Academic literature on the topic 'Analyse non-supervisée'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analyse non-supervisée.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analyse non-supervisée"
Juge, P. A., B. Granger, L. El Houari, G. Mcdermott, T. Doyle, C. Kelly, K. Gouri, et al. "Déchiffrer la pneumopathie interstitielle diffuse associée à la polyarthrite rhumatoïde en utilisant une analyse en cluster hiérarchique non supervisée : résultats d’une collaboration internationale." Revue du Rhumatisme 90 (December 2023): A27—A28. http://dx.doi.org/10.1016/j.rhum.2023.10.040.
Full textGanachaud, Clément, Ludovic Seifert, and David Adé. "L’importation de méthodes non-supervisées en fouille de données dans le programme de recherche empirique et technologique du cours d’action : Apports et réflexions critiques." Staps N° 141, no. 3 (January 17, 2024): 97–108. http://dx.doi.org/10.3917/sta.141.0097.
Full textTesta, D., N. Jourde-Chiche, J. Mancini, P. Varriale, V. Morisseau, L. Radoszycki, and L. Chiche. "Analyse en clusters non supervisée des données en vie réelle d’une communauté en ligne de patients lupiques pour identifier des profils concernant leurs préférences thérapeutiques." La Revue de Médecine Interne 42 (June 2021): A85. http://dx.doi.org/10.1016/j.revmed.2021.03.306.
Full textBerriche, Amira, Dominique Crié, and Michel Calciu. "Une Approche Computationnelle Ancrée : Étude de cas des tweets du challenge #Movember en prévention de santé masculine." Décisions Marketing N° 112, no. 4 (January 25, 2024): 79–103. http://dx.doi.org/10.3917/dm.112.0079.
Full textBencherif, Kada, and Houari Tadj. "Approche d'estimation du volume-tige de peuplements forestiers par combinaison de données Landsat et données terrain Application à la pineraie de Tlemcen-Algérie." Revue Française de Photogrammétrie et de Télédétection, no. 215 (August 16, 2017): 3–11. http://dx.doi.org/10.52638/rfpt.2017.360.
Full textGaborit, B., R. Lécuyer, N. Issa, F. Camou, F. Morio, F. Raffi, D. Boutoille, M. Gousseff, Y. Crabol, and B. Tessoulin. "Faut-il reconsidérer la présentation clinique et le traitement de la pneumonie à Pneumocystis jirovecii en fonction du terrain d'immunodépression sous-jacent ? Analyse non supervisée d'une étude rétrospective multicentrique." Médecine et Maladies Infectieuses Formation 3, no. 2 (June 2024): S73—S74. http://dx.doi.org/10.1016/j.mmifmc.2024.04.148.
Full textWils, Thierry, and Aziz Rhnima. "Taxonomie des conflits entre le travail et la famille : une analyse multidimensionnelle à l’aide de cartes auto-organisatrices." Articles 70, no. 3 (October 5, 2015): 432–56. http://dx.doi.org/10.7202/1033405ar.
Full textPham, Minh Tan, Grégoire Mercier, and Julien Michel. "Textural features from wavelets on graphs for very high resolution panchromatic Pléiades image classification." Revue Française de Photogrammétrie et de Télédétection, no. 208 (September 5, 2014): 131–36. http://dx.doi.org/10.52638/rfpt.2014.91.
Full textDelVillano, Sarah, Margaret de Groh, Howard Morrison, and Minh T. Do. "Aperçu - Services d’injection supervisée : mesure d’intervention communautaire en réponse à la crise des opioïdes à Ottawa (Canada)." Promotion de la santé et prévention des maladies chroniques au Canada 39, no. 3 (March 2019): 122–26. http://dx.doi.org/10.24095/hpcdp.39.3.03f.
Full textAboubacar, Amadou, Mourtala Bachir, Diouf Abdoulaye, and Iro Dan Guimbo. "Dynamique spatio-temporelle de la végétation contractée de l’ouest du Niger suivant le gradient pluviométrique et d’anthropisation de 1990 à 2020." International Journal of Biological and Chemical Sciences 17, no. 5 (October 29, 2023): 1873–88. http://dx.doi.org/10.4314/ijbcs.v17i5.8.
Full textDissertations / Theses on the topic "Analyse non-supervisée"
Goubet, Étienne. "Contrôle non destructif par analyse supervisée d'images 3D ultrasonores." Cachan, Ecole normale supérieure, 1999. http://www.theses.fr/1999DENS0011.
Full textHuck, Alexis. "Analyse non-supervisée d’images hyperspectrales : démixage linéaire et détection d’anomalies." Aix-Marseille 3, 2009. http://www.theses.fr/2009AIX30036.
Full textThis thesis focusses on two research fields regarding unsupervised analysis of hyperspectral images (HSIs). Under the assumptions of the linear spectral mixing model, the formalism of Non-Negative Matrix Factorization is investigated for unmixing purposes. We propose judicious spectral and spatial a priori knowledge to regularize the problem. In addition, we propose an estimator for the projected gradient optimal step-size. Thus, suitably regularized NMF is shown to be a relevant approach to unmix HSIs. Then, the problem of anomaly detection is considered. We propose an algorithm for Anomalous Component Pursuit (ACP), simultaneously based on projection pursuit and on a probabilistic model and hypothesis testing. ACP detects the anomalies with a constant false alarm rate and discriminates them into spectrally homogeneous classes
Leblanc, Brice. "Analyse non supervisée de données issues de Systèmes de Transport Intelligent-Coopératif." Thesis, Reims, 2020. http://www.theses.fr/2020REIMS014.
