Academic literature on the topic 'Analysis and filtering of network traffic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analysis and filtering of network traffic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analysis and filtering of network traffic"
Rajaboevich, Gulomov Sherzod. "Comparative Analysis of Methods Content Filtering Network Traffic." International Journal of Emerging Trends in Engineering Research 8, no. 5 (May 25, 2020): 1561–69. http://dx.doi.org/10.30534/ijeter/2020/15852020.
Full textKabala, Piotr, and Dariusz Laskowski. "Analysis of Network Traffic Filtering / Analiza Filtracji Ruchu Sieciowego." Journal of KONBiN 33, no. 1 (September 1, 2015): 41–60. http://dx.doi.org/10.1515/jok-2015-0004.
Full textLu, Yao, Hanhong Jiang, Tao Liao, Chengcheng Xu, and Chen Deng. "Characteristic Analysis and Modeling of Network Traffic for the Electromagnetic Launch System." Mathematical Problems in Engineering 2019 (June 23, 2019): 1–7. http://dx.doi.org/10.1155/2019/2929457.
Full textNovakov, Stevan, Chung-Horng Lung, Ioannis Lambadaris, and Nabil Seddigh. "A Hybrid Technique Using PCA and Wavelets in Network Traffic Anomaly Detection." International Journal of Mobile Computing and Multimedia Communications 6, no. 1 (January 2014): 17–53. http://dx.doi.org/10.4018/ijmcmc.2014010102.
Full textLee, Jae-Kook, Taeyoung Hong, and Guohua Li. "Traffic and overhead analysis of applied pre-filtering ACL firewall on HPC service network." Journal of Communications and Networks 23, no. 3 (June 2021): 192–200. http://dx.doi.org/10.23919/jcn.2021.000011.
Full textPrivalov, Andrey, Vera Lukicheva, Igor Kotenko, and Igor Saenko. "Method of Early Detection of Cyber-Attacks on Telecommunication Networks Based on Traffic Analysis by Extreme Filtering." Energies 12, no. 24 (December 13, 2019): 4768. http://dx.doi.org/10.3390/en12244768.
Full textFernández, Diego, Francisco J. Nóvoa, Fidel Cacheda, and Víctor Carneiro. "Advancing Network Flow Information Using Collaborative Filtering." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 25, Suppl. 2 (December 2017): 97–112. http://dx.doi.org/10.1142/s021848851740013x.
Full textJain, Sakshi, Mobin Javed, and Vern Paxson. "Towards Mining Latent Client Identifiers from Network Traffic." Proceedings on Privacy Enhancing Technologies 2016, no. 2 (April 1, 2016): 100–114. http://dx.doi.org/10.1515/popets-2016-0007.
Full textshabtai, Asaf, Dennis Potashnik, Yuval Fledel, Robert Moskovitch, and Yuval Elovici. "Monitoring, analysis, and filtering system for purifying network traffic of known and unknown malicious content." Security and Communication Networks 4, no. 8 (July 26, 2010): 947–65. http://dx.doi.org/10.1002/sec.229.
Full textTian, Zhao, Wei She, Shuang Li, You-Wei Wang, Wei Liu, Guang-Jun Zai, Li-Min Jia, Yong Qin, and Hong-Hui Dong. "Key links identification for urban road traffic network based on temporal-spatial distribution of traffic congestion." Modern Physics Letters B 33, no. 25 (September 10, 2019): 1950307. http://dx.doi.org/10.1142/s021798491950307x.
Full textDissertations / Theses on the topic "Analysis and filtering of network traffic"
Klečka, Jan. "Monitorovací sonda síťové komunikace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442398.
Full textLiu, Wei 1975. "Network traffic modelling and analysis." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82613.
Full textThis thesis focuses on traffic modelling and analysis. A novel traffic model is proposed which can capture the traffic behaviours in all-photonic networks. The new model is based on a study of existing traffic modelling literature. It combines the time-varying Poisson model, gravity model and fractional Gaussian noise. This model can be used for the short-range traffic prediction. We examine Long-Range Dependence and test the time constancy of scaling parameters using the tools designed by Abry and Veitch, to analyze empirical and synthesized traffic traces.
