Academic literature on the topic 'Anatolian Fault'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anatolian Fault.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anatolian Fault"

1

Özsayin, Erman, and Kadir Dirik. "The role of oroclinal bending in the structural evolution of the Central Anatolian Plateau: evidence of a regional changeover from shortening to extension." Geologica Carpathica 62, no. 4 (August 1, 2011): 345–59. http://dx.doi.org/10.2478/v10096-011-0026-7.

Full text
Abstract:
The role of oroclinal bending in the structural evolution of the Central Anatolian Plateau: evidence of a regional changeover from shortening to extensionThe NW-SE striking extensional Inönü-Eskişehir Fault System is one of the most important active shear zones in Central Anatolia. This shear zone is comprised of semi-independent fault segments that constitute an integral array of crustal-scale faults that transverse the interior of the Anatolian plateau region. The WNW striking Eskişehir Fault Zone constitutes the western to central part of the system. Toward the southeast, this system splays into three fault zones. The NW striking Ilıca Fault Zone defines the northern branch of this splay. The middle and southern branches are the Yeniceoba and Cihanbeyli Fault Zones, which also constitute the western boundary of the tectonically active extensional Tuzgölü Basin. The Sultanhanı Fault Zone is the southeastern part of the system and also controls the southewestern margin of the Tuzgölü Basin. Structural observations and kinematic analysis of mesoscale faults in the Yeniceoba and Cihanbeyli Fault Zones clearly indicate a two-stage deformation history and kinematic changeover from contraction to extension. N-S compression was responsible for the development of the dextral Yeniceoba Fault Zone. Activity along this structure was superseded by normal faulting driven by NNE-SSW oriented tension that was accompanied by the reactivation of the Yeniceoba Fault Zone and the formation of the Cihanbeyli Fault Zone. The branching of the Inönü-Eskişehir Fault System into three fault zones (aligned with the apex of the Isparta Angle) and the formation of graben and halfgraben in the southeastern part of this system suggest ongoing asymmetric extension in the Anatolian Plateau. This extension is compatible with a clockwise rotation of the area, which may be associated with the eastern sector of the Isparta Angle, an oroclinal structure in the western central part of the plateau. As the initiation of extension in the central to southeastern part of the Inönü-Eskişehir Fault System has similarities with structures associated with the Isparta Angle, there may be a possible relationship between the active deformation and bending of the orocline and adjacent areas.
APA, Harvard, Vancouver, ISO, and other styles
2

Barbot, S., and J. R. Weiss. "Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia." Geophysical Journal International 226, no. 1 (February 27, 2021): 422–45. http://dx.doi.org/10.1093/gji/ggab078.

Full text
Abstract:
SUMMARY The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north–south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa–Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8 mm yr–1 in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy–Pliny–Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation.
APA, Harvard, Vancouver, ISO, and other styles
3

Aydar, E., A. Gourgaud, C. Deniel, N. Lyberis, and N. Gundogdu. "Le volcanisme quaternaire d'Anatolie centrale (Turquie): association de magmatismes calco-alcalin et alcalin en domaine de convergence." Canadian Journal of Earth Sciences 32, no. 7 (July 1, 1995): 1058–69. http://dx.doi.org/10.1139/e95-087.

Full text
Abstract:
Collision volcanism in Central Anatolia (Cappadocia) began at least in the late Miocene. Because of the North–South Arabian-Eurasian convergence since this period, the Anatolian block is displaced towards the West along the North and East Anatolian strike-slip faults. Kinematic reconstructions show that the East Anatolian Fault is both sinistral and convergent. As a consequence, the Anatolian block is currently being deformed. Quaternary volcanism in Central Anatolia is represented by several hundreds of monogenetic scoria cones, lava flows, maars, and domes as well as two strato-volcanoes, Hasan Dag and Erciyes Dag. The monogenetic volcanism is bimodal (basalts and rhyolites), whereas the stratovolcanoes exhibit a complete calc-alkaline suite, from basalts to rhyolites. Most of the igneous products are calc-alkaline. Basalts erupted mainly from the monogenetic cones, lava flows, and maars. Andesites are encountered in the strato-volcanoes as lava flows, domes, and nuees ardentes deposits. Dacites and rhyolites occur as ignimbrites and dispersed maars and domes. Volcanic events were recorded up to historical times. Some basalts from monogenetic edifices, contemporaneous with the calc-alkaline suite, exhibit mineralogical and geochemical features that are typical of intraplate alkaline suites, such as normative nepheline, alkali feldspars, and Ti and Cr-rich Cpx. Euhedral microlites of aluminous garnet, although rare, have been observed in basalts, rhyodacites, and rhyolites. This association of contemporaneous calc-alkaline and alkaline suites may be related to collision tectonics.
APA, Harvard, Vancouver, ISO, and other styles
4

SELİM, H. HALUK, and OKAN TÜYSÜZ. "The Bursa–Gönen Depression, NW Turkey: a complex basin developed on the North Anatolian Fault." Geological Magazine 150, no. 5 (March 6, 2013): 801–21. http://dx.doi.org/10.1017/s0016756812000945.

Full text
Abstract:
AbstractIn this study, we show that the southern branch of the North Anatolian Fault has been active since Late Pliocene time and that evidence of activity is supported by geological and seismological data. The southern branch of the North Anatolian Fault consists of four segments from west to east: Yenice–Gönen, Manyas–Mustafakemalpaşa, Uluabat and Bursa. These faults delimit the Bursa–Gönen Depression, with the Bandırma–Mudanya Uplift to the north and Uludağ–Sularya Uplift to the south. The Bursa–Gönen Depression includes Upper Pliocene to Recent sediments that thicken to the south, suggesting a deposition pattern under active fault control. Study of fault kinematics suggests that the Bursa–Gönen Depression started as a small pull-apart basin during Late Pliocene time, and then evolved to a large depression. The faults delimiting this depression are still active and capable of producing future earthquakes.
APA, Harvard, Vancouver, ISO, and other styles
5

Yavaşoğlu, Hasan Hakan, Mehmet Nurullah Alkan, Serdar Bilgi, and Öykü Alkan. "Monitoring aseismic creep trends in the İsmetpaşa and Destek segments throughout the North Anatolian Fault (NAF) with a large-scale GPS network." Geoscientific Instrumentation, Methods and Data Systems 9, no. 1 (February 26, 2020): 25–40. http://dx.doi.org/10.5194/gi-9-25-2020.

Full text
Abstract:
Abstract. The North Anatolian Fault Zone (NAFZ) is an intersection area between the Anatolian and Eurasian plates. The Arabian Plate, which squeezes the Anatolian Plate from the south between the Eurasian Plate and itself, is also responsible for this formation. This tectonic motion causes the Anatolian Plate to move westwards with almost a 20 mm yr−1 velocity, which has caused destructive earthquakes in history. Block boundaries that form the faults are generally locked to the bottom of the seismogenic layer because of the friction between blocks and are responsible for these discharges. However, there are also some unique events observed around the world, which may cause partially or fully free-slipping faults. This phenomenon is called “aseismic creep” and may occur through the entire seismogenic zone or at least to some depths. Additionally, it is a rare event in the world located in two reported segments along the North Anatolian Fault (NAF), which are İsmetpaşa and Destek. In this study, we established GPS networks covering those segments and made three campaigns between 2014 and 2016. Considering the long-term geodetic movements of the blocks (Anatolian and Eurasian plates), surface velocities and fault parameters are calculated. The results of the model indicate that aseismic creep still continues with rates of 13.2±3.3 mm yr−1 at İsmetpaşa and 9.6±3.1 mm yr−1 at Destek. Additionally, aseismic creep behavior is limited to some depths and decays linearly to the bottom of the seismogenic layer at both segments. This study suggests that this aseismic creep behavior will not prevent medium- to large-scale earthquakes in the long term.
APA, Harvard, Vancouver, ISO, and other styles
6

Karaman, M. "The tectonic evolution of Lake Eğirdir, West Turkey." Geologos 16, no. 4 (December 1, 2010): 223–34. http://dx.doi.org/10.2478/v10118-010-0006-x.

Full text
Abstract:
The tectonic evolution of Lake Eğirdir, West Turkey Lake Eğirdir is one of the most important fresh-water lakes of Turkey. It has a tectonics-related origin. The area formed under a roughly N-S compressional tectonic regime during the Middle Miocene. The stresses caused slip faults west and east of Isparta Angle, and the lake formed at the junction of these faults. The area subsided between normal faults, thus creating the topographic condition required for a lake. The lacustrine sediments have fundamentally different lithologies. After the Late Miocene, central Anatolia started to move westwards, but western Anatolia moved in a SW direction along the South-western Anatolian Fault, which we suggest to have a left lateral slip, which caused that the Hoyran Basin moved t7 km towards the SW and rotated 40° counterclockwise relative to Lake Eğirdir.
APA, Harvard, Vancouver, ISO, and other styles
7

Dresen, G., M. Aktar, M. Bohnhoff, and H. Eyidogan. "Drilling the North Anatolian Fault." Scientific Drilling SpecialIssue (November 1, 2007): 42–44. http://dx.doi.org/10.5194/sd-specialissue-42-2007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dresen, G., M. Bohnhoff, M. Aktar, and H. Eyidogan. "Drilling the North Anatolian Fault." Scientific Drilling 6 (July 1, 2008): 58–59. http://dx.doi.org/10.5194/sd-6-58-2008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sugai, Toshihiko, Yasuo Awata, Ryo Anma, and Yukiyasu Saka. "North Anatolian Fault in Turkey." Journal of the Geological Society of Japan 105, no. 3 (1999): V—VI. http://dx.doi.org/10.5575/geosoc.105.v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Acarel, Diğdem, Musavver Didem Cambaz, Fatih Turhan, Ahu Kömeç Mutlu, and Remzi Polat. "Seismotectonics of Malatya Fault, Eastern Turkey." Open Geosciences 11, no. 1 (December 31, 2019): 1098–111. http://dx.doi.org/10.1515/geo-2019-0085.