Full textThis thesis takes place in the context of Vehicular Ad-hoc Networks (VANET), and more specifically the context of Cooperative-Intelligent Transport System (C-ITS). These systems are exchanging information to enhance road safety.The purpose of this thesis is to introduce data analysis tools that may provide road operators information on the usage/state of their infrastructures. Therefore, this information may help to improve road safety. We identify two cases we want to deal with: driving profile identification and road obstacle detection.For dealing with those issues, we propose to use unsupervised learning approaches: clustering methods for driving profile identification, and concept drift detection for obstacle detection. This thesis introduces three main contributions: a methodology allowing us to transform raw C-ITS data in, first, trajectory, and then, learning data-set; the use of classical clustering methods and Points Of Interests for driving profiles with experiments on mobile device data and network logs data; and the consideration of a crowd of vehicles providing network log data as data streams and considered as input of concept drift detection algorithms to recognize road obstacles
Fontaine, Michaël. "Segmentation non supervisée d'images couleur par analyse de la connexité des pixels." Lille 1, 2001. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2001/50376-2001-305-306.pdf.
Full textRafi, Selwa. "Chaînes de Markov cachées et séparation non supervisée de sources." Thesis, Evry, Institut national des télécommunications, 2012. http://www.theses.fr/2012TELE0020/document.
Full textThe restoration problem is usually encountered in various domains and in particular in signal and image processing. It consists in retrieving original data from a set of observed ones. For multidimensional data, the problem can be solved using different approaches depending on the data structure, the transformation system and the noise. In this work, we have first tackled the problem in the case of discrete data and noisy model. In this context, the problem is similar to a segmentation problem. We have exploited Pairwise and Triplet Markov chain models, which generalize Hidden Markov chain models. The interest of these models consist in the possibility to generalize the computation procedure of the posterior probability, allowing one to perform bayesian segmentation. We have considered these methods for two-dimensional signals and we have applied the algorithms to retrieve of old hand-written document which have been scanned and are subject to show through effect. In the second part of this work, we have considered the restoration problem as a blind source separation problem. The well-known "Independent Component Analysis" (ICA) method requires the assumption that the sources be statistically independent. In practice, this condition is not always verified. Consequently, we have studied an extension of the ICA model in the case where the sources are not necessarily independent. We have introduced a latent process which controls the dependence and/or independence of the sources. The model that we propose combines a linear instantaneous mixing model similar to the one of ICA model and a probabilistic model on the sources with hidden variables. In this context, we show how the usual independence assumption can be weakened using the technique of Iterative Conditional Estimation to a conditional independence assumption
RAFI, Selwa. "Chaînes de Markov cachées et séparation non supervisée de sources." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00995414.
Full textCutrona, Jérôme. "Analyse de forme des objets biologiques : représentation, classification et suivi temporel." Reims, 2003. http://www.theses.fr/2003REIMS018.
Full textN biology, the relationship between shape, a major element in computer vision, and function has been emphasized since a long time. This thesis proposes a processing line leading to unsupervised shape classification, deformation tracking and supervised classification of whole population of objects. We first propose a contribution to unsupervised segmentation based on a fuzzy classification method and two semi-automatic methods founded on fuzzy connectedness and watersheds. Next, we perform a study on several shape descriptors including primitives and anti-primitives, contour, silhouete and multi-scale curvature. After shape matching, the descriptors are submitted to statistical analysis to highlight the modes of variations within the samples. The obtained statistical model is the basis of the proposed applications
Boubou, Mounzer. "Contribution aux méthodes de classification non supervisée via des approches prétopologiques et d'agrégation d'opinions." Phd thesis, Université Claude Bernard - Lyon I, 2007. http://tel.archives-ouvertes.fr/tel-00195779.
Full textTa, Minh Thuy. "Techniques d'optimisation non convexe basée sur la programmation DC et DCA et méthodes évolutives pour la classification non supervisée." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0099.
Full textThis thesis focus on four problems in data mining and machine learning: clustering data streams, clustering massive data sets, weighted hard and fuzzy clustering and finally the clustering without a prior knowledge of the clusters number. Our methods are based on deterministic optimization approaches, namely the DC (Difference of Convex functions) programming and DCA (Difference of Convex Algorithm) for solving some classes of clustering problems cited before. Our methods are also, based on elitist evolutionary approaches. We adapt the clustering algorithm DCA–MSSC to deal with data streams using two windows models: sub–windows and sliding windows. For the problem of clustering massive data sets, we propose to use the DCA algorithm with two phases. In the first phase, massive data is divided into several subsets, on which the algorithm DCA–MSSC performs clustering. In the second phase, we propose a DCA–Weight algorithm to perform a weighted clustering on the obtained centers in the first phase. For the weighted clustering, we also propose two approaches: weighted hard clustering and weighted fuzzy clustering. We test our approach on image segmentation application. The final issue addressed in this thesis is the clustering without a prior knowledge of the clusters number. We propose an elitist evolutionary approach, where we apply several evolutionary algorithms (EAs) at the same time, to find the optimal combination of initial clusters seed and in the same time the optimal clusters number. The various tests performed on several sets of large data are very promising and demonstrate the effectiveness of the proposed approaches
Gan, Changquan. "Une approche de classification non supervisée basée sur la notion des K plus proches voisins." Compiègne, 1994. http://www.theses.fr/1994COMP765S.
Full textBook chapters on the topic "Analyse non-supervisée"
LIU, Sicong, Francesca BOVOLO, Lorenzo BRUZZONE, Qian DU, and Xiaohua TONG. "Détection non supervisée des changements dans des images multitemporelles." In Détection de changements et analyse des séries temporelles d’images 1, 5–40. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch1.
Full textATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN, and Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives." In Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.
Full text