Simhairi, Nather Zeki. "Traffic assignment and network analysis." Thesis, Royal Holloway, University of London, 1987. http://repository.royalholloway.ac.uk/items/a3377f99-4ed8-4000-91f8-0384aed4a3c6/1/.
Full textLiu, Jian. "Fractal Network Traffic Analysis with Applications." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11477.
Full textJiang, Michael Zhonghua. "Analysis of wireless data network traffic." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0012/MQ61444.pdf.
Full textHeller, Mark D. "Behavioral analysis of network flow traffic." Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5108.
Full textNetwork Behavior Analysis (NBA) is a technique to enhance network security by passively monitoring aggregate traffic patterns and noting unusual action or departures from normal operations. The analysis is typically performed offline, due to the huge volume of input data, in contrast to conventional intrusion prevention solutions based on deep packet inspection, signature detection, and real-time blocking. After establishing a benchmark for normal traffic, an NBA program monitors network activity and flags unknown, new, or unusual patterns that might indicate the presence of a potential threat. NBA also monitors and records trends in bandwidth and protocol use. Computer users in the Department of Defense (DoD) operational networks may use Hypertext Transport Protocol (HTTP) to stream video from multimedia sites like youtube.com, myspace.com, mtv.com, and blackplanet.com. Such streaming may hog bandwidth, a grave concern, given that increasing amounts of operational data are exchanged over the Global Information Grid, and introduce malicious viruses inadvertently. This thesis develops an NBA solution to identify and estimate the bandwidth usage of HTTP streaming video traffic entirely from flow records such as Cisco's NetFlow data.
Zhang, Yichi. "Residential Network Traffic and User Behavior Analysis." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-27001.
Full textKreibich, Christian Peter. "Structural traffic analysis for network security monitoring." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613090.
Full textYu, Han. "Analysis of network traffic in grid system." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/35162.
Full textVu, Hong Linh. "DNS Traffic Analysis for Network-based Malware Detection." Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93842.
Full textBotnets betraktas som ett av de svåraste Internet-hoten idag. Botnets har använts vid många attacker mot multinationella organisationer och även nationella myndigheters och andra nationella Internet-tjänster. Allt eftersom mer effektiva detekterings - och skyddstekniker tas fram av säkerhetsforskare, har utvecklarna av botnets tagit fram nya tekniker för att undvika upptäckt. Därför är det inte förvånande att domännamnssystemet (Domain Name System, DNS) missbrukas av botnets för att undvika upptäckt, på grund av den viktiga roll domännamnssystemet har för Internets funktion - DNS ger en flexibel bindning mellan domännamn och IP-adresser. Domain-flux och fast-flux (även kallat IP-flux) är två relativt nya tekniker som används för att undvika spårning och svartlistning av IP-adresser av botnet-skyddsmekanismer genom att snabbt förändra bindningen mellan namn och IP-adresser som används av botnets. I denna rapport används passiv DNS-analys för att utveckla en anomali-baserad teknik för detektering av botnets som använder sig av domain-flux eller fast-flux. Tekniken baseras på skapandet av en uppslagnings-graf och en fel-graf från insamlad DNS-traffik och bryter ned dessa grafer i kluster som har stark korrelation mellan de ingående domänerna, maskinerna, och IP-adresserna. DNSrelaterade egenskaper extraheras för varje kluster och används som indata till en klassifficeringsmodul för identiffiering av domain-flux och fast-flux botnets i nätet. Utvärdering av metoden genom experiment på insamlade traffikspår visar att den föreslagna tekniken lyckas upptäcka domain-flux botnets i traffiken. Genom att fokusera på DNS-information kompletterar den föreslagna tekniken andra tekniker för detektering av botnets genom traffikanalys.
Books on the topic "Analysis and filtering of network traffic"
Peterson, William P. Heavy traffic analysis of a transportation network model. Cambridge, Mass: Alfred P. Sloan School of Management, Massachusetts Institute of Technology, 1994.