Full text
Abstract:
Abstract Turkey is located in a seismically active region with a complex tectonic history. In order to perform seismic risk assessment precisely, major fault zones (North Anatolian Fault Zone and East Anatolian Fault Zone) that are well defined are monitored continuously. It is a widely known fact that intraplate settings, such as Anatolian Plate, in which devastating earthquakes may occur, need to be observed densely. In this study, we investigate the seismotectonics of Malatya Fault within the Malatya Ovacık Fault Zone (MOFZ), which is one of the major agents responsible for internal deformation acting on Anatolian Plate. Recent geological and paleoseismological studies underline the necessity of comprehending the seismicity and latency of a major earthquake in this fault zone.We applied traditional techniques to investigate data of such a region. Earthquakes that occured in the vicinity of Malatya Fault between the years 2011 and mid-2019 are employed in a detailed analysis. The results of this study are constrained by the distribution of sensor networks in the region, yet allowing to define an active structure which is not included in the active fault map of Turkey, therefore, making a significant contribution to seismic hazard estimation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Anatolian Fault"

1

Papaleo, Elvira. "The north Anatolian fault, Turkey : insights from seismic tomography." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=239855.

Full text
Abstract:
The North Anatolian Fault Zone (NAFZ) in Turkey is a major continental strike-slip fault, 1200 km long and with a current slip rate of 25 mm/yr. Historical records show that the NAFZ is capable of producing high-magnitude earthquakes, activating different segments of the fault in a westward progression. Currently, the NAFZ poses a major seismic hazard for the city of Istanbul, which is situated close to one of the two strands into which the fault splays in northwestern Turkey. Understanding of fault zone structure and properties at depth is essential to constrain where deformation occurs within the lithosphere and how strain localises with depth. In fact, geodynamic models explaining surface deformation require knowledge of the width and depth extent of the fault zone in both the crust and upper mantle. In this framework, this thesis aims to provide better constraints on fault zone geometry within the lithosphere. To achieve this objective P and S wave teleseismic tomography have been applied to the data recorded by a dense array of broadband seismic stations (DANA, Dense Array for Northern Anatolia); through teleseismic tomography it was possible to image the NAFZ structure in both the crust and uppermost mantle. In addition, joint inversion i of P-wave teleseismic data and local earthquake data collected using the same array provided a greatly improved resolution within the upper 20 km of the crust. Results from this work highlighted the presence of a shear zone associated to the northern branch of the NAFZ in the study area. The fault zone appears to be 15 km wide within the upper crust and narrows to < 10 km within the lower crust and to Moho depth. In the uppermost mantle its width is constrained to be 30 to 50 km.
APA, Harvard, Vancouver, ISO, and other styles
2

Wright, Timothy John. "Crustal deformation in Turkey from synthetic aperture radar interferometry." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Najdahmadi, Seyedehbita [Verfasser]. "Imaging the North Anatolian Fault Zone with Fault Zone Head Waves, Reflected and Converted Phases / Seyedehbita Najdahmadi." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1144270219/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, David George. "Multi-scale imaging of the North Anatolian Fault Zone using seismic interferometry." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/21717/.

Full text
Abstract:
Seismic imaging allows us to examine the subsurface structure of fault zones. Accurate knowledge of the structure of fault zones is critical for our understanding of earthquake hazard, and the processes of strain accumulation within the crust and upper mantle. The North Anatolian Fault Zone is a ∼ 1200 km long continental strike-slip fault zone located in northern Turkey. In the 20th century, the North Anatolian Fault has accommodated a westward propagating sequence of twelve Mw > 6.5 earthquakes. The most recent of these earthquakes occurred at Izmit and Duzce in 1999, 86 km south-east of Istanbul. In this thesis I use techniques from seismic interferometry to create seismic images of the crustal and upper mantle structure along the Izmit-Adapazari section of the North Anatolian Fault, in the vicinity of the 1999 Izmit rupture. I develop methods for observing P-wave reverberations from the free surface that are contained within the ambient seismic noise field and the P-wave coda of teleseismic earthquakes. By autocorrelating the seismic records from a dense seismic array in north-western Turkey, I use these reverberations to create high resolution seismic reflection images of the crust and upper mantle beneath the North Anatolian Fault Zone. In addition, I calculate inter-station cross-correlations to observe Rayleigh and Love waves propagating between stations in the Izmit-Adapazari region. I then use Rayleigh and Love wave phase velocity measurements to perform surface wave tomography and construct an S-wave velocity model of the top 10 km of the crust in the Izmit-Adapazari region. In the reflection images, I observe a clear arrival associated with a Moho reflected P-wave (PPmP). A ~ 3 s variation in travel time of the PPmP arrival suggests that the Moho is vertically offset beneath the northern branch of the North Anatolian Fault Zone. The vertical offset in the Moho occurs over a region less than 7 km wide approximately 16 km north of the surface trace of the North Anatolian Fault. The location of the vertical offsets indicates that the North Anatolian Fault is a localised structure that dips at an angle between 60◦ and 70◦ through the entire crust and enters the upper mantle as a narrow shear zone. I also note a reduction in the amplitude of the PPmP phase beneath both the northern and southern branches of the North Anatolian Fault Zone. This amplitude reduction could result from the presence of fluids and serpentinite minerals in the upper mantle which reduce Moho reflectivity beneath the North Anatolian Fault. The surface wave tomography shows that the North Anatolian Fault Zone is a vertical zone of low S-wave velocity (2.8 – 3.0 km s−1) in the top 10 km of the crust. I also detect further low velocity anomalies (1.2 – 1.6 km s−1) associated with ~ 3 km deep pull-apart sedimentary basins along both branches of the North Anatolian Fault Zone. Both branches of the North Anatolian Fault appear to skirt the edges of the Armutlu Block, a tectonic unit of crystalline rocks that exhibits high S-wave velocity (3.2 – 3.6 km s−1). It is likely that the Armutlu Block has a strong rheology, and localises strain along the faults at its northern and southern edges. I also measure the azimuthal anisotropy of the phase velocity observations, which displays an average magnitude of ~ 2.5% with a fast direction of 70◦ from north. The 70◦ fast direction aligns parallel with the direction of maximum extension in the Izmit-Adapazari region, and indicates that deformation-aligned mineral fabrics may dominate the anisotropy signal in the top 10 km of the crust.
APA, Harvard, Vancouver, ISO, and other styles
5

