912 rupture and the western termination of the 1999 earthquake rupture imply a minimum 100-km-long seismic gap in the Sea of Marmara. This fault length suggests an earthquake size M>7 that should be taken into account in any seismic hazard assessment for the Istanbul region
APA, Harvard, Vancouver, ISO, and other styles
10

Levendoglu, Mert. "Probabilistic Seismic Hazard Assessment Of Ilgaz - Abant Segments Of North Anatolian Fault Using Improved Seismic Source Models." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615430/index.pdf.

Full text
Abstract:
Bolu-Ilgaz region was damaged by several large earthquakes in the last century and the structural damage was substantial especially after the 1944 and 1999 earthquakes. The objective of this study is to build the seismic source characterization model for the rupture zone of 1944 Bolu-Gerede earthquake and perform probabilistic seismic hazard assessment (PSHA) in the region. One of the major improvements over the previous PSHA practices accomplished in this study is the development of advanced seismic source models in terms of source geometry and reoccurrence relations. Geometry of the linear fault segments are determined and incorporated with the help of available fault maps. Composite magnitude distribution model is used to properly represent the characteristic behavior of NAF without an additional background zone. Fault segments, rupture sources, rupture scenarios and fault rupture models are determined using the WG-2003 terminology. The Turkey-Adjusted NGAW1 (Gü
lerce et al., 2013) prediction models are employed for the first time on NAF system. The results of the study is presented in terms of hazard curves, deaggregation of the hazard and uniform hazard spectrum for four main locations in the region to provide basis for evaluation of the seismic design of special structures in the area. Hazard maps of the region for rock site conditions and for the proposed site characterization model are provided to allow the user perform site-specific hazard assessment for local site conditions and develop site-specific design spectrum. The results of the study will be useful to manage the future seismic hazard in the region.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Anatolian Fault; Earthquakes"

1

Multidisciplinary research on fault activity in the western part of the North Anatolian fault zone (4). [Istanbul]: Boğaziçi University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anatolian Fault; Earthquakes"

1

Uluğ, A., and E. Özel. "Transition of the North Anatolian Fault Zone (NAFZ) in the Sea of Marmara." In Integration of Earth Science Research on the Turkish and Greek 1999 Earthquakes, 47–59. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0383-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çağatay, M. N., N. Görür, and B. Alpar. "Western Extension of the North Anatolian Fault and Associated Structures in the Gulf of Saros, NE Aegean Sea." In Integration of Earth Science Research on the Turkish and Greek 1999 Earthquakes, 61–70. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0383-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Süer, Selin, Nilgün Güleç, Halim Mutlu, David R. Hilton, Candan Çifter, and Mesut Sayin. "Geochemical Monitoring of Geothermal Waters (2002–2004) along the North Anatolian Fault Zone, Turkey: Spatial and Temporal Variations and Relationship to Seismic Activity." In Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume III, 17–43. Basel: Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8738-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Altunel, Erhan, Cengiz Zabci, and H. Serdar Akyüz. "Retracted: Paleoseismic History of the North Anatolian Fault Zone." In Encyclopedia of Earthquake Engineering, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36197-5_216-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chui, Glennda. "Earth Sciences." In A Field Guide for Science Writers. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195174991.003.0042.

Full text
Abstract:
In August 1999, I stood in the ruins of a collapsed apartment building near Izmit, Turkey—one of 60,000 buildings destroyed in 40 seconds by the most powerful earthquake to strike a major city in nearly a century. It was a modern building surrounded by trees and greenery. A couch and a table stood intact in a room bright with potted flowers, now open to the air. A woman's coat had been carefully draped over the remains of a wall. As the stench of death rose around us, I wondered if the coat's owner was buried in the rubble beneath my feet. I was sent to Turkey to chase the science—to bring home lessons for readers who live near a strikingly similar fault system in California. But as I surveyed the damage with a team of scientists and engineers, there was no separating the science from the politics. Covered with a fine film of sweat mixed with dust from crumbled buildings and lime that had been scattered to prevent the spread of disease, we saw firsthand how corruption and greed had conspired with the forces of nature to kill more than 17,000 people. Some buildings were constructed right on the North Anatolian Fault. Its mole-like tracks plowed through barracks that had collapsed on 120 military officers, a highway overpass that fell on a bus, a bridge whose failure cut off access and aid to four villages. Researchers found concrete that was crumbly with seashells, chunks of Styrofoam where reinforcing metal bars should have been. Yet some well-reinforced buildings nicked or even pierced by the fault came through just fine, including an apartment building that moved 10 feet and had its front steps sliced off. Another home was cut in two; half collapsed, the other survived with windows intact. “How the hell?” marveled one engineer. “There's no way that building should stand in an earthquake.” That blend of science, politics, and human nature is just part of what makes earth science so compelling. It goes far beyond the academics of geology and plate tectonics to embrace earthquakes, floods, hurricanes, volcanoes, landslides—natural hazards that affect thousands of people and change the course of civilization.
APA, Harvard, Vancouver, ISO, and other styles
6

Mekik, C., H. Kutoğlu, and K. S. Gormus. "Historical account of monitoring North Anatolian Fault at Ismetpasa segment and latest findings." In Earthquake-Soil Interaction, 15–28. WIT Press, 2014. http://dx.doi.org/10.2495/978-1-84564-978-4/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bayrak, Yusuf, Hakan Cnar, and Erdem Bayrak. "The North Anatolian Fault Zone: an Evaluation of Earthquake Hazard Parameters." In New Frontiers in Tectonic Research - At the Midst of Plate Convergence. InTech, 2011. http://dx.doi.org/10.5772/17597.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anatolian Fault; Earthquakes"

1

Zeybek, Fatih. "Innovative Construction Methods of Osmangazi Bridge." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0912.

Full text
Abstract:
<p>Construction period of Osmangazi Bridge was around 39 months and a short period for a large multi span bridge in a marine environment.</p><p>The Osmangazi Bridge is situated in a very active seismic area where in 1999 the 7.6 Kocaeli earthquake occurred on the North Anatolian Fault in 1999. Therefore, the bridge is designed to resist earthquakes. The North Anatolian fault is approximately 1600 km long major right-lateral strike slip fault forming the tectonic boundary between the Eurasian Plate and Anatolian Block of the African plate.</p><p>Bridge Owner required aesthetic, seismic resistant, durable, economic, maintained bridge and fast track opening to traffic.</p><p>This paper summarizes the innovative construction technics used during construction of the Osmangazi Bridge that is fourth longest suspension bridge in the World with a main span of 1550 meters.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Sezgin, N., and A. Pinar. "Estimates Of Stress Directions By Inversion Of Earthquake Fault Plane Solutions From North Anatolian Faut Zone To North Anatolian Through." In 4th Congress of the Balkan Geophysical Society. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.26.o19-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aydindag, Ebru, Pinar Kirci, and Ismail Kirbaslar. "Fractal Analyzing of Active Earthquake Fault Data in the Eastern Anatolian Fault Zone." In 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC). IEEE, 2018. http://dx.doi.org/10.1109/saic.2018.8516887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yilmaz, Şeyda, Erdem Bayrak, and Yusuf Bayrak. "Comparision of the different probability distributions for earthquake hazard assessment in the North Anatolian Fault Zone." In INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4945829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Türker, Tuğba, and Yusuf Bayrak. "A Poisson method application to the assessment of the earthquake hazard in the North Anatolian Fault Zone, Turkey." In INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4945828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography