Academic literature on the topic 'Analytic perturbations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analytic perturbations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analytic perturbations"
Lewowicz, Jorge, and Eduardo Lima De Sá. "Analytic models of pseudo-Anosov maps." Ergodic Theory and Dynamical Systems 6, no. 3 (September 1986): 385–92. http://dx.doi.org/10.1017/s0143385700003564.
Full textInomata, Keisuke. "Analytic solutions of scalar perturbations induced by scalar perturbations." Journal of Cosmology and Astroparticle Physics 2021, no. 03 (March 9, 2021): 013. http://dx.doi.org/10.1088/1475-7516/2021/03/013.
Full textOharu, Shinnosuke. "Nonlinear perturbations of analytic semigroups." Semigroup Forum 42, no. 1 (December 1991): 127–46. http://dx.doi.org/10.1007/bf02573415.
Full textVeloz, Tomas, Pedro Maldonado, Evo Bussseniers, Alejandro Bassi, Shima Beigi, Marta Lenartowicz, and Francis Heylighen. "Towards an Analytic Framework for System Resilience Based on Reaction Networks." Complexity 2022 (January 31, 2022): 1–29. http://dx.doi.org/10.1155/2022/9944562.
Full textKODAMA, HIDEO, and MISAO SASAKI. "EVOLUTION OF ISOCURVATURE PERTURBATIONS I: PHOTON-BARYON UNIVERSE." International Journal of Modern Physics A 01, no. 01 (April 1986): 265–301. http://dx.doi.org/10.1142/s0217751x86000137.
Full textDE SIMONE, EMILIANO. "A RENORMALIZATION PROOF OF THE KAM THEOREM FOR NON-ANALYTIC PERTURBATIONS." Reviews in Mathematical Physics 19, no. 06 (July 2007): 639–75. http://dx.doi.org/10.1142/s0129055x07003085.
Full textNusser, A. "Analytic solutions for coupled linear perturbations." Monthly Notices of the Royal Astronomical Society 317, no. 4 (October 1, 2000): 902–6. http://dx.doi.org/10.1046/j.1365-8711.2000.03708.x.
Full textBonnans, Joseph Frédéric, Eduardo Casas, and Miguel Lobo. "Analytic singular perturbations of elliptic systems." Journal of Mathematical Analysis and Applications 122, no. 2 (March 1987): 422–26. http://dx.doi.org/10.1016/0022-247x(87)90271-x.
Full textDE COSTER, C., and K. HEYDE. "F-SPIN SYMMETRY BREAKING: APPLICATION TO THE U(5) AND SU(3) LIMIT." International Journal of Modern Physics A 04, no. 15 (September 1989): 3907–38. http://dx.doi.org/10.1142/s0217751x8900159x.
Full textPark, Chan. "Observation of Gravitational Waves by Invariants for Electromagnetic Waves." Astrophysical Journal 940, no. 1 (November 1, 2022): 58. http://dx.doi.org/10.3847/1538-4357/ac9bff.
Full textDissertations / Theses on the topic "Analytic perturbations"
Coiculescu, Ion. "Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4783/.
Full textGatse, Franchel. "Spectre ordonné et branches analytiques d'une surface qui dégénère sur un graphe." Electronic Thesis or Diss., Orléans, 2020. http://www.theses.fr/2020ORLE3205.
Full textIn this work, we give a general framework of Riemannian surfaces that can degenerate on metric graphs and that we call surfaces made from cylinders and connecting pieces. The latter depend on a parameter t that describes the degeneration. When t goes to 0, the waists of the cylinders go to 0 but their lengths stay fixed. We thus obtain the edges of the limiting graph. The connecting pieces are squeezed in all directions and degenerate on the vertices of the limiting graph. We then study the asymptotic behaviour of the spectrum of these surfaces when t varies from two different points of view, considering the spectrum either as a sequence of ordered eigenvalues or as a collection of analytic eigenbranches. In the case of ordered eigenvalues, we recover a rather classical statement, and prove that the spectrum converges to the spectrum of the limiting object. The study of the analytic eigenbranches is more original. We prove that any such eigenbranch converges and we give a characterisation of the possible limits. These results apply to translation surfaces on which there is a completely periodic direction
Neuner, Christoph. "On Supersingular Perturbations." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-147396.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.