Karasozen, Ezgi. "Earthquake Focal Mechanism And Stress Tensor Analysisalong The Central Segment Of The North Anatolian Fault." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612214/index.pdf.

Full text
Abstract:
The North Anatolian Fault (NAF) is one of the world&rsquo
s largest active continental strikeslip faults, and forms the northern margin of the Anatolian plate. Although its geologic and geomorphologic features are well defined, crustal deformation and associated seismicity around central segment of the NAF is relatively less-known. In this study, we analyzed locations and focal mechanisms of 172 events with magnitude &ge
3, which are recorded by 39 broadband seismic stations deployed by the North Anatolian Passive Seismic Experiment (2005-2008). Distribution of the events shows that the local seismicity in the area is widely distributed, suggesting a widespread continental deformation, particularly in the southern block. For the entire data set, P- and S- arrival times are picked and events are relocated using the HYPOCENTER program. Then, relocated events which have a good azimuthal coverage with a maximum gap of 120°
and at least 13 P- wave readings are selected and 1-D inversion algorithm, VELEST, is used to derive the 1-D seismic velocity model of the region. The final model with updated locations is later put together to the FOCMEC program, to obtain focal mechanisms solutions. In this step, an iterative scheme is applied by increasing the number of data errors. To obtain more unique solutions, first motions of P and SH v phases are used along with SH/P amplitude ratios. Resultant 109 well-constrained focal mechanisms later used to perform stress tensor inversion across the region. Our focal mechanisms suggest a dominant strike-slip deformation along two major fault sets in the region. In the east, E-W trending splays (Ezinepazari, Almus, and Laç
in Kizilirmak) show right-lateral strike-slip motion similar to the NAF whereas in the west, N-S trending faults (Dodurga, Eldivan) show left lateral strike-slip motion. Overall, stress orientations are found as: maximum principal stress, &sigma
1, is found to be subhorizontal striking NW-SE, the intermediate principle stress, &sigma
2, is vertically orientated and the minimum principal stress, &sigma
3, is found to be NE &ndash
SW striking, consistent with the strike-slip regime of the region.
APA, Harvard, Vancouver, ISO, and other styles
6

Tatar, Orhan. "Neotectonic structures in the east central part of the North Anatolian Fault Zone, Turkey." Thesis, Keele University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hussain, Ekbal. "Mapping and modelling the spatial variation in strain accumulation along the North Anatolian Fault." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/14263/.