Find full textCarrapatoso, E. Traffic analysis for various metropolitan area network topologies. Bradford: University of Bradford. Postgraduate School of Electrical and Electronic Engineering, 1985.
Find full textKesidis, George. An introduction to communication network analysis. Hoboken, N.J: Wiley-Interscience, 2007.
Find full textlibrary, Wiley online, ed. An introduction to communication network analysis. Hoboken, N.J: Wiley-Interscience, 2007.
Find full textWein, Lawrence M. Scheduling network of queues: Heavy traffic analysis of multistation network with controllable inputs. Cambridge, Mass: Alfred P. Sloan School of Management, Massachusetts Institute of Technology, 1989.
Find full textB, Mišić Vojislav, ed. Performance modeling and analysis of Bluetooth networks: Polling, scheduling, and traffic control. Boca Raton: Auerbach Publications, 2006.
Find full textKesidis, George. A course on analysis of communication networks. Hoboken, N.J: John Wiley, 2007.
Find full textDattatreya, G. R. Performance analysis of queuing and computer networks. Boca Raton: Chapman & Hall/CRC, 2008.
Find full textDattatreya, G. R. Performance analysis of queuing and computer networks. Boca Raton: CRC Press/Taylor & Francis, 2008.
Find full textYajuan, Deng, ed. Lu wang huan jing xia gao su gong lu jiao tong shi gu ying xiang chuan bo fen xi yu kong zhi: Traffic accident impact analysis and control of expressway under road network. Beijing: Ke xue chu ban she, 2010.
Find full textBook chapters on the topic "Analysis and filtering of network traffic"
Pontarelli, Salvatore, and Simone Teofili. "Anti-evasion Technique for Packet Based Pre-filtering for Network Intrusion Detection Systems (Poster)." In Traffic Monitoring and Analysis, 185–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20305-3_18.
Full textGebali, Fayez. "Modeling Network Traffic." In Analysis of Computer Networks, 445–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15657-6_15.
Full textGebali, Fayez. "Modeling Network Traffic." In Analysis of Computer and Communication Networks, 1–47. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74437-7_11.
Full textSadiku, Matthew N. O., and Sarhan M. Musa. "Self-Similarity of Network Traffic." In Performance Analysis of Computer Networks, 251–65. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01646-7_10.
Full textSilva, João Marco C., and Solange Rito Lima. "Improving Network Measurement Efficiency through Multiadaptive Sampling." In Traffic Monitoring and Analysis, 171–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28534-9_18.
Full textStefanidis, Kostas, Eirini Ntoutsi, Haridimos Kondylakis, and Yannis Velegrakis. "Social-Based Collaborative Filtering." In Encyclopedia of Social Network Analysis and Mining, 2793–802. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7131-2_110171.
Full textStefanidis, Kostas, Eirini Ntoutsi, Haridimos Kondylakis, and Yannis Velegrakis. "Social-Based Collaborative Filtering." In Encyclopedia of Social Network Analysis and Mining, 1–9. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-7163-9_110171-1.
Full textGiorgi, Giada, and Claudio Narduzzi. "Scaling Analysis of Wavelet Quantiles in Network Traffic." In Traffic Monitoring and Analysis, 109–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01645-5_13.
Full textRomirer-Maierhofer, Peter, Fabio Ricciato, Alessandro D’Alconzo, Robert Franzan, and Wolfgang Karner. "Network-Wide Measurements of TCP RTT in 3G." In Traffic Monitoring and Analysis, 17–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01645-5_3.
Full textDainotti, Alberto, Antonio Pescapé, and Carlo Sansone. "Early Classification of Network Traffic through Multi-classification." In Traffic Monitoring and Analysis, 122–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20305-3_11.
Full textConference papers on the topic "Analysis and filtering of network traffic"
Del Fiore, Julian M., Pascal Merindol, Valerio Persico, Cristel Pelsser, and Antonio Pescape. "Filtering the Noise to Reveal Inter-Domain Lies." In 2019 Network Traffic Measurement and Analysis Conference (TMA). IEEE, 2019. http://dx.doi.org/10.23919/tma.2019.8784618.