Pond, Jarrad W. T. "Perturbation analysis of fluctuations in the universe on large scales, including decaying solutions and rotational velocities." Honors in the Major Thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1309.
Full textBachelors
Sciences
Physics
Hiller, Steven Mark. "Automatic acoustic analysis of waveform perturbations." Thesis, University of Edinburgh, 1985. http://hdl.handle.net/1842/18962.
Full textROCCHI, Marta. "Ecosystem response to perturbations: insight from qualitative analysis." Doctoral thesis, Università degli studi di Ferrara, 2017. http://hdl.handle.net/11392/2488077.
Full textI cambiamenti ambientali in atto richiedono un miglioramento delle conoscenze su struttura e funzionamento dei sistemi naturali attraverso un approccio olistico. Una visione d’insieme potrebbe aiutare a comprendere meglio la risposta degli ecosistemi alle perturbazioni. E’ stato provato che lo studio dei network ecologici è utile per comprendere la struttura e le dinamiche degli ecosistemi. In questa tesi presento due tecniche modellistiche: l’analisi topologica di food web (capitolo 2) e la loop analysis (capitolo 3 e 4). Entrambi gli studi privilegiano l’analisi qualitativa a quella quantitativa per superare la mancanza di dati. Nel capitolo 2 ho considerato alcune caratteristiche topologiche per lo studio del funzionamento dell’ecosistema di Baja California Sur. Ho identificato, attraverso gli indici di centralità, le specie chiave e analizzato la resilienza del sistema alla rimozione delle specie definite più vulnerabili (es. precedente classificazione di alto, medio e basso rischio). Gli effetti sono stati valutati attraverso indici globali. I risultati evidenziano la resilienza strutturale della food web alle rimozioni, ma anche che la rimozione delle specie più vulnerabili cambia significatamente alcuni attributi del sistema rispetto alle rimozioni random. Nel capitolo 3 ho valutato l’evoluzione dell’ecosistema del Mar Nero nel periodo 1960-1990 attraverso la loop analysis. I modelli qualitativi indagati ricostruiscono la struttura dei legami dell’intera comunità. Ho validato i risultati emersi con indagini statistiche sulle serie temporali di biomasse per capire come la struttura delle interazioni può spiegare le variazioni nei livelli di biomassa delle variabili e quali ipotesi possono essere fatte sui drivers e i meccanismi responsabili dei cambiamenti. Nel capitolo 4 ho costruito un database di food web reali e random, che ho studiato attraverso la loop analysis, per capire come un input positivo sulle specie basali e apicali si ripercuote rispettivamente sulle specie apicali e basali. Lo scopo era quello di identificare possibili differenze nella propagazione degli effetti indiretti in risposta a input positivi che si verificano agli estremi delle food web. Ho confrontato sistemi reali (marini, terrestri e di acqua dolce) con networks random. Ho trovato una sovrarappresentazione di predizioni positive (aumento dell’abbondanza delle specie) e una sottorappresentazione di predizione negative per le specie apicali a seguito di un input positivo sulle specie basali, sia nei sistemi reali che in quelli random. Considerando questi ultimi lo stesso trend (sovrarappresentazione di segni positivi e sottorappresentazione di segni negativi) è stato trovato nelle predizioni riguardanti la risposta delle specie basali a seguito di un input sulle specie apicali. Ho mostrato che questi risultati sono dovuti alla struttura topologica delle food web (es. il numero e la lunghezza dei percorsi trofici) piuttosto che alla forza delle interazioni. Sembra che le risposte delle specie apicali a seguito di perturbazioni delle specie basali siano prevedibili, al contrario delle risposte delle specie basali a seguito di un input sulle apicali. Questi risultati sono particolarmente rilevanti e interessanti considerando l’importanza delle specie basali e apicali come target degli impatti antropici. Questa tesi contribuisce allo sviluppo di un percorso verso: 1)la comprensione degli effetti di disturbo sulle comunità ecologiche e sugli ecosistemi; 2)una migliore comprensione delle interazioni di controllo top-down e bottom-up; 3)la capacità di affrontare l'incertezza per valutare la risposta delle comunità e degli ecosistemi di fronte al disturbo. Nonostante l’uso di metodologie relativamente semplici che si concentrano sulla disposizione qualitativa delle interazioni trofiche, ho dimostrato che vi sono casi in cui anche lo studio di dati qualitativi può essere di cruciale importanza in termini di gestione.