Full text
Abstract:
Since 1900, earthquakes worldwide have been responsible for over 2 million fatalities and caused nearly $2 trillion of economic damage. Accurate assessment of earthquake hazard is therefore critical for nations in seismically active regions. For a complete understanding of seismic hazard, the temporal pattern of strain accumulation, which will eventually be released in earthquakes, needs to be understood. But earthquakes typically occur every few hundred to few thousand years on any individual fault, and our observations of deformation usually only cover time periods of a decade or less. For this reason, our knowledge of the temporal variation in strain accumulation rate is limited to insights gleaned from kinematic models of the earthquake cycle that use measurements of present-day strain to infer the behaviour on long time scales. Previous studies have attempted to address this issue by combining data from multiple faults with geological estimates of long-term strain rates. In this thesis I propose a different approach, which is to observe deformation at multiple stages of the earthquake cycle for a single fault with segments that that have failed at different times. In the last century the North Anatolian Fault (NAF) in Turkey has accommodated 12 large earthquakes (Mw >6.5) with a dominant westward progression in seismicity. If we assume that each of these fault segments are at a different stage of the earthquake cycle then this provides a unique opportunity to study the variation in along-strike surface deformation, which can be equated to variation of deformation in time. In this thesis I use Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) observations to examine the spatial distribution of strain along the NAF. InSAR is an attractive technique to study surface displacements at a much higher spatial resolution (providing a measurement every 30 m) compared to established GNSS measurements, with station separations between 10 km to 100 km in Turkey. I specifically address a key technical challenge that limits the wide uptake of InSAR: phase unwrapping, the process of recovering continuous phase values from phase data that are measured modulo 2π radians. I develop a new unwrapping procedure for small baseline InSAR measurements that iteratively unwraps InSAR phase. For each iteration, this method identifies pixels unwrapped correctly in the previous iteration and applies a high cost to changing the phase difference between these pixels in the next iteration. In this way, the iterative unwrapping method uses the error-free pixels as a guide to unwrap the regions that contained unwrapping errors in previous iterations. I combine measurements of InSAR line-of-sight displacements with published GNSS velocities to show that an ∼80 km section of the NAF that ruptured in the 1999 Izmit earthquake (Mw 7.4) is creeping at a steady rate of ∼5 mm/yr with a maximum rate of 11 ± 2 mm/yr near the city of Izmit within the observation period 2002-2010. I show that in terms of the moment budget and seismic hazard the effect of the shallow, aseismic slip in the past decade is small compared to that from plate loading. Projecting the shallow creep displacement rates late into the earthquake cycle does not produce enough slip to account for the 2-3 m shallow coseismic slip deficit observed in the Izmit earthquake. Therefore, distributed inelastic deformation in the uppermost few kilometers of the crust or slip transients during the interseismic period are likely to be important mechanisms for generating the shallow slip deficit. I used similar techniques to confirm that a ∼130 km section of the central NAF near the town of Ismetpasa, is also undergoing aseismic creep at a steady rate of 8±2 mm/yr. Using simple elastic dislocation models to fit fault perpendicular velocities I show that there is an eastward decreasing fault slip rate in this region from ∼32 mm/yr to ∼21 mm/yr over a distance of about 200 km. The cause of this decrease remains unclear, but it could be due to postseismic effects from the 1999 Izmit and Duzce earthquakes and/or long-term influence from the 1943 (Mw 7.4) and 1944 (Mw 7.5) earthquakes. Finally, I combine line-of-sight displacements from 23 InSAR tracks to produce the first high resolution horizontal velocity field for the entire continental expression of the NAF (∼1000 km). I show that the strain rate does not vary significantly along the fault, and since each segment of the NAF is at a different stage of the earthquake cycle, the strain rate is invariant with respect to the time since the last earthquake. This observation is inconsistent with viscoelastic coupling models of the earthquake cycle, which predict a decreasing strain rate with time after an earthquake. My observations imply that strain accumulation reaches a steady-state fairly rapidly after an earthquake (<7-10 years) after which strain is localised on a narrow shear zone centred on the fault and does not vary with time. A time-invariant strain rate is consistent with a strong lower crust in the region away from the fault with a viscosity ≥1020 Pas. My results imply that short term snapshots of the present-day strain accumulation (as long as it is after the postseismic period) are representative of the entire earthquake cycle, and therefore geodetic estimates of the strain rate can be used to estimate the total strain accumulation since the last earthquake on a fault, and be used as a proxy for future seismic hazard assessment. The techniques I developed to explore the spatial and temporal pattern of aseismic fault creep and long-term strain accumulation along the NAF are general and can be ap- plied to all strike-slip faults globally. The archived ERS-1/2 and Envisat satellite data are an extremely valuable resource that can and should be used to extend InSAR time series measurements back to the early 1990s. Together with the new Sentinel-1 data sets, this provides an unprecedented opportunity to explore tectonic deformation over several decades and on continental scales. Despite the availability of numerous correction techniques (in this thesis I use global weather models to calculate the atmospheric contribution), atmospheric delays remain the major challenge to exploiting Sentinel-1 data for global strain mapping, the mitigation of these delays are an important goal for the InSAR community.
APA, Harvard, Vancouver, ISO, and other styles
8

Suer, Selin. "Monitoring Of Chemical And Isotopic Compositions Of Geothermal Waters Along The North Anatolian Fault Zone." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605369/index.pdf.

Full text
Abstract:
This study aims to determine the chemical (anion-cation) and isotopic compositions (&
#948
18O-&
#948
D-3H) of the geothermal waters along the North Anatolian Fault Zone (NAFZ) and highlight any possible seismicity-induced temporal variations during the course of two years (2002-2003) monitoring programme. The geothermal sites are alligned along a 800 km transect of the NAFZ and are, from west to east, Yalova, Efteni, Bolu, Mudurnu, Seben, KurSunlu, Hamamö