Full textLambruschini, P., M. Raggio, R. Bajpai, and A. Sharma. "Optimized packet pre-filtering for analysis of IP traffic on high-speed networks." In 2012 International Conference on Signals and Electronic Systems (ICSES 2012). IEEE, 2012. http://dx.doi.org/10.1109/icses.2012.6857541.
Full textFouliras, Panayotis. "On RTP filtering for network traffic reduction." In the 6th International Conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1497185.1497261.
Full textKline, Erik, Alexander Afanasyev, and Peter Reiher. "Shield: DoS filtering using traffic deflecting." In 2011 19th IEEE International Conference on Network Protocols (ICNP). IEEE, 2011. http://dx.doi.org/10.1109/icnp.2011.6089077.
Full textCerrato, I., M. Leogrande, and F. Risso. "Filtering network traffic based on protocol encapsulation rules." In 2013 International Conference on Computing, Networking and Communications (ICNC 2013). IEEE, 2013. http://dx.doi.org/10.1109/iccnc.2013.6504238.
Full textMontigny-leboeuf, Annie, and Tim Symchych. "Network Traffic Flow Analysis." In 2006 Canadian Conference on Electrical and Computer Engineering. IEEE, 2006. http://dx.doi.org/10.1109/ccece.2006.277589.
Full textAbramov, Evgeny, Denis Mordvin, and Oleg Makarevich. "Automated method for constructing of network traffic filtering rules." In the 3rd international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1854099.1854141.
Full textHeard, Nick, Patrick Rubin-Delanchy, and Daniel J. Lawson. "Filtering Automated Polling Traffic in Computer Network Flow Data." In 2014 IEEE Joint Intelligence and Security Informatics Conference (JISIC). IEEE, 2014. http://dx.doi.org/10.1109/jisic.2014.52.
Full textMistry, Devang, Prasad Modi, Kaustubh Deokule, Aditi Patel, Harshagandha Patki, and Omar Abuzaghleh. "Network traffic measurement and analysis." In 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT). IEEE, 2016. http://dx.doi.org/10.1109/lisat.2016.7494141.
Full textLi, Guanyu, Menghao Zhang, Chang Liu, Xiao Kong, Ang Chen, Guofei Gu, and Haixin Duan. "NETHCF: Enabling Line-rate and Adaptive Spoofed IP Traffic Filtering." In 2019 IEEE 27th International Conference on Network Protocols (ICNP). IEEE, 2019. http://dx.doi.org/10.1109/icnp.2019.8888057.
Full textReports on the topic "Analysis and filtering of network traffic"
Lakhina, Anukool, Konstantina Papagiannaki, Mark Crovella, Christophe Diot, Eric D. Kolaczyk, and Nina Taft. Structural Analysis of Network Traffic Flows. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada439086.
Full textLiu, Jyh-Charn. Progressive Email Classifier (PEC) for Ingress Enterprise Network Traffic Analysis. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada534227.
Full textMcCulloh, Ian, Grace Garcia, Kelsey Tardieu, Jennifer MacGibbon, Heather Dye, Kerry Moores, John Graham, and Daniel B. Horn. IkeNet: Social Network Analysis of E-mail Traffic in the Eisenhower Leadership Development Program. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada475212.
Full textDuvvuri, Sarvani, and Srinivas S. Pulugurtha. Researching Relationships between Truck Travel Time Performance Measures and On-Network and Off-Network Characteristics. Mineta Transportation Institute, July 2021. http://dx.doi.org/10.31979/mti.2021.1946.
Full textKodupuganti, Swapneel R., Sonu Mathew, and Srinivas S. Pulugurtha. Modeling Operational Performance of Urban Roads with Heterogeneous Traffic Conditions. Mineta Transportation Institute, January 2021. http://dx.doi.org/10.31979/mti.2021.1802.
Full textAl Hosain, Nourah, and Alma Alhussaini. Evaluating Access to Riyadh’s Planned Public Transport System Using Geospatial Analysis. King Abdullah Petroleum Studies and Research Center, June 2021. http://dx.doi.org/10.30573/ks--2021-dp10.
Full text