Chang, Xiao-Wen. "Perturbation analysis of some matrix factorizations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0023/NQ29906.pdf.
Full textDendievel, Sarah. "Skip-free markov processes: analysis of regular perturbations." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209050.
Full textThis thesis focuses on a category of methods, called matrix analytic methods, that has gained much interest because of good computational properties for the analysis of a large family of stochastic processes. Those methods are used in this work in order i) to analyze the effect of regular perturbations of the transition matrix on the stationary distribution of skip-free Markov processes; ii) to determine transient distributions of skip-free Markov processes by performing regular perturbations.
In the class of skip-free Markov processes, we focus in particular on quasi-birth-and-death (QBD) processes and Markov modulated fluid models.
We first determine the first order derivative of the stationary distribution - a key vector in Markov models - of a QBD for which we slightly perturb the transition matrix. This leads us to the study of Poisson equations that we analyze for finite and infinite QBDs. The infinite case has to be treated with more caution therefore, we first analyze it using probabilistic arguments based on a decomposition through first passage times to lower levels. Then, we use general algebraic arguments and use the repetitive block structure of the transition matrix to obtain all the solutions of the equation. The solutions of the Poisson equation need a generalized inverse called the deviation matrix. We develop a recursive formula for the computation of this matrix for the finite case and we derive an explicit expression for the elements of this matrix for the infinite case.
Then, we analyze the first order derivative of the stationary distribution of a Markov modulated fluid model. This leads to the analysis of the matrix of first return times to the initial level, a charactersitic matrix of Markov modulated fluid models.
Finally, we study the cumulative distribution function of the level in finite time and joint distribution functions (such as the level at a given finite time and the maximum level reached over a finite time interval). We show that our technique gives good approximations and allow to compute efficiently those distribution functions.
----------
Un processus markovien est défini par sa matrice de transition. Un processus markovien sans sauts est un processus stochastique de Markov défini par un niveau qui ne peut changer que d'une unité à la fois, soit vers le haut, soit vers le bas. Une perturbation régulière est une modification suffisamment petite d'un ou plusieurs paramètres qui ne modifie pas qualitativement le modèle.
Dans ce travail, nous utilisons des méthodes matricielles pour i) analyser l'effet de perturbations régulières de la matrice de transition sur le processus markoviens sans sauts; ii) déterminer des lois de probabilités en temps fini de processus markoviens sans sauts en réalisant des perturbations régulières.
Dans la famille des processus markoviens sans sauts, nous nous concentrons en particulier sur les processus quasi-birth-and-death (QBD) et sur les files fluides markoviennes.
Nous nous intéressons d'abord à la dérivée de premier ordre de la distribution stationnaire – vecteur clé des modèles markoviens – d'un QBD dont on modifie légèrement la matrice de transition. Celle-ci nous amène à devoir résoudre les équations de Poisson, que nous étudions pour les processus QBD finis et infinis. Le cas infini étant plus délicat, nous l'analysons en premier lieu par des arguments probabilistes en nous basant sur une décomposition par des temps de premier passage. En second lieu, nous faisons appel à un théorème général d'algèbre linéaire et utilisons la structure répétitive de la matrice de transition pour obtenir toutes les solutions à l’équation. Les solutions de l'équation de Poisson font appel à un inverse généralisé, appelé la matrice de déviation. Nous développons ensuite une formule récursive pour le calcul de cette matrice dans le cas fini et nous dérivons une expression explicite des éléments de cette dernière dans le cas infini.