, Gö
zlek and ReSadiye. The thermal waters of NAFZ are dominantly Na-HCO3, whereas the cold waters are dominantly Ca-HCO3 in character. The highest temperature (72.3&
#61616
C) is recorded in Seben. The hot waters are slightly acidic to alkaline in character with pH values ranging between 5.92-7.97, while the cold waters are comparatively more alkaline with pH values between 6.50-8.83. Both hot and the cold waters are meteoric in origin. The hot waters have lower &
#948
18O-&
#948
D and tritium values suggesting higher recharge altitudes for aquifers and longer residence times for waters, respectively, in the geothermal system (compared to the cold waters). Temporal variations are detected in both ionic and isotopic compositions of the cold and the hot waters, and these reflect seasonal variations for cold and seismicity-induced variations for hot waters. Although no major earthquakes (M>
5) occurred along the NAFZ during the monitoring period, temporal variations recorded in Cl and 3H, and to a lesser extent in Ca and SO4 contents seem to correlate with seismicity along the NAFZ. In this respect, Yalova field deserves the particular attention since seismicity induced variations were better recorded in this field.
APA, Harvard, Vancouver, ISO, and other styles
9

Kaduri, Maor. "Interplay between creep/aseismic deformation, earthquakes and fluids in fault zones, with a special emphasis on the North Anatolian fault zone, Turkey." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU040/document.

Full text
Abstract:
Le fluage asismique des failles dans la croûte supérieure est un mécanisme de déformation crucial le long des limites des plaques tectoniques. Il contribue au bilan énergétique du cycle sismique, retardant ou déclenchant le développement des grands tremblements de terre. Un enjeu majeur est de comprendre quels sont les paramètres qui contrôlent la partition entre déformations sismiques et asismiques dans les failles actives tels que la lithologie ou les transformations sous contrainte à toutes échelles et comment cette partition évolue dans le temps. Des observations géologiques réalisées dans ce travail le long de la Faille Nord Anatolienne en Turquie, combinées à des analyses de laboratoire et des traitements d’images, permettent de donner un éclairage nouveau sur ces mécanismes de fluage. En plus, les relations entre déformation finie et transfert de matière ont été utilisées en parallèle avec des données géodésiques pour comprendre l’évolution de ces mécanismes de fluage depuis le début du déplacement de cette faille.Une corrélation claire est observée entre fluage superficiel et composition des gouges de la faille : les segments sismiques sont composés de calcaires massifs sans gouge de faille argileuse alors que les segments asismiques qui fluent comprennent des gouges argileuses résultant de la transformation progressive de roches volcaniques. Dans ces zones de fluage une schistosité espacée se développe durant le premier stade de la déformation conduisant à un litage tectonique de type foliation, au début oblique puis subparallèle à la faille, qui accommode une part de la déformation asismique par dissolution cristallisation sous contrainte. En conséquence, les minéraux solubles comme le quartz et les feldspaths sont dissous conduisant à la concentration passive des phyllosilicates dans les gouges de failles qui sont ensuite altérés par des circulations de fluides produisant des minéraux argileux à faible friction. Dans le même temps les zones endommagées autour de la gouge sont fracturées et les fractures scellées par des carbonates. Ces transformations minérales et structurales amollissent les gouges de failles et durcissent les zones endommagées conduisant à une évolution de la déformation sismique – asismique de diffuse à localisée.Des modèles qui intègrent déformation finie et transfert de matière révèlent deux échelles d’espace de la déformation qui correspondent à une alternance de deux types de bandes de cisaillement avec une schistosité soit oblique soit subparallèle à la faille. Diverses valeurs de la déformation finie ont été estimées pour calculer la proportion de déplacement asismique par rapport au déplacement total sismique et asismique de la faille (80 km). Cette proportion qui dépend de la lithologie de la zone de faille varie de 0.002% dans les zones sismiques calcaires et évolue dans le temps dans les zones asismiques des roches volcaniques de 59% pour les stades précoces à 18% pour les stages récents
Aseismic fault creep in the upper crust is a key deformation process along tectonic plate boundaries. It contributes to the energy budget during the seismic cycle, delaying or triggering the occurrence of large earthquakes. One of the greatest challenges is to understand which parameters control the partition between seismic and aseismic deformation in active faults, such as lithology or stress-driven transformations at all scales and how this partition evolves with time. Geological observations along the North Anatolian Fault in Turkey combined with laboratory analyses and imaging techniques performed in the present study shed new light on these mechanisms of fault creep. Moreover, the relationship between finite strain and mass change was compared with geodesy data in order to understand the evolution of these creep mechanisms since the beginning of this fault displacement.A clear correlation is shown between shallow creep and near-surface fault gouge composition: seismic segments of the fault are mostly composed of massive limestone without clay gouges, whereas aseismic creeping segments comprising clay gouges result from a progressive change of volcanic rocks. Within these creeping zones, anastomosing cleavage develops during the first stage of deformation, leading to tectonic layering that forms a foliation, oblique at first and then sub-parallel to the fault. This foliation accommodates part of the aseismic creep by pressure solution. Consequently, the soluble minerals such as quartz and feldspars are dissolved, leading to the passive concentration of phyllosilicates in the gouges where alteration transformations by fluid flow produce low friction clay minerals. At the same time damage zones are fractured and fractures are sealed by carbonates. As a result, these mineralogical and structural transformations weaken the gouge and strengthen the damage zone leading to the change from diffuse to localized seismic-aseismic zones.Models integrating finite strain and mass change reveal two spatial scales of strain that correspond to the alternation of two types of shear bands, with cleavages oriented either oblique or sub-parallel to the fault zone. Various total strain values were estimated in order to calculate the aseismic part of the total 80 km displacement along the locked and creeping sections. The aseismic strain fraction of the total tectonic strain in the fault depends on the fault lithology and varies from 0.002% in seismic zones made of limestone and evolves with time in the creeping zones made of volcanic rocks from 59% in the early stages of fault development to 18% in the recent times
APA, Harvard, Vancouver, ISO, and other styles
10

Fraser, Jeffrey G. "Four new paleoseismic investigations on the North Anatolian fault, Turkey, in the context of existing data." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210250.

Full text
Abstract:
La faille Nord-Anatolienne est une faille décrochante dextre de 1500 km et la frontière de plaque entre l’Anatolie au sud et l’Eurasie au nord. Le mouvement vers l’Ouest de l’Anatolie par rapport à l’Eurasie à une vitesse de 21 mm/an est accommodé par le jeu de cette faille. Durant le 20ième siècle, cette faille a rompu d’est en ouest lors d’une séquence de larges tremblements de terre qui ont eu lieu à intervalles rapprochés. De nombreux géologues ont cherché à mieux comprendre l’histoire récente de cette faille, et plus parti-culièrement son histoire sismique ou paléosismologique. La recherche en paléosismologie consiste à contraindre en utilisant l’enregistrement sédimentaire existant la nature et la distribution des tremblements de terre passés. Dans cette thèse, j’ai effectué 4 investi-gations paléosismologiques le long de la faille Nord-Anatolienne dans des lieux où à chaque tremblement de terre la faille forme des escarpements à contre-pente et constitue un piège à sédiment. En étudiant la composition et la distribution des sols enfouis et ex-posés dans de larges tranchées creusées au travers de ces pièges sédimentaires, on peut identifier des « horizons sismiques » (c’est-à-dire la surface terrestre lors du séisme). En datant par le radiocarbone les matériaux déposés au-dessous (avant) et au-dessus (après) d’un horizon sismique, on peut contraindre à quel moment un paléoséisme a eu lieu. Fi-nalement dans cette thèse, j’ai compilé une base de donnée des chronologies de l’ensemble de paléoséismes documentés sur la faille Nord-Anatolienne. Grâce à cette base de données, j’ai pu déterminer l’occurrence des séismes avec une méthodologie cohérente, et analyser la chronologie obtenue à la fois qualitativement et quantitativement. L’analyse des données révèle que la faille Nord-Anatolienne ne rompt habituellement pas en cascade comme durant le 20ième siècle, et que l’activité de la faille est fortement influencé par les trois principaux régimes tectoniques existant en Turquie. Les variabilités d’activité le long de la faille pourraient résulter de contraintes normales à la faille, qui décroissent d’une façon générale de l’Est vers l’Ouest. Une décroissance des contraintes normales à la faille diminuerait localement le seuil de contrainte requis pour déclencher un séisme. Ceci explique l’observation que le temps de récurrence des séismes est plus court à l’Ouest. A l’Est, les ruptures sont plus variables, et le temps de récurrence est bimodal. Ceci peut être lié à des variations temporelles des contraintes normales à la faille, peut-être induites par le jeu sismique des failles Est-Anatolienne et de la Mer Morte.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Anatolian Fault"

1

Kaya, Şinasi. Uydu görüntüleri ve sayısal arazi modeli kullanılarak Kuzey Anadolu fayı Gelibolu-Işıklar Dağı kesiminin jeomorfolojik-jeolojik özelliklerinin incelenmesi =: Study of geomorphological and geological characteristics along the northern strand of the North Anatolian fault between Gelibolu and Işıklar Mountain by using remote sensing data and digital elevation model. Maslak, İstanbul: Türkiye Deprem Vakfı, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Multidisciplinary research on fault activity in the western part of the North Anatolian fault zone (4). [Istanbul]: Boğaziçi University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

R, Reilinger, Massachusetts Institute of Technology. Earth Resources Laboratory., and United States. National Aeronautics and Space Administration., eds. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the "Anatolian plate" and surrounding regions in the Middle East: Semi-annual report to National Aeronautics and Space Administration (crustal dynamics). Cambridge, MA: Earth Resources Laboratory, Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration., ed. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the "Anatolian plate" and surrounding regions in the Middle East: Semi-annual report to National Aeronautics and Space Administration (crustal dynamics). Cambridge, MA: Earth Resources Laboratory, Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the "Anatolian plate" and surrounding regions in the Middle East: Semi-annual report to National Aeronautics and Space Administration (crustal dynamics) : period, 15 March 1987-14 September 1987. Cambridge, MA: Earth Resources Laboratory, Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anatolian Fault"