Ensuite, nous analysons la dérivée de premier ordre de la distribution stationnaire d'une file fluide markovienne perturbée. Celle-ci nous amène à développer l'analyse de la matrice des temps de premier retour au niveau initial – matrice caractéristique des files fluides markoviennes.
Enfin, dans les files fluides markoviennes, nous étudions la fonction de répartition en temps fini du niveau et des fonctions de répartitions jointes (telles que le niveau à un instant donné et le niveau maximum atteint pendant un intervalle de temps donné). Nous montrerons que cette technique permet de trouver des bonnes approximations et de calculer efficacement ces fonctions de répartitions.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Preciso, Luca. "Perturbation Analysis of the Conformal Sewing Problem and Related Problems." Doctoral thesis, Università degli studi di Padova, 1998. http://hdl.handle.net/11577/3425905.
Full textOnen, Onursal. "Analytical Modeling, Perturbation Analysis and Experimental Characterization of Guided Surface Acoustic Wave Sensors." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4555.
Full textBooks on the topic "Analytic perturbations"
H, Miller John J., ed. Singular perturbation problems in chemical physics: Analytic and computational methods. New York: J. Wiley, 1997.
Find full textSingular perturbations I. Spaces and singular perturbations on manifolds without boundary. Amsterdam: North-Holland, 1990.
Find full textBonnans, J. Frédéric, and Alexander Shapiro. Perturbation Analysis of Optimization Problems. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1394-9.
Full textGlasserman, Paul. Gradient estimation via perturbation analysis. Boston: Kluwer Academic, 1991.
Find full textGradient estimation via perturbation analysis. Boston: Kluwer Academic Publishers, 1991.
Find full textAlgebraic analysis of singular perturbation. Providence, R.I: American Mathematical Society, 2005.
Find full textAnalytic perturbation theory for matrices and operators. Basel: Birkhäuser Verlag, 1985.
Find full textHolmes, Mark H. Introduction to Perturbation Methods. 2nd ed. New York, NY: Springer New York, 2013.
Find full textPerturbations familiales et analyse transactionnelle thérapeutique. Saint-Foy, Québec: Presses de l'Université du Québec, 1992.
Find full textI, Minchenko L., and Satsura Tatyana, eds. Multivalued analysis and nonlinear programming problems with perturbations. Dordrecht: Kluwer Academic Publishers, 2003.
Find full textBook chapters on the topic "Analytic perturbations"
Devaney, Robert L. "Singular Perturbations of Complex Analytic Dynamical Systems." In Understanding Complex Systems, 13–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04629-2_2.
Full textMartin, Robert H., Toshitaka Matsumoto, Shinnosuke Oharu, and Naoki Tanaka. "Time-dependent Nonlinear Perturbations of Analytic Semigroups." In Functional Analysis and Evolution Equations, 457–502. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7794-6_29.
Full textMartinez, André, Shu Nakamura, and Vania Sordoni. "Propagation of Analytic Singularities for Short and Long Range Perturbations of the Free Schrödinger Equation." In Algebraic and Analytic Microlocal Analysis, 575–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01588-6_12.
Full textDa Prato, Giuseppe. "Perturbations of Ornstein—Uhlenbeck Operators: an Analytic Approach." In Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics, 127–39. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8085-5_9.
Full textKachalov, Vasiliy I. "Analytic Theory of Singular Perturbations and Lomov’s Regularization Method." In Finite Difference Methods. Theory and Applications, 305–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_34.
Full textFilar, Jerzy A., Irene Hudson, Thomas Mathew, and Bimal Sinha. "Analytic perturbations and systematic bias in statistical modeling and inference." In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen, 17–34. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2008. http://dx.doi.org/10.1214/193940307000000022.
Full textPeng, J. H., and J. S. Tang. "An Analytic Proof for the Sensitivity of Chaos to Initial Condition and Perturbations." In Dynamical Systems, 13–21. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5754-2_2.
Full textSpallicci, A. D. A. M. "Analytic Solution of Regge-Wheeler Differential Equation for Black Hole Perturbations in Radial Coordinate and Time Domains." In Recent Developments in General Relativity, 373–78. Milano: Springer Milan, 2000. http://dx.doi.org/10.1007/978-88-470-2113-6_29.
Full textVerhulst, Ferdinand. "Perturbation Analysis of Parametric Resonance." In Perturbation Theory, 167–83. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-1-0716-2621-4_393.
Full textLurie, A. I. "Perturbation theory." In Analytical Mechanics, 585–668. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-45677-3_11.
Full textConference papers on the topic "Analytic perturbations"
Peng, Jie-Hua, and Jia-Shi Tang. "An Analytic Study on Controlling Duffing Chaos in Amplitude Domain and in Frequency Domain." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84970.
Full text"On analytic perturbations of non-self-adjoint anharmonic oscillator." In Уфимская осенняя математическая школа - 2022. Т.1. Baskir State University, 2022. http://dx.doi.org/10.33184/mnkuomsh1t-2022-09-28.13.
Full textDUFFY, E. M., and B. C. NOLAN. "ANALYTIC STUDY OF ODD PARITY PERTURBATIONS OF THE SELF-SIMILAR LTB SPACETIME." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0327.
Full textRIVA, M. DALLA. "THE LAYER POTENTIALS OF SOME PARTIAL DIFFERENTIAL OPERATORS: REAL ANALYTIC DEPENDENCE UPON PERTURBATIONS." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0014.
Full textKim, Kyu Tae, Hyung Ju Lee, Jong Guen Lee, Bryan D. Quay, and Domenic Santavicca. "Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-60026.
Full textKaiser, Thomas Ludwig, and Kilian Oberleithner. "Modeling the Transport of Fuel Mixture Perturbations and Entropy Waves in the Linearized Framework." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14715.
Full textPorfyri, K. N., I. K. Nikolos, A. I. Delis, and M. Papageorgiou. "Stability Analysis of a Macroscopic Traffic Flow Model for Adaptive Cruise Control Systems." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50977.
Full textRenshaw, Anthony A. "Solution of the One Dimensional Foil Bearing Problem Using Matched Asymptotic Expansions." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0206.
Full textThode. "A normal-mode expression for the sensitivity of acoustic fields to three-dimensional refractive index perturbations in a constant-depth waveguide, using an analytic adjoint approach." In Oceans 2003. Celebrating the Past ... Teaming Toward the Future. IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178565.
Full textParker, R. G., and C. D. Mote. "Exact Perturbation for the Vibration of Almost Annular or Circular Plates." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0647.
Full textReports on the topic "Analytic perturbations"
Tang, Ping Tak Peter. Strong uniqueness of best complex Chebyshev approximation to analytic perturbations of analytic function. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/6357493.
Full textLane, M. T. On Analytic Modeling of Lunar Perturbations of Artificial Satellites of the Earth. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada210440.
Full textLiu, Zhenyue, and Norman Bleistein. Velocity Analysis by Perturbation. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada272537.
Full textStepin, Stanislav A. Fredholm Analytic Operator Families and Perturbation of Resonances. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-6-2006-109-117.
Full textAdams, C., and Micheal A. Smith. VARI3D & PERSENT: Perturbation and Sensitivity Analysis. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1480522.
Full textSmith, M. A., C. Adams, W. S. Yang, and E. E. Lewis. VARI3D & PERSENT: Perturbation and Sensitivity Analysis. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1091498.
Full textPetkov, Petko, and Mihail Konstantinov. Perturbation Analysis of the Feedback Control Problem. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2018. http://dx.doi.org/10.7546/crabs.2018.02.12.
Full textPetkov, Petko. Perturbation Analysis of the Feedback Control Problem. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2018. http://dx.doi.org/10.7546/grabs2018.2.12.
Full textvan Raalte, Alyson A., and Hal Caswell. Perturbation analysis of indices of lifespan variability. Rostock: Max Planck Institute for Demographic Research, January 2012. http://dx.doi.org/10.4054/mpidr-wp-2012-004.
Full textSmith, M., C. Adams, W. Yang, and E. Lewis. VARI3D & PERSENT: Perturbation and Sensitivity Analysis. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1869777.
Full text