1

Rockwell, Thomas. "North Anatolian Fault." In Encyclopedia of Natural Hazards, 738–39. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-4399-4_255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Şengör, A. M. Celâl, and Cengiz Zabcı. "The North Anatolian Fault and the North Anatolian Shear Zone." In World Geomorphological Landscapes, 481–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03515-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Canitez, N. "Dynamics of the North Anatolian Fault." In Geodynamics: Progress and Prospects, 50–55. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/sp005p0050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Demirel, H., and C. Gerstenecker. "Secular Gravity Variations Along the North Anatolian Fault." In Gravity, Gradiometry and Gravimetry, 163–69. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3404-3_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Altunel, Erhan, Cengiz Zabci, and H. Serdar Akyüz. "Retracted: Paleoseismic History of the North Anatolian Fault Zone." In Encyclopedia of Earthquake Engineering, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36197-5_216-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ergün, Mustafa, Erdeniz Özel, and Coşkun Sari. "Structure of the Marmara Sea Basin in the North Anatolian Fault Zone." In Rifted Ocean-Continent Boundaries, 309–26. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0043-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Uluğ, A., and E. Özel. "Transition of the North Anatolian Fault Zone (NAFZ) in the Sea of Marmara." In Integration of Earth Science Research on the Turkish and Greek 1999 Earthquakes, 47–59. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0383-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kiratzi, Anastasia A. "Rates of Crustal Deformation in the North Aegean Trough-North Anatolian Fault Deduced from Seismicity." In Source Mechanism and Seismotectonics, 421–32. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-8654-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Çağatay, M. N., N. Görür, and B. Alpar. "Western Extension of the North Anatolian Fault and Associated Structures in the Gulf of Saros, NE Aegean Sea." In Integration of Earth Science Research on the Turkish and Greek 1999 Earthquakes, 61–70. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0383-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sarp, Gulcan. "Evaluation of Sediment Transport Rate of the Kizilirmak River Basin on the Tectonically Active North Anatolian Fault Zone (NAFZ), Turkey." In Paleobiodiversity and Tectono-Sedimentary Records in the Mediterranean Tethys and Related Eastern Areas, 247–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01452-0_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anatolian Fault"

1

Zeybek, Fatih. "Innovative Construction Methods of Osmangazi Bridge." In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0912.

Full text
Abstract:
<p>Construction period of Osmangazi Bridge was around 39 months and a short period for a large multi span bridge in a marine environment.</p><p>The Osmangazi Bridge is situated in a very active seismic area where in 1999 the 7.6 Kocaeli earthquake occurred on the North Anatolian Fault in 1999. Therefore, the bridge is designed to resist earthquakes. The North Anatolian fault is approximately 1600 km long major right-lateral strike slip fault forming the tectonic boundary between the Eurasian Plate and Anatolian Block of the African plate.</p><p>Bridge Owner required aesthetic, seismic resistant, durable, economic, maintained bridge and fast track opening to traffic.</p><p>This paper summarizes the innovative construction technics used during construction of the Osmangazi Bridge that is fourth longest suspension bridge in the World with a main span of 1550 meters.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Sezgin, N., and A. Pinar. "Estimates Of Stress Directions By Inversion Of Earthquake Fault Plane Solutions From North Anatolian Faut Zone To North Anatolian Through." In 4th Congress of the Balkan Geophysical Society. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.26.o19-02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karakaisis, George. "TIME-DEPENDENT SEISMICITY ALONG THE NORTH ANATOLIAN FAULT ZONE." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/1.1/s05.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aydindag, Ebru, Pinar Kirci, and Ismail Kirbaslar. "Fractal Analyzing of Active Earthquake Fault Data in the Eastern Anatolian Fault Zone." In 2018 IEEE First International Conference on System Analysis & Intelligent Computing (SAIC). IEEE, 2018. http://dx.doi.org/10.1109/saic.2018.8516887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

AKGUN, Elif. "GEOLOGICAL LINEAMENT ANALYSES APPLICATION TO A FAULT SEGMENT ON THE EAST ANATOLIAN FAULT ZONE." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/2.2/s10.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Esat, Korhan, Gurol Seyitoglu, Gurol Seyitoglu, Berkan Ecevitoglu, Berkan Ecevitoglu, Bulent Kaypak, Bulent Kaypak, et al. "THE NW CENTRAL ANATOLIAN CONTRACTIONAL AREA: A MAJOR STRIKE-SLIP FAULT ZONES INDUCED NEOTECTONIC REGION IN THE ANATOLIAN PLATE, TURKEY." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-286592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kamışlıoğlu, Miraç, and Fatih Külahcı. "Application of chaos analyses methods on East Anatolian Fault Zone fractures." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4951921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tosun, Hasan. "Hazard and Total Risk Analyses of Large Dams under Threat of the North Anatolian Fault Zone in Mid-Anatolia, Turkey." In The 5th World Congress on Civil, Structural, and Environmental Engineering. Avestia Publishing, 2020. http://dx.doi.org/10.11159/icgre20.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yilmaz, Mucahit, and Fatih Kulahci. "Risk analysis of 222Rn gas received from East Anatolian Fault Zone in Turkey." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Özturk, S., and M. Sari. "An Assessment on the Recent Seismicity in the North Anatolian Fault Zone, Turkey." In Near Surface Geoscience 2016 - 22nd European Meeting of Environmental and Engineering Geophysics. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201601